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Preface

This text is written for use in a second course in circuit analysis. The reader of this book should have
the traditional undergraduate knowledge of an introductory circuit analysis material such as Circuit
Analysis I with MATLAB® Applications by this author. Another prerequisite would be knowledge of
differential equations, and in most cases, engineering students at this level have taken all required
mathematics courses. It encompasses a spectrum of subjects ranging from the most abstract to the
most practical, and the material can be covered in one semester or two quarters. Appendix B serves as
a review of differential equations with emphasis on engineering related topics and it is recommended
for readers who may need a review of this subject. 

There are several textbooks on the subject that have been used for years. The material of this book is
not new, and this author claims no originality of its content. This book was written to fit the needs of
the average student. Moreover, it is not restricted to computer oriented circuit analysis. While it is true
that there is a great demand for electrical and computer engineers, especially in the internet field, the
demand also exists for power engineers to work in electric utility companies, and facility engineers to
work in the industrial areas. 

Chapter 1 is an introduction to second order circuits and it is essentially a sequel to first order circuits
that were discussed in the last chapter of as Circuit Analysis I with MATLAB® Applications. Chapter 2
is devoted to resonance, and Chapter 3 presents practical methods of expressing signals in terms of
the elementary functions, i.e., unit step, unit ramp, and unit impulse functions. Thus, any signal can be
represented in the compex frequency domain using the Laplace transformation.

Chapters 4 and 5 are introductions to the unilateral Laplace transform and Inverse Laplace transform
respectively, while Chapter 6 presents several examples of analyzing electric circuits using Laplace
transformation methods. Chapter 7 begins with the frequency response concept and Bode magnitude
and frequency plots. Chapter 8 is devoted to transformers with an introduction to self and mutual
inductances. Chapter 9 is an introduction to one- and two-terminal devices and presents several
practical examples. Chapter 10 is an introduction to three-phase circuits.

It is not necessary that the reader has previous knowledge of MATLAB®. The material of this text
can be learned without MATLAB. However, this author highly recommends that the reader studies
this material in conjunction with the inexpensive MATLAB Student Version package that is available
at most college and university bookstores. Appendix A of this text provides a practical introduction
to MATLAB. As shown on the front cover of this text the magnitude and phase plots can be easily
obtained with a one line MATLAB code. Moreover, MATLAB will be invaluable in later studies such
as the design of analog and digital filters.
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As stated above, Appendix B is a review of differential equations. Appendix C is an introduction
to matrices, Appendix D provides instructions on constructing semilog templates to be used with
Bode plots, and Appendix E discusses scaling methods.

In addition to numerous real-world examples, this text contains several exercises at the end of
each chapter. Detailed solutions of all exercises are provided at the end of each chapter. The
rationale is to encourage the reader to solve all exercises and check his effort for correct solutions
and appropriate steps in obtaining the correct solution. And since this text was written to serve as
a self-study or supplementary textbook, it provides the reader with a resource to test his
knowledge.

The author has accumulated many additional problems for homework assignment and these are
available to those instructors who adopt this text either as primary or supplementary text, and
prefer to assign problems without the solutions. He also has accumulated many sample exams.

The author is indebted to the class of the Spring semester of 2001 at San Jose State University,
San Jose, California, for providing several of the examples and exercises of this text.

Like any other new book, this text may contain some grammar and typographical errors.
Accordingly, all feedback for errors, advice, and comments will be most welcomed and greatly
appreciated.

Orchard Publications
info@orchardpublications.com
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Chapter 1

Second Order Circuits

his chapter discusses the natural, forced and total responses in circuits containing resistors,
inductors and capacitors. These circuits are characterized by linear second-order differential
equations whose solutions consist of the natural and the forced responses. We will consider

both DC (constant) and AC (sinusoidal) excitations.

1.1 The Response of a Second Order Circuit

A circuit containing  energy storage devices (inductors and capacitors) is said to be an nth-order cir-
cuit, and the differential equation describing the circuit is an nth-order differential equation. For exam-
ple, if a circuit contains an inductor and a capacitor, or two capacitors or two inductors, along with
other devices such as resistors, it is said to be a second-order circuit and the differential equation that
describes it is a second order differential equation. It is possible, however, to describe a circuit having
two energy storage devices with a set of two first-order differential equations, a circuit which has
three energy storage devices with a set of three first-order differential equations and so on. These are
called state equations* but these will not be discussed here.

The response is found from the differential equation describing the circuit, and its solution is
obtained as follows:

1. We write the differential or integrodifferential (nodal or mesh) equation describing the circuit. We
differentiate, if necessary, to eliminate the integral.

2. We obtain the forced (steady-state) response. Since the excitation in our work here will be either a
constant (DC) or sinusoidal (AC) in nature, we expect the forced response to have the same form
as the excitation. We evaluate the constants of the forced response by substitution of the assumed
forced response into the differential equation and equate terms of the left side with the right side.
Refer to Appendix B for the general expression of the forced response (particular solution).

3. We obtain the general form of the natural response by setting the right side of the differential
equation equal to zero, in other words, solve the homogeneous differential equation using the
characteristic equation.

4. Add the forced and natural responses to form the complete response.

5. We evaluate the constants of the complete response from the initial conditions.

* State variables and state equations are discussed in Signals and Systems with MATLAB Applications, ISBN 0-
9709511-3-2 by this author.

T

n
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1.2  The Series RLC Circuit with DC Excitation

Let us consider the series  circuit of Figure 1.1 where the initial conditions are ,

, and  is the unit step function.* We want to find an expression for the current 
for . 

Figure 1.1. Series RLC Circuit

For this circuit

(1.1)

and by differentiation

To find the forced response, we must first specify the nature of the excitation , that is, DC or AC.
If  is DC ( =constant), the right side of (1.1) will be zero and thus the forced response compo-
nent . If  is AC ( , the right side of (1.1) will be another sinusoid and
therefore . Since in this section we are concerned with DC excitations, the right
side will be zero and thus the total response will be just the natural response.

The natural response is found from the homogeneous equation of (1.1), that is,

(1.2)

The characteristic equation of (1.2) is

* The unit step function is discussed in detail in Chapter 3. For our present discussion it will suffice to state that
 for  and  for .
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The Series RLC Circuit with DC Excitation

or

from which

(1.3)

We will use the following notations:

(1.4)

where the subscript  stands for series circuit. Then, we can express (1.3) as

(1.5)

or

(1.6)

Case I: If , the roots  and  are real, negative, and unequal. This results in the over-
damped natural response and has the form

(1.7)

Case II: If , the roots  and  are real, negative, and equal. This results in the critically
damped natural response and has the form

 (1.8)

Case III: If , the roots  and  are complex conjugates. This is known as the underdamped
or oscillatory natural response and has the form

(1.9)

A typical overdamped response is shown in Figure 1.2 where it is assumed that . This plot
was created with the following MATLAB code:
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t=0: 0.01: 6; ft=8.4.*(exp( t)-exp( 6.*t)); plot(t,ft); grid; xlabel('t');...
ylabel('f(t)'); title('Overdamped Response for 4.8.*(exp( t) exp( 6.*t))')

Figure 1.2. Typical overdamped response

A typical critically damped response is shown in Figure 1.3 where it is assumed that . This
plot was created with the following MATLAB code:

t=0: 0.01: 6; ft=420.*t.*(exp( 2.45.*t)); plot(t,ft); grid; xlabel('t');...
ylabel('f(t)'); title('Critically Damped Response for 420.*t.*(exp( 2.45.*t))')

Figure 1.3. Typical critically damped response

A typical underdamped response is shown in Figure 1.4 where it is assumed that . This
plot was created with the following MATLAB code:

in 0 0=

in 0 0=
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Response of Series RLC Circuits with DC Excitation

t=0: 0.01: 10; ft=210.*sqrt(2).*(exp( 0.5.*t)).*sin(sqrt(2).*t); plot(t,ft); grid; xlabel('t');...
ylabel('f(t)'); title('Underdamped Response for 210.*sqrt(2).*(exp( 0.5.*t)).*sin(sqrt(2).*t)')

Figure 1.4. Typical underdamped response

1.3 Response of Series RLC Circuits with DC Excitation

Depending on the circuit constants , , and , the total response of a series  circuit that is
excited by a DC source, may be overdamped, critically damped, or underdamped. In this section we
will derive the total response of series  circuits that are excited by DC sources. 

Example 1.1

For the circuit of Figure 1.5, , , and the  resistor represents the
resistance of the inductor. Compute and sketch  for .

Figure 1.5. Circuit for Example 1.1

Solution:

This circuit can be represented by the integrodifferential equation

R L C RLC

RLC

iL 0 5 A= vC 0 2.5 V= 0.5
i t t 0

+

15u0 t V
i t

0.5

1 mH

100 6 mF
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  (1.10)

Differentiating and noting that the derivatives of the constants and  are zero, we obtain the
homogeneous differential equation

or

and by substitution of the known values , , and 

(1.11)

The roots of the characteristic equation of (1.11) are  and . The total response
is just the natural response and for this example it is overdamped. Therefore, from (1.7),

(1.12)

The constants  and  can be evaluated from the initial conditions. Thus from the first initial con-
dition and (1.12) we get

 (1.13)

We need another equation in order to compute the values of  and . With this equation we will

make use of the second initial condition, that is, . Since , we dif-

ferentiate (1.12), we evaluate it at , and we equate it with this initial condition. Then,

(1.14)
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and solving for  we get

(1.15)

Next, equating (1.14) with (1.15) we get:

 (1.16)

Simultaneous solution of (1.13) and (1.16) yields  and . By substitution into (1.12)
we find the total response as

(1.17)

Check with MATLAB:

syms t; %  Define symbolic variable t
R=0.5; L=10^( 3); C=100*10^( 3)/6;%  Circuit constants
y0=115*exp( 200*t) 110*exp(-300*t); %  Let solution i(t)=y0
y1=diff(y0); %  Compute the first derivative of y0, i.e., di/dt
y2=diff(y0,2); %  Compute the second derivative of y0, i.e, di2/dt2

%  Substitute the solution i(t), i.e., equ (1.17) 
%  into differential equation of (1.11) to verify
%  that correct solution was obtained.
% We must also verify that the initial
% conditions are satisfied

y=y2+500*y1+60000*y0;
i0=115*exp( 200*0) 110*exp( 300*0);
vC0= R*i0 L*( 23000*exp( 200*0)+33000*exp( 300*0))+15;
fprintf(' \n');...
disp('Solution was entered as y0 = '); disp(y0);...
disp('1st derivative of solution is y1 = '); disp(y1);...
disp('2nd derivative of solution is y2 = '); disp(y2);...
disp('Differential equation is satisfied since y = y2+y1+y0 = '); disp(y);...
disp('1st initial condition is satisfied since at t = 0, i0 = '); disp(i0);...
disp('2nd initial condition is also satisfied since vC+vL+vR=15 and vC0 = ');...
disp(vC0);...
fprintf(' \n')

Solution was entered as y0 = 
115*exp(-200*t)-110*exp(-300*t)

di
dt
-----

t 0+
=

di
dt
-----

t 0+
=

15 0.5 5– 2.5–

10 3–
--------------------------------------- 10000= =

200k– 1 300– k2 10000=

k– 1 1.5– k2 50=
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1st derivative of solution is y1 = 
-23000*exp(-200*t)+33000*exp(-300*t)

2nd derivative of solution is y2 = 
4600000*exp(-200*t)-9900000*exp(-300*t)

Differential equation is satisfied since y = y2+y1+y0 = 0

1st initial condition is satisfied since at t = 0, i0 = 5

2nd initial condition is also satisfied since vC+vL+vR=15 and vC0
= 2.5000

We will use the following MATLAB code to sketch .

t=0: 0.0001: 0.025; i1=115.*(exp( 200.*t)); i2=110.*(exp( 300.*t)); iT=i1 i2;...
plot(t,i1,t,i2,t,iT); grid; xlabel('t'); ylabel('i1, i2, iT'); title('Response iT for Example 1.1')

Figure 1.6. Plot for of Example 1.1 

In the above example, differentiation eliminated (set equal to zero) the right side of the differential
equation and thus the total response was just the natural response. A different approach however,
may not set the right side equal to zero, and therefore the total response will contain both the natural
and forced components. To illustrate, we will use the following approach.

The capacitor voltage, for all time , may be expressed as  and as before, the circuit

can be represented by the integrodifferential equation

(1.18)

i t

i t

t vC t 1
C
---- i td

–

t

=

Ri Ldi
dt
----- 1

C
---- i td

–

t
+ + 15= u0 t
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and since

we rewrite (1.18) as

 (1.19)

We observe that this is a non-homogeneous differential equation whose solution will have both the
natural and the forced response components. Of course, the solution of (1.19) will give us the capaci-
tor voltage . This presents no problem since we can obtain the current by differentiation of the
expression for .

Substitution of the given values into (1.19) yields

or

(1.20)

The characteristic equation of (1.20) is the same as of that of (1.11) and thus the natural response is

(1.21)

Since the right side of (1.20) is a constant, the forced response will also be a constant and we denote it
as . By substitution into (1.20) we get

or

 (1.22)

The total solution then is the summation of (1.21) and (1.22), that is,

 (1.23)

As before, the constants  and  will be evaluated from the initial conditions. First, using
 and evaluating (1.23) at , we get

or

i iC C
dvC

dt
--------= =

RC
dvC

dt
--------- LC

dvC
2

dt2
--------- vC+ + 15= u0 t

vC t
vC t

50
6

------ 10 3– dvC

dt
-------- 1 10 3– 100

6
---------10 3– dvC

2

dt2
-------- vC+ + 15= u0 t

dvC
2

dt2
-------- 500

dvC

dt
-------- 60000vC+ + 9 105= u0 t

vCn t k1e
s1t

k2e
s2t

+ k1e 200– t k2e 300– t+= =

vCf k3=

0 0 60000k3+ + 900000=

vCf k3 15= =

vC t vCn t vCf+= k1e 200– t k2e 300– t 15+ +=

k1 k2

vC 0 2.5 V= t 0=

vC 0 k1e0 k2e0 15+ + 2.5= =
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 (1.24)

Also,

(1.25)

Next, we differentiate (1.23), we evaluate it at  and equate it with (1.25). Then,

(1.26)

Equating the right sides of (1.25) and (1.26) we get

or

 (1.27)

From (1.24) and (1.27), we get  and . By substitution into (1.23), we obtain the
total solution as

(1.28)

Check with MATLAB:

syms t %  Define symbolic variable t
y0=22*exp( 300*t) 34.5*exp( 200*t)+15; %  The total solution y(t)
y1=diff(y0) %  The first derivative of y(t)

y1 =
-6600*exp(-300*t)+6900*exp(-200*t)

y2=diff(y0,2) %  The second derivative of y(t)

y2 =
1980000*exp(-300*t)-1380000*exp(-200*t)

y=y2+500*y1+60000*y0 %  Summation of y and its derivatives

y =
900000

Using the expression for  we can find the current as

  (1.29)

k1 k2+ 12.5–=

iL iC C
dvC

dt
--------= =

dvC

dt
-------- iL

C
---- and dvC

dt
--------

t 0=

iL 0
C

------------ 5
100
6

--------- 10 3–
------------------------- 300= = ==

t 0=

dvC

dt
-------- 200k1– e 200– t 300k2– e 300– t   and   dvC

dt
--------

t 0=

200k1– 300k2–==

200k1– 300k2– 300=

k1– 1.5k2– 1.5=

k1 34.5–= k2 22=

vC t 22e 300– t 34.5– e 200– t 15+ u0 t=

vC t

i iL= iC C
dvC

dt
-------- 100

6
--------- 10 3– 6900e 200t– 6600– e 300t– 115e 200t– 110– e 300t– A= == =
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We observe that (1.29) is the same as (1.17).

We will use the following MATLAB code to sketch .

t=0: 0.001: 0.03; vc1=22.*(exp( 300.*t)); vc2= 34.5.*(exp( 200.*t)); vc3=15;... 
vcT=vc1+vc2+vc3; plot(t,vc1,t,vc2,t,vc3,t,vcT); grid; xlabel('t');...
ylabel('vc1, vc2, vc3, vcT'); title('Response vcT for Example 1.1')

Figure 1.7. Plot for of Example 1.1

1.4 Response of Series RLC Circuits with AC Excitation

The total response of a series RLC circuit, which is excited by a sinusoidal source, will also consist of
the natural and forced response components. As we found in the previous section, the natural
response can be overdamped, or critically damped, or underdamped. The forced component will be a
sinusoid of the same frequency as that of the excitation, and since it represents the AC steady-state
condition, we can use phasor analysis to find it. The following example illustrates the procedure.

Example 1.2

For the circuit of Figure 1.8, , , and the  resistor represents the
resistance of the inductor. Compute and sketch  for .

Solution:

This circuit is the same as that of Example 1.1 except that the circuit is excited by a sinusoidal source;
therefore it can be represented by the integrodifferential equation

(1.30)

i t

vC t

iL 0 5 A= vC 0 2.5 V= 0.5
i t t 0

Ri Ldi
dt
----- 1

C
---- i td

0

t

vC 0+ + + 200 10000tcos=   t 0
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Figure 1.8. Circuit for Example 1.2

whose solution consists of the summation of the natural and forced responses. We know its natural
response from the previous example. We start with

(1.31)

where the constants  and  will be evaluated from the initial conditions after  has been
found. The steady state (or forced) response will have the form  in the
time domain ( -domain) and has the form in the frequency domain ( -domain).

To find  we will use the phasor analysis relation where  is the phasor current,  is
the phasor voltage, and  is the impedance of the phasor circuit which, as we know, is 

(1.32)

The inductive and capacitive reactances are

and

Then,

Also,

and this yields . Then, by substitution into (1.32),

and thus

+

200 10000tcos u0 t V
i t

0.5

1 mH

100 6 mF

i t in t if t+ k1 e 200– t k2 e 300– t if t+ +==

k1 k2 if t
if t k3 10 000t +cos=

t k3 j

if t I V Z= I V
Z

Z R j L 1 C–+ R2 L 1 C– 2+ L 1 C– R1–tan= =

XL L 104 10 3– 10= = =

XC
1
C

-------- 1
104 100 6 10 3–
--------------------------------------------- 6 10 3–= = =

R 2 0.5 2 0.25   and L 1 C– 2 10 6 10 3––
2 99.88= == =

L 1 C– R1–tan 10 6 10 3––
0.5

------------------------------------
1–

tan 9.994
0.5

-------------
1–

tan= =

1.52 rads 87.15= =

Z 0.25 99.88+ o 10 87.15 o= =

I V
Z
--- 200 0o

10 87.15 o
--------------------------- 20 87.15– o= = = 20 10000t 87.15– ocos if t=
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The total solution is

 (1.33)

The constants  and  are evaluated from the initial conditions. From (1.33) and the first initial
condition  we get 

(1.34)

We need another equation in order to compute the values of  and . This equation will make use

of the second initial condition, that is, . Since , we differentiate

(1.33), we evaluate it at , and we equate it with this initial condition. Then,

(1.35)

and at ,

(1.36)

Also, at 

and solving for we get 

(1.37)

Next, equating (1.36) with (1.37) we get

or

(1.38)

i t in t if t+ k1e 200– t k2e 300– t 20 10000t 87.15– ocos+ +==

k1 k2

iL 0 5 A=

i 0 k1e0 k2e0 20 87.15– ocos+ += 5=

i 0 k1 k2 20 0.05+ += 5=

k1 k2+ 4=

k1 k2

vC 0 2.5 V= iC t i t C
dvC

dt
--------= =

t 0=

di
dt
----- 200k– 1e 200– t 300k2– e 300– t 2 105 10000t 87.15– osin–=

t 0=

di
dt
-----

t 0=

200k– 1 300k2– 2 106 87.15– osin–= 200k– 1 300k2– 2 105+=

t 0+=

Ri 0+ Ldi
dt
-----

t 0+
=

vc 0++ + 200 0cos 200= =

di
dt
-----

t 0+
=

di
dt
-----

t 0+
=

200 0.5 5– 2.5–

10 3–
------------------------------------------ 195000= =

200k– 1 300– k2 5000–=

k1 1.5k2+ 25=
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Simultaneous solution of (1.34) and (1.38) yields  and . Then, by substitution into
(1.31), the total response is

(1.39)

The plot is shown in Figure 1.9 and was created with the following MATLAB code:

t=0: 0.005: 0.20; i1= 38.*(exp( 200.*t)); i2=42.*(exp( 300.*t));...
i3=20.*cos(10000.*t 87.15.*pi./180); iT=i1+i2+i3; plot(t,i1,t,i2,t,i3,t,iT); grid; xlabel('t');...
ylabel('i1, i2, i3, iT'); title('Response iT for Example 1.2')

Figure 1.9. Plot for  of Example 1.2

1.5 The Parallel GLC Circuit

Consider the circuit of Figure 1.10 where the initial conditions are , , and
 is the unit step function. We want to find an expression for the voltage  for . 

Figure 1.10. Parallel RLC circuit

For this circuit

k1 38–= k2 42=

i t 38– e 200– t 42e 300– t 20 10000t 87.15– o Acos+ +=

i t

iL 0 I0= vC 0 V0=

u0 t v t t 0

iS u0 t

v t G L C

iCiLiG
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or

By differentiation,

(1.40)

To find the forced response, we must first specify the nature of the excitation , that is DC or AC.

If  is DC ( =constant), the right side of (1.40) will be zero and thus the forced response compo-
nent . If  is AC ( , the right side of (1.40) will be another sinusoid and
therefore . Since in this section we are concerned with DC excitations, the right
side will be zero and thus the total response will be just the natural response.

The natural response is found from the homogeneous equation of (1.40), that is, 

(1.41)

whose characteristic equation is

or

from which

   (1.42)

and with the following notations,

(1.43)

where the subscript  stands for parallel circuit, we can express (1.42) as

iG t iL t iC t+ + iS t=

Gv 1
L
--- v td

0

t

I0+ + Cdv
dt
------+ iS=     t 0

C dv2

dt2
-------- Gdv

dt
------ v

L
---+ +

diS

dt
-------=     t 0

iS

iS vS

vf 0= iS iS I t +cos=

vf V t +cos=

C dv2

dt2
-------- Gdv

dt
------ v

L
---+ + 0=

Cs2 Gs 1
L
---+ + 0=

s2 G
C
----s i

LC
-------+ + 0=

s1 s2
G

2C
-------– G2

4C2
--------- 1

LC
-------–=

P
G

2C
-------=

or Damping
Coefficient

0
1
LC

-----------=

Resonant
Frequency

   
P P

2
0
2–=

Beta
Coefficient

nP 0
2

P
2–=

Damped Natural
Frequency

p
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(1.44)

or

 (1.45)

Note: From (1.4) and (1.43) we observe that 

As in a series circuit, the natural response can be overdamped, critically damped, or under-
damped.

Case I: If , the roots  and  are real, negative, and unequal. This results in the over-
damped natural response and has the form

(1.46)

Case II: If , the roots  and  are real, negative, and equal. This results in the critically
damped natural response and has the form

(1.47)

Case III: If , the roots  and  are complex conjugates. This results in the underdamped
or oscillatory natural response and has the form 

(1.48)

1.6  Response of Parallel GLC Circuits with DC Excitation

Depending on the circuit constants  (or ), , and , the natural response of a parallel  cir-
cuit may be overdamped, critically damped or underdamped. In this section we will derive the total
response of a parallel  circuit which is excited by a DC source using  the following example.

Example 1.3

For the circuit of Figure 1.11,  and . Compute and sketch  for . 

s1 s2 P– P
2

0
2– P– P if P

2
0
2= =

s1 s2 P– 0
2

P
2– P– nP if 0

2
P
2= =

S P

vn t

P
2

0
2 s1 s2

vn t k1e
s1t

k2e
s2t

+=

P
2

0
2= s1 s2

vn t e Pt–
k1 k2t+=

0
2

P
2 s1 s2

vn t e Pt–
k1 nPcos t k2 nPtsin+ k3e Pt–

nPcos t += =

G R L C GLC

GLC

iL 0 2 A= vC 0 5 V= v t t 0



1-17 Circuit Analysis II with MATLAB Applications
Orchard Publications

Response of Parallel GLC Circuits with DC Excitation

Figure 1.11. Circuit for Example 1.3

Solution:

We could write the integrodifferential equation that describes the given circuit, differentiate, and find
the roots of the characteristic equation from the homogeneous differential equation as we did in the
previous section. However, we will skip these steps and start with

(1.49)

and when steady-state conditions have been reached we will have , 
and .

To find out whether the natural response is overdamped, critically damped, or oscillatory, we need to
compute the values of  and  using (1.43) and the values of  and  using (1.44) or (1.45).
Then will use (1.46), or (1.47), or (1.48) as appropriate. For this example,

or

and

Then

or and . Therefore, the natural response is overdamped and from (1.46) we get

(1.50)

and the constants  and  will be evaluated from the initial conditions. 

From the initial condition and (1.50) we get

10u0 t A
v t

32 1 640 F

iCiLiR

10 H

v t vf t vn t+=

v vL L di dt 0= = = vf 0=

v t vn t=

P 0 s1 s2

P
G

2C
------- 1

2RC
----------- 1

2 32 1 640
------------------------------------- 10= = = =

P
2 100=

0
2 1

LC
------- 1

10 1 640
---------------------------- 64= = =

s1 s2 P– P
2

0
2– 10– 6= =

s1 4–= s2 16–=

v t vn t k1e
s1t

k2e
s2t

+ k1e 4– t k2e 16– t+= ==

k1 k2

vC 0 v 0 5 V= =
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or

(1.51)

The second equation that is needed for the computation of the values of  and  is found from

other initial condition, that is, . Since , we differentiate (1.50),

evaluate it at , and we equate it with this initial condition.Then, 

(1.52)

Also, at 

and solving for  we get

(1.53)

Next, equating (1.52) with (1.53) we get

or

  (1.54)

Simultaneous solution of (1.51) and (1.54) yields , , and by substitution
into (1.50) we get the total response as 

(1.55)

Check with MATLAB:

syms t %  Define symbolic variable t
y0=291*exp( 4*t)/6 261*exp( 16*t)/6; %  Let solution v(t) = y0
y1=diff(y0) % Compute and display first derivative

y1 =
-194*exp(-4*t)+696*exp(-16*t)

v 0 k1e0 k2e0+ 5= =

k1 k2+ 5=

k1 k2

iL 0 2 A= iC t C
dvC

dt
-------- Cdv

dt
------= =

t 0+=

dv
dt
------ 4k– 1e 4– t 16k2– e 16– t   and=

dv
dt
------

t 0+
=

4k– 1 16– k2=

t 0+=

1
R
---v 0+ iL 0+ Cdv

dt
------

t 0+
=

+ + 10=

dv
dt
------

t 0+
=

dv
dt
------

t 0+
=

10 5 32– 2–
1 640

------------------------------- 502= =

4k– 1 16– k2 502=

2k– 1 8– k2 251=

k1 291 6= k2 261– 6=

v t vn t 291
6

---------e 4– t 261
6

---------– e 16– t==
1
6
--- 291e 4– t 261– e 16– t V=
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y2=diff(y0,2) % Compute and display second derivative

y2 =
776*exp(-4*t)-11136*exp(-16*t)

y=y2/640+y1/32+y0/10 % Verify that (1.40) is satisfied

y =
0

The plot is shown in Figure 1.12 where we have used the following MATLAB code:

t=0: 0.01: 1; v1=(291./6).*(exp( 4.*t)); v2= (261./6).*(exp( 16.*t));...
vT=v1+v2; plot(t,v1,t,v2,t,vT); grid; xlabel('t');...
ylabel('v1, v2, vT'); title('Response vT for Example 1.3')

Figure 1.12. Plot for  of Example 1.3

From the plot of Figure 1.12, we observe that  attains its maximum value somewhere in the inter-
val  and  sec., and the maximum voltage is approximately . If we desire to compute pre-
cisely the maximum voltage and the exact time it occurs, we can find the derivative of (1.55), set it
equal to zero, and solve for . Thus,

(1.56)

Division of (1.56) by yields

or

v t

v t
0.10 0.12 24 V

t

dv
dt
------

t 0=

1164e 4– t– 4176e 16– t+ 0= =

e 16t–

1164e12t– 4176+ 0=
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or

and

By substitution into (1.55) 

(1.57)

A useful quantity, especially in electronic circuit analysis, is the settling time, denoted as , and it is
defined as the time required for the voltage to drop to  of its maximum value. Therefore,  is an
indication of the time it takes for to damp-out, meaning to decrease the amplitude of  to
approximately zero. For this example, , and we can find  by substitution
into (1.55). Then,

(1.58)

and we need to solve for the time . To simplify the computation, we neglect the second term inside
the parentheses of (1.58) since this component of the voltage damps out much faster than the other
component. This expression then simplifies to

or

or

(1.59)

Example 1.4

For the circuit of Figure 1.13,  and , and the resistor is to be adjusted so

that the natural response will be critically damped. Compute and sketch  for . 

e12t 348
97

---------=

12t 348
97

---------ln= 1.2775=

t tmax
1.2775

12
---------------- 0.106 s= = =

vmax
1
6
--- 291e 4– x0.106 261– e 16– x0.106 23.76 V= =

tS

1% tS

v t v t
0.01 23.76 0.2376 V= tS

0.01vmax 0.2376 1
6
--- 291e 4t– 261e 16t––= =

t

0.2376 1
6
--- 291e

4– ts=

4– tS 0.005ln 5.32–= =

tS 1.33 s=

iL 0 2 A= vC 0 5 V=

v t t 0
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Figure 1.13. Circuit for Example 1.4

Solution:

Since the natural response is to be critically damped, we must have  because the L and C val-
ues are the same as in the previous example. Please refer to (1.43). We must also have

or

or and thus . The natural response will have the form

(1.60)

Using the initial condition  and evaluating (1.60) at , we get

or

 (1.61)

and (1.60) simplifies to
 (1.62)

As before, we need to compute the derivative  in order to apply the second initial condition and
find the value of the constant .

We obtain the derivative using MATLAB as follows:

syms t k2; v0=exp( 8*t)*(5+k2*t); v1=diff(v0);           %  v1 is 1st derivative of v0

v1 =
-8*exp(-8*t)*(5+k2*t)+exp(-8*t)*k2

10u0 t A
v t

1 640 F

iCiLiR

10 H

0
2 64=

P
G

2C
------- 1

2RC
----------- 0= = = 1

LC
------- 8= =

1
R
--- 8 2

640
--------- 1

40
------= =

R 40= s1 s2 P– 8–= = =

v t vn t= e Pt–
k1 k2t+ or v t vn t= e 8t– k1 k2t+==

vC 0 5 V= t 0=

v 0 e0 k1 k20+= 5=

k1 5=

v t e 8t– 5 k2t+=

dv dt
k2
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Then,

and

 (1.63)

Also,  or  and

(1.64)

or

(1.65)

Equating (1.63) with (1.65) and solving for  we get

or

(1.66)

and by substitution into (1.62), we obtain the total solution as 

(1.67)

Check with MATLAB:

syms t; y0=exp( 8*t)*(5+5080*t); y1=diff(y0)% Compute 1st derivative

y1 =
-8*exp(-8*t)*(5+5080*t)+5080*exp(-8*t)

y2=diff(y0,2) % Compute 2nd derivative 

y2 =
64*exp(-8*t)*(5+5080*t)-81280*exp(-8*t)

y=y2/640+y1/40+y0/10 % Verify differential equation, see (1.40)

y =
0

The plot is shown in Figure 1.14 where we have used the following MATLAB code:

dv
dt
------ 8e– 8t– 5 k2t+= k2e 8t–+

dv
dt
------

t 0=

40–= k2+

iC Cdv
dt
------= dv

dt
------ iC

C
----=

dv
dt
------

t 0+
=

iC 0+

C
--------------- IS iR 0+– iL 0+–

C
-------------------------------------------= =

dv
dt
------

t 0=

IS vC 0 R– iL 0–
C

------------------------------------------------- 10 5 40– 2–
1 640

------------------------------- 7.875
1 640
---------------- 5040= = = =

k2

40– k2+ 5040=

k2 5080=

v t e 8t– 5 5080t+ V=
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t=0: 0.01: 1; vt=exp( 8.*t).*(5+5080.*t); plot(t,vt); grid; xlabel('t');...
ylabel('vt'); title('Response vt for Example 1.4')

Figure 1.14. Plot for  of Example 1.4

By inspection of (1.67), we see that at ,  and thus the second initial condition is sat-
isfied. We can verify that the first initial condition is also satisfied by differentiation of (1.67). We can
also show that approaches zero as  approaches infinity with L’Hôpital’s rule as follows:

(1.68)

Example 1.5

For the circuit of Figure 1.15,  and . Compute and sketch  for .

Figure 1.15. Circuit for Example 1.5

Solution:

This is the same circuit as the that of the two previous examples except that the resistance has been
increased to . For this example,

v t

t 0= v t 5 V=

v t t

v t
t
lim e 8t– 5 5080t+

t
lim 5 5080t+

e8t
----------------------------

t
lim d 5 5080t+ dt

d e8t dt
----------------------------------------

t
lim 5080

8e8t
------------

t
lim 0= = = ==

iL 0 2 A= vC 0 5 V= v t t 0

10u0 t A
v t

50 1 640 F

iCiLiR

10 H

50
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or

and as before,

Also, . Therefore, the natural response is underdamped with natural frequency 

Since , the total response is just the natural response. Then, from (1.48),

(1.69)

and the constants and  will be evaluated from the initial conditions.

From the initial condition and (1.69) we get

or

(1.70)

To evaluate the constants  and  we differentiate (1.69), we evaluate it at , we write the equa-
tion which describes the circuit at , and we equate these two expressions. Using MATLAB we
get:

syms t k phi; y0=k*exp( 6.4*t)*cos(4.8*t+phi); y1=diff(y0)

y1 =
-32/5*k*exp(-32/5*t)*cos(24/5*t+phi)-24/5*k*exp(-32/5*t)*sin(24/

5*t+phi)

pretty(y1)

- 32/5 k exp(- 32/5 t) cos(24/5 t + phi)
     - 24/5 k exp(- 32/5 t) sin(24/5 t + phi)

Thus,

(1.71)

and

P
G

2C
------- 1

2RC
----------- 1

2 50 1 640
------------------------------------- 6.4= = = =

P
2 40.96=

0
2 1

LC
------- 1

10 1 640
---------------------------- 64= = =

0
2

P
2

nP 0
2

P
2– 64 40.96– 23.04 4.8= = = =

vf 0=

v t vn t ke Pt–

nPt +cos== ke 6.4t– 4.8t +cos=

k

vC 0 v 0 5 V= =

v 0 ke0 0 +cos 5= =

kcos 5=

k t 0=

t 0+=

dv
dt
------ 6.4ke 6.4t–– 4.8t +cos 4.8ke 6.4t– 4.8t +sin–=
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By substitution of (1.70), the above expression simplifies to

(1.72)

Also,  or  and

or

(1.73)

Equating (1.72) with (1.73) we get

or

(1.74)

The phase angle can be found by dividing (1.74) by (1.70). Then,

or

The value of the constant  is found from (1.70) as

or

and by substitution into (1.69), the total solution is

(1.75)

The plot is shown in Figure 1.16 where we have used the following MATLAB code:

dv
dt
------

t 0=

6.4k– cos 4.8ksin–=

dv
dt
------

t 0=

32– 4.8ksin–=

iC Cdv
dt
------= dv

dt
------ iC

C
----=

dv
dt
------

t 0+
=

iC 0+

C
--------------- IS iR 0+– iL 0+–

C
-------------------------------------------= =

dv
dt
------

t 0=

IS vC 0 R– iL 0–
C

------------------------------------------------- 10 5 50– 2–
1 640

------------------------------- 7.9 640 5056= = = =

32– 4.8ksin– 5056=

ksin 1060–=

ksin
kcos
--------------- tan 1060–

5
--------------- 212–= = =

212–1–tan 1.566 rads– 89.73  deg–= = =

k

k 1.566–cos 5=

k 5
1.566–cos

------------------------------ 1042= =

v t 1042e 6.4t– 4.8t 89.73–cos=
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t=0: 0.005: 1.5; vt=10.42.*exp( 6.4.*t).*cos(4.8.*t 89.73.*pi./180);...
plot(t,vt); grid; xlabel('t'); ylabel('vt'); title('Response v(t) for Example 1.5')

Figure 1.16. Plot for  of Example 1.5

We can also use a spreadsheet to plot (1.75). From the columns of that spreadsheet we can read the
following maximum and minimum values and the times these occur. 

Alternately, we can find the maxima and minima by differentiating the response of (1.75) and setting
it equal to zero.

1.7  Response of Parallel GLC Circuits with AC Excitation

The total response of a parallel GLC (or RLC) circuit that is excited by a sinusoidal source also con-
sists of the natural and forced response components. The natural response will be overdamped, criti-
cally damped, or underdamped. The forced component will be a sinusoid of the same frequency as
that of the excitation, and since it represents the AC steady-state condition, we can use phasor analy-
sis to find the forced response. We will derive the total response of a parallel GLC (or RLC) circuit
which is excited by an AC source with the following example.

Example 1.6

For the circuit of Figure 1.17,  and . Compute and sketch  for . 

t (sec) v (V)
Maximum 0.13 266.71
Minimum 0.79 4.05

v t

iL 0 2 A= vC 0 5 V= v t t 0
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Figure 1.17. Circuit for Example 1.6

Solution:

This is the same circuit as the previous example where the DC source has been replaced by an AC
source. The total response will consist of the natural response which we already know from the
previous example, and the forced response  which is the AC steady-state response, will be found
by phasor analysis.

The -domain to -domain transformation yields

The admittance  is

where

and thus

Now, we find the phasor voltage  as

and -domain to -domain transformation yields

The total solution is

(1.76)

iS 20 6400t 90+ usin 0 t A=

v t
50 1 640 F

iCiLiR

10 HiS

vn t
vf t

t j

is t 20 6400t 90+sin 20 6400t Icos 20 0= = =

Y

Y G j C 1
L

-------–+ G2 C 1
L

-------–
2

+ C 1
L

-------– G
1–

tan= =

G 1
R
---= 1

50
------= C 6400 1

640
--------- 10 and 1

L
------- 1

6400 10
------------------------ 1

64000
---------------= = = =,

Y 1
50
------

2
10 1

64000
---------------–

2
+ 10 1

64000
---------------–

1
50
------

1–

tan 10 89.72= =

V

V I
Y
--- 20 0

10 89.72
--------------------------- 2 89.72–= = =

j t

V 2 89.72– vf t 2 6400t 89.72–cos= =

v t vn t vf t+ ke 6.4t– 4.8t +cos= = 2 6400t 89.72–cos+
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Now, we need to evaluate the constants  and .

With the initial condition  (1.76) becomes

or

(1.77)

To make use of the second initial condition, we differentiate (1.76) using MATLAB as follows, and
then we evaluate it at . 

syms t k phi; y0=k*exp( 6.4*t)*cos(4.8*t+phi)+2*cos(6400*t 1.5688);
y1=diff(y0);                                    % Differentiate v(t) of (1.76)

y1 =
-32/5*k*exp(-32/5*t)*cos(24/5*t+phi)-24/5*k*exp(-32/5*t)*sin(24/
5*t+phi)-12800*sin(6400*t-1961/1250)

or

and

(1.78)

With (1.77) we get

(1.79)

Also,  or  and 

or

(1.80)

Equating (1.79) with (1.80) and solving for  we get

k

vC 0 5 V=

v 0 vC 0 ke0 cos= = 2 89.72–cos+ 5=

kcos 5

t 0=

dv
dt
------ 6.4ke 6.4t–– 4.8t +cos 4.8ke 6.4t– 4.8t +sin– 12800 6400t 1.5688–sin–=

dv
dt
------

t 0=

6.4k– cos 4.8ksin– 12800 1.5688–sin– 6.4k– cos 4.8ksin– 12800+= =

dv
dt
------

t 0=

32– 4.8ksin– 12800+= 4.8ksin– 12832+

iC Cdv
dt
------= dv

dt
------ iC

C
----=

dv
dt
------

t 0+
=

iC 0+

C
--------------- iS 0+ iR 0+– iL 0+–

C
-----------------------------------------------------= =

dv
dt
------

t 0=

iS 0+ vC 0 R– iL 0–
C

----------------------------------------------------------- 20 5 50– 2–
1 640

------------------------------- 11456= = =

k

4.8k sin– 12832+ 11456=
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or

(1.81)

Then with (1.77) and (1.81),

or

The value of the constant  is found from (1.77), that is,

By substitution into (1.76), we obtain the total solution as

(1.82)

With MATLAB we get the plot shown in Figure 1.18.

Figure 1.18. Plot for  of Example 1.6

1.8  Other Second Order Circuits

Second order circuits are not restricted to series  and parallel  circuits. Other second order
circuits include amplifiers and filters. It is beyond the scope of this text to analyze such circuits in
detail. In this section we will use the following example to illustrate the transient analysis of a second
order active low-pass filter.

ksin 287=

ksin
kcos
--------------- tan 287

5
--------- 57.4= = =

1.53 rad 89= =

k

k 5 89cos 279.4= =

v t 279.4e 6.4t– 4.8t 89+cos= 2 6400t 89.72–cos+

v t

RLC GLC
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Example 1.7

The circuit of Figure 1.19 a known as a Multiple Feed Back (MFB) active low-pass filter. For this cir-
cuit, the initial conditions are . Compute and sketch for .

Figure 1.19. Circuit for Example 1.7

Solution:

At node : 

(1.83)

At node :

 (1.84)

We observe that (virtual ground).

Collecting like terms and rearranging (1.83) and (1.84) we get

(1.85)

and

(1.86)

Differentiation of (1.86) yields

(1.87)

vC1 vC2 0= = vout t t 0

vin vout

40 K

200 K

50 K

25 nF

10 nF
R2

R1

C2

C1

R3
v1 v2+

+

vin t 6.25 6280tu0 tcos=

v1

v1 vin–

R1
----------------- C1

dv1

dt
--------

v1 vout–

R2
-------------------- v1 v2–

R3
---------------+ + + 0 t 0=

v2

v2 v1–
R3

--------------- C2

dvout
dt

-------------=

v2 0=

1
R1
----- 1

R2
----- 1

R3
-----+ + v1 C1

dv1

dt
-------- 1

R2
-----vout–+

1
R1
-----vin=

v1 R3C2
dvout

dt
-----------–=

dv1

dt
-------- R3C2

dv2
out

dt2
-------------–=
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and by substitution of given numerical values into (1.85) through (1.87), we get

or

(1.88)

(1.89)

(1.90)

Next, substitution of (1.89) and (1.90) into (1.88) yields 

(1.91)

or

Division by  yields

or

(1.92)

We use MATLAB to find the roots of the characteristic equation of (1.92).

syms s; y0=solve('s^2+2*10^3*s+2*10^6')

y0 =
[ -1000+1000*i]
[ -1000-1000*i]

that is,

1
2 10 5
------------------ 1

4 10 4
------------------ 1

5 10 4
------------------+ + v1 25 10 9– dv1

dt
-------- 1

4 10 4
------------------vout–+

1
2 10 5
------------------vin=

0.05 10 3– v1 25 10 9– dv1

dt
-------- 0.25 10 4– vout–+ 0.5 10 5– vin=

v1 5 10 4– dvout
dt

-------------–=

dv1

dt
-------- 5 10 4– d2vout

dt2
---------------–=

0.05 10 3– 5 10 4– dvout
dt

-------------– 25 10 9– 5 10 4––
d2vout

dt2
---------------

0.25 10 4– vout–

+

0.5 10 5– vin=

125– 10 13– d 2vout

dt2
--------------- 0.25 10 7– dvout

dt
-------------– 0.25 10 4– vout– 10 4– vin=

125– 10 13–

d 2vout

dt2
---------------- 2 103 dvout

dt
------------- 2 106vout+ + 1.6 105– vin=

d 2vout

dt2
---------------- 2 103 dvout

dt
------------- 2 106vout+ + 106 6280tcos–=
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We cannot classify the given circuit as series or parallel and therefore, we should not use the damping
ratio  or . Instead, for the natural response  we will use the general expression

(1.93)

where

Therefore, the natural response is oscillatory and has the form

(1.94)

Since the right side of (1.92) is a sinusoid, the forced response has the form

(1.95)

Of course, for the derivation of the forced response we could use phasor analysis but we must first
derive an expression for the impedance or admittance because the expressions we’ve used earlier are
valid for series and parallel circuits only.

The coefficients  and  will be found by substitution of (1.95) into (1.92) and then by equating
like terms. Using MATLAB we get:

syms t k3 k4; y0=k3*cos(6280*t)+k4*sin(6280*t); y1=diff(y0)

y1 =
-6280*k3*sin(6280*t)+6280*k4*cos(6280*t)

y2=diff(y0,2)

y2 =
-39438400*k3*cos(6280*t)-39438400*k4*sin(6280*t)

y=y2+2*10^3*y1+2*10^6*y0

y =
-37438400*k3*cos(6280*t)-37438400*k4*sin(6280*t)-
12560000*k3*sin(6280*t)+12560000*k4*cos(6280*t)

Equating like terms with (1.92) we get

(1.96)

Simultaneous solution of the equations of (1.96) is done with MATLAB.

s1 s2, – j 1000– j1000 1000 1– j1= = =

S P vn t

vn t Ae
s1t

= Be
s2t

+ e t– k1 tcos k2 tsin+=

s1 s2, – j 1000– j1000= =

vn t e 1000t– k1 1000tcos k2 1000tsin+=

vf t k3 6280tcos k4 6280tsin+=

k3 k4

37438400 k3– 12560000 k4+ 6280tcos 106– 6280tcos=

12560000 k3– 37438400 k4– 6280tsin 0=
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syms k3 k4; eq1= 37438400*k3+12560000*k4+10^6;...
eq2= 12560000*k3-37438400*k4+0; y=solve(eq1,eq2)
y = 
    k3: [1x1 sym]
    k4: [1x1 sym]

y.k3

ans =
    0.0240

y.k4

ans =
   -0.0081

that is,  and . Then, by substitution into (1.95)

(1.97)

The total response is 

(1.98)

We will use the initial conditions  to evaluate and . We observe that 
and at relation (1.98) becomes

or  and thus (1.98) simplifies to

 (1.99)

To evaluate the constant , we make use of the initial condition . We observe that
 and by KCL at node  we have: 

or

k3 0.024= k4 0.008–=

vf t 0.024 6280tcos 0.008– 6280tsin=

vout t vn t vf t+ e 1000t– k1 1000tcos k2 1000tsin+

0.024 6280tcos 0.008– 6280tsin+

= =

vC1 vC2 0= = k1 k2 vC2 vout=

t 0=

vout 0 e0 k1 0cos 0+ 0.024 0cos 0–+ 0= =

k1 0.024–=

vout t e 1000t– 0.024– 1000tcos k2 1000tsin+

0.024 6280tcos 0.008– 6280tsin+

=

k2 vC1 0 0=

vC1 v1= v1

v1 v2–
R3

--------------- C2

dvout
dt

-------------+ 0=

v1 0–

5 104
----------------- 10 8––=

dvout
dt

-------------



Chapter 1  Second Order Circuits

1-34 Circuit Analysis II with MATLAB Applications
Orchard Publications

or

and since , it follows that 

(1.100)

The last step in finding the constant  is to differentiate (1.99), evaluate it at , and equate it
with (1.100). This is done with MATLAB as follows:

y0=exp( 1000*t)*( 0.024*cos(1000*t)+k2*sin(1000*t))...
+0.024*cos(6280*t) 0.008*sin(6280*t);
y1=diff(y0)

y1 =
-1000*exp(-1000*t)*(-3/125*cos(1000*t)+k2*sin(1000*t))+exp(-
1000*t)*(24*sin(1000*t)+1000*k2*cos(1000*t))-3768/
25*sin(6280*t)-1256/25*cos(6280*t)

or

and

(1.101)

Simplifying and equating (1.100) with (1.101) we get 

or

and by substitution into (1.99),

(1.102)

v1 5 10 4––=
dvout

dt
-------------

vC1 0 v1 0 0= =

dvout
dt

-------------
t 0=

0=

k2 t 0=

dvout
dt

------------- 1000e 1000t– 3–
125
--------- 1000t k2 1000tsin+cos–

e 1000t– 24 1000t 1000k2 1000tcos+sin

3768
25

------------ 6280tsin–
1256
25

------------ 6280tcos–

+

=

dvout
dt

-------------
t 0=

1000 3–
125
---------– 1000k2

1256
25

------------–+=

1000k2 26.24– 0=

k2 0.026=

vout t e 1000t– 0.024– 1000tcos 0.026 1000tsin+

0.024 6280tcos 0.008– 6280tsin+

=
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We use Excel to sketch . In Column A we enter several values of time  and in Column B
. The plot is shown in Figure 1.20.

Figure 1.20. Plot for Example 1.7
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1.9 Summary

Circuits that contain energy storing devices can be described by integrodifferential equations and
upon differentiation can be simplified to differential equations with constant coefficients.

A second order circuit contains two energy storing devices. Thus, an RLC circuit is a second order
circuit.

The total response is the summation of the natural and forced responses.

If the differential equation describing a series RLC circuit that is excited by a constant (DC) volt-
age source is written in terms of the current, the forced response is zero and thus the total
response is just the natural response.

If the differential equation describing a parallel RLC circuit that is excited by a constant (DC) cur-
rent source is written in terms of the voltage, the forced response is zero and thus the total
response is just the natural response.

If a circuit is excited by a sinusoidal (AC) source, the forced response is never zero.

The natural response of a second order circuit may be overdamped, critically damped, or under-
damped depending on the values of the circuit constants.

For a series RLC circuit, the roots  and  are found from

or

where

If , the roots  and  are real, negative, and unequal. This results in the overdamped nat-
ural response and has the form

If , the roots  and  are real, negative, and equal. This results in the critically damped
natural response and has the form

s1 s2

s1 s2 S– S
2

0
2– S– S if   S

2
0
2= =

s1 s2 S– 0
2

S
2– S– nS if   0

2
S
2= =

S
R

2L
------=    0

1
LC

-----------= S S
2

0
2–= nS 0

2
S

2–=

S
2

0
2 s1 s2

in t k1e
s1t

k2e
s2t

+=

S
2

0
2= s1 s2

in t e St–
k1 k2t+=
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If , the roots  and  are complex conjugates. This is known as the underdamped or
oscillatory natural response and has the form

For a parallel GLC circuit, the roots  and  are found from

or

where

If , the roots  and  are real, negative, and unequal. This results in the overdamped nat-
ural response and has the form

If , the roots  and  are real, negative, and equal. This results in the critically damped
natural response and has the form

If , the roots  and  are complex conjugates. This results in the underdamped or oscil-
latory natural response and has the form

If a second order circuit is neither series nor parallel, the natural response if found from

or

or

depending on the roots of the characteristic equation being real and unequal, real and equal, or
complex conjugates respectively.

0
2

S
2 s1 s2

in t e S t–
k1 nScos t k2 nS tsin+ k3e St–

nScos t += =

s1 s2

s1 s2 P– P
2

0
2– P– P if P

2
0
2= =

s1 s2 P– 0
2

P
2– P– nP if 0

2
P
2= =

P
G

2C
-------= 0

1
LC

-----------= P P
2

0
2–= nP 0

2
P

2–=

P
2

0
2 s1 s2

vn t k1e
s1t

k2e
s2t

+=

P
2

0
2= s1 s2

vn t e Pt–
k1 k2t+=

0
2

P
2 s1 s2

vn t e Pt–
k1 nPcos t k2 nPtsin+ k3e Pt–

nPcos t += =

yn k1e
s1t

= k2e
s2t

+

yn k1 k2 t+ e
s1t

=

yn e t– k3 tcos k4 sin t+ e t– k5 t +cos==
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1.10 Exercises

1. For the circuit of Figure 1.21, it is known that  and . Compute and sketch
 and  for .

Figure 1.21. Circuit for Exercise 1

2. For the circuit of Figure 1.22, it is known that  and . Compute and sketch
 and  for .

Figure 1.22. Circuit for Exercise 2

3. In the circuit of Figure 1.23, the switch  has been closed for a very long time and opens at
. Compute  for .

Figure 1.23. Circuit for Exercise 3

vC 0 0= iL 0 0=

vC t iL t t 0

+

100u0 t V

10 0.2 H

8 mF

iL t

+
vC t

vC 0 0= iL 0 0=

vC t iL t t 0

+

100u0 t V

4 5 H

21.83 mF

iL t

+
vC t

S
t 0= vC t t 0

+
+

20 H100

100 V
400

vC t

1 120 F

S t 0=
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4. In the circuit of Figure 1.24, the switch has been closed for a very long time and opens at .
Compute  for .

Figure 1.24. Circuit for Exercise 4

5. In the circuit of Figure 1.25, the switch has been in position  for closed for a very long time
and it is placed in position  at . Find the value of  that will cause the circuit to become
critically damped and then compute and  for 

Figure 1.25. Circuit for Exercise 5

6. In the circuit of Figure 1.26, the switch has been closed for a very long time and opens at .
Compute  for .

Figure 1.26. Circuit for Exercise 6

S t 0=

vC t t 0

+
+

20 H100

400
vC t

1 120 F

S t 0=vS

vS 100 tcos u0 t V=

S A
B t 0= R

vC t iL t t 0

+ +

12 V

3

2

R

A
B

S

6

3 H

vC t
1 12 F

iL t

t 0=

S t 0=

vAB t t 0

+

12 V

4

2 H 1 4 F

BA

S t 0=

2
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1.11 Solutions to Exercises

Dear Reader:

The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to find the solutions to the exercises without first
looking at the solutions that follow. It is recommended that first you go through and work out those
you feel that you know. For the exercises that you are uncertain, review this chapter and try again.
Refer to the solutions as a last resort and rework those exercises at a later date.

You should follow this practice with the rest of the exercises of this book.
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Solutions to Exercises

1.

and since , the above becomes

From the characteristic equation

we get  (critical damping) and 

The total solution is

  (1)

With the first initial condition  the above expression becomes  or
 and by substitution into (1) we get

  (2)

To evaluate  we make use of the second initial condition  and since , and

, we differentiate (2) using the following MATLAB code:

+

100u0 t V

10 0.2 H

8 mF

iL t

+
vC t

i

Ri Ldi
dt
----- vC+ + 100= t 0

i iC C
dvC

dt
--------= =

RC
dvC

dt
-------- LC

d2vC

dt2
---------- vC+ + 100=

d2vC

dt2
---------- R

L
--- dvC

dt
-------- 1

LC
-------vC+ + 100

LC
---------=

d2vC

dt2
---------- 10

0.2
------- dvC

dt
-------- 1

0.2 8 10 3–
--------------------------------- vC+ + 100

0.2 8 10 3–
---------------------------------=

d2vC

dt2
---------- 50

dvC

dt
-------- 625 vC+ + 62500=

s2 50s 625+ + 0=

s1 s2 25–= = S R 2L 25= =

vC t vCf vCn+ 100 e S t–
k1 k2t++ 100 e 25 t– k1 k2t++= = =

vC 0 0= 0 100 e0 k1 0++=

k1 100–=

vC t 100 e 25 t– k2t 100–+=

k2 iL 0 0= iL iC=

i iC C dvC dt= =
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syms t k2
v0=100+exp( 25*t)*(k2*t 100); v1=diff(v0)

v1 =

-25*exp(-25*t)*(k2*t-100)+exp(-25*t)*k2

Thus,

and

  (3)

Also,  and at 

  (4)

From (3) and (4)  or  and by substitution into (2)

  (5)

We find  by differentiating (5) and multiplication by . Using MATLAB we get:

syms t
C=8*10^( 3);
i0=C*(100-exp( 25*t)*(100+2500*t)); iL=diff(i0)

iL =

1/5*exp(-25*t)*(100+2500*t)-20*exp(-25*t)

Thus,

The plots for  and  are shown on the next page.

dvC

dt
-------- k2 e 25t– 25e 25t– k2 t 100––=

dvC

dt
--------

t 0=

k2 2500+=

dvC

dt
-------- iC

C
---- iL

C
----= = t 0=

dvC

dt
--------

t 0=

iL 0
C

--------------- 0= =

k2 2500+ 0= k2 2500–=

vC t 100 e 25 t–– 2500t 100+=

iL t iC t= C

iL t iC t 0.2e 25t– 100 2500t+ 20e 25t––= =

vC t iL t
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Solutions to Exercises

2.

The general form of the differential equation that describes this circuit is same as in Exercise 1,
that is,

From the characteristic equation  and the MATLAB code below

t vC(t) iL(t)
0.000 0 0
0.005 0.7191 2.206
0.010 2.6499 3.894
0.015 5.4977 5.155
0.020 9.0204 6.065
0.025 13.02 6.691
0.030 17.336 7.085
0.035 21.838 7.295
0.040 26.424 7.358
0.045 31.011 7.305
0.050 35.536 7.163
0.055 39.951 6.953
0.060 44.217 6.694
0.065 48.311 6.4
0.070 52.212 6.082
0.075 55.91 5.751
0.080 59.399 5.413
0.085 62.677 5.076
0.090 65.745 4.743
0.095 68.608 4.418
0.100 71.27 4.104
0.105 73.741 3.803
0.110 76.027 3.516
0.115 78.139 3.244

vC(t)

0

20

40

60

80

100

0.0 0.1 0.2 0.3 0.4 0.5

Time
V

ol
ts

iL(t)

0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5

Time

A
m

ps

+

100u0 t V

4 5 H

21.83 mF

iL t

+
vC t

d2vC

dt2
---------- R

L
--- dvC

dt
-------- 1

LC
-------vC+ + 100

LC
---------= t 0

d2vC

dt2
---------- 0.8

dvC

dt
-------- 9.16vC+ + 916=

s2 0.8s 9.16+ + 0=
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s=[1  0.8  9.16]; roots(s)

ans =
  -0.4000 + 3.0000i
  -0.4000 - 3.0000i

we find that  and . Therefore, the total solution is

where

and

Thus,
  (1)

and with the initial condition  we get  or

  (2)

To evaluate  and  we differentiate (1) with MATLAB and evaluate it at .

syms t  k  phi; v0=100+k*exp( 0.4*t)*cos(3*t+phi); v1=diff(v0)

v1 =

-2/5*k*exp(-2/5*t)*cos(3*t+phi)-3*k*exp(-2/5*t)*sin(3*t+phi)

Thus,

and with (2)

  (3)

Also,  and at 

  (4)

s1 0.4– j3+= s2 0.4– j3–=

vC t vCf vCn+ 100 ke St–

nS t +cos+= =

S R 2L 0.4= =

nS 0
2

S
2– 1 LC R2 4L2– 9.16 0.16– 3= = = =

vC t 100 ke 0.4t– 3t +cos+=

vC 0 0= 0 100 k 0 +cos+=

kcos 100–=

k t 0=

dvC

dt
-------- 0.4k– e 0.4t– 3t +cos 3ke 0.4t– 3 t +sin–=

dvC

dt
--------

t 0=

0.4k– cos 3ksin–=

dvC

dt
--------

t 0=

40 3ksin–=

dvC

dt
-------- iC

C
---- iL

C
----= = t 0=

dvC

dt
--------

t 0=

iL 0
C

--------------- 0= =
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Solutions to Exercises

From (3) and (4)
  (5)

and from (2) and (5)

The value of  can be found from either (2) or (5). From (2)

and by substitution into (1)

  (6)

Since , we use MATLAB to differentiate (6).

syms t; vC=100 100.8*exp( 0.4*t)*cos(3*t 0.1326); C=0.02183; iL=C*diff(vC)

iL =
137529/156250*exp(-2/5*t)*cos(3*t-663/5000)+412587/62500*exp(-

2/5*t)*sin(3*t-663/5000)

137529/156250, 412587/62500

ans =
    0.8802
ans =

    6.6014

The plots for  and  are shown on the next page.

3ksin 40=

3ksin
kcos
----------------- 40

100–
------------=

3 tan 0.4–=

0.4– 31–tan 0.1326 rad– 7.6–= = =

k

k 0.1236–cos 100–=

k 100–
0.1236–cos

--------------------------------- 100.8–= =

vC t 100 100.8– e 0.4t– 3t 7.6–cos=

iL t iC t C dvC dt= =

iL t 0.88e 0.4t– 3t 7.6– 6.6e 0.4t– 3t 7.6–sin+cos=

vC t iL t
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3.

At  the circuit is as shown below.

At this time the inductor behaves as a short and the capacitor as an open. Then,

and this establishes the first initial condition as . Also,

and this establishes the first initial condition as .

For  the circuit is as shown below.

t vC(t) iL(t)
0.000 -0.014 -0.002
0.010 0.0313 0.198
0.020 0.1677 0.395
0.030 0.394 0.591
0.040 0.7094 0.784
0.050 1.1129 0.975
0.060 1.6034 1.164
0.070 2.1798 1.35
0.080 2.8407 1.534
0.090 3.5851 1.714
0.100 4.4115 1.892
0.110 5.3185 2.066
0.120 6.3046 2.238
0.130 7.3684 2.405
0.140 8.5082 2.57
0.150 9.7224 2.73
0.160 11.009 2.887

vC(t)

-50

50

150

0 3 6 9 12

iL(t)

-10

10

0 3 6 9 12

t 0=

+
+

20 H100

100 V
400

vC 0

1 120 F

iL 0

iL 0 100 100 400+ I0 0.2 A= = =

I0 0.2 A=

vC 0 v400 400 iL 0 400 0.2 V0 80 V= = = = =

V0 80 V=

t 0
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Solutions to Exercises

The general form of the differential equation that describes this circuit is same as in Exercise 1,
that is,

From the characteristic equation  we find that  and  and the total
response for the capacitor voltage is

  (1)

Using the initial condition  we get

or
  (2)

Differentiation of (1) and evaluation at  yields

  (3)

Also,  and at 

  (4)

Equating (3) and (4) we get
  (5)

and simultaneous solution of (2) and (5) yields  and .

+
+

20 H100

100 V

vC t

1 120 F

d2vC

dt2
---------- R

L
--- dvC

dt
-------- 1

LC
-------vC+ + 100

LC
---------= t 0

d2vC

dt2
---------- 5

dvC

dt
-------- 6vC+ + 600=

s2 5s 6+ + 0= s1 2–= s2 3–=

vC t vCf vCn+ 100 k1e
s1t

k2e
s2t

+ + 100 k1e 2t– k2e 3t–+ += = =

V0 80 V=

vC 0 V0 80 V 100 k1e0 k2e0+ += ==

k1 k2+ 20–=

t 0=

dvC

dt
--------

t 0=

2k1– 3k2–=

dvC

dt
-------- iC

C
---- iL

C
----= = t 0=

dvC

dt
--------

t 0=

iL 0
C

--------------- 0.2
1 120
---------------- 24= = =

2k1– 3k2– 24=

k1 36–= k2 16=
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By substitution into (1) we find the total solution as

4.

This is the same circuit as in Exercise 3 where the DC voltage source has been replaced by an AC
source that is being applied at . No initial conditions were given so we will assume that

 and . Also, the circuit constants are the same and thus the natural

response has the form .

We will find the forced (steady-state) response using phasor circuit analysis where ,
, , and . The phasor circuit is shown below.

Using the voltage division expression we get

and in the -domain . Therefore, the total response is

  (1)

Using the initial condition  and (1) we get

vC t vCf vCn+ 100 36– e 2t– 16e 3t–+= =

+
+

20 H100

400
vC t

1 120 F

S t 0=vS

vS 100 tcos u0 t V=

t 0+=

iL 0 0= vC 0 0=

vCn k1e 2t– k2e 3t–+=

1=

j L j20= j– C j120–= 100 t 100 0cos

+
+

j20100
VS

VS 100 0 V=

VCj– 120

VC
j120–

100 j20 j120–+
----------------------------------------100 0 j120–

100 j100+
--------------------------100 0 120 90 100 0–

100 2 45
---------------------------------------------------- 60 2 135–= = ==

t vCf 60 2 t 135–cos=

vC t 60 2 t 135–cos k1e 2t– k2e 3t–+ +=

vC 0 0=
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Solutions to Exercises

and since  the above expression reduces to

  (2)
Differentiating (1) we get

and

  (3)

Also,  and at 

  (4)

Equating (3) and (4) we get
  (5)

Simultaneous solution of (2) and (5) yields  and . Then, by substitution into (1)

5.

We must first find the value of  before we can establish initial conditions for  and

. The condition for critical damping is  where 

vC 0 0 60 2 135–cos k1 k2+ += =

135–cos 2– 2=

k1 k2+ 60=

dvC

dt
-------- 60 2 t 45+sin 2k– 1e 2t– 3k2– e 3t–+=

dvC

dt
--------

t 0=

60 2 45sin 2k– 1 3k2–=

dvC

dt
--------

t 0=

60 2k– 1 3k2–=

dvC

dt
-------- iC

C
---- iL

C
----= = t 0=

dvC

dt
--------

t 0=

iL 0
C

--------------- 0= =

2k1 3k2+ 60=

k1 120= k2 60–=

vC t 60 2 t 135–cos 120e 2t– 60– e 3t–+=

+ +

12 V

3

2

R

A
B

S

6

3 H

vC t
1 12 F

iL t

t 0=

R iL 0 0=

vC 0 0= P
2

0
2– 0= P G 2C 1 2R'C= =
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and . Then,  where . Therefore,

, or , or , or  and thus .

At  the circuit is as shown below.

From the circuit above

and

At  the circuit is as shown below.

Since the circuit is critically damped, the solution has the form

where  and thus

  (1)

0
2 1 LC= P

2 1
2R' 1 12
---------------------------

2

0
2= = 1

3 1 12
----------------------= R' R 2+=

12
2 R 2+
---------------------

2
4=

6
R 2+
-------------

2
4= R 2+ 2 36 4 9= = R 2+ 3= R 1=

t 0=

+ +

12 V

3 1

6

vC 0

iL 0

v6+

vC 0 v6
6

3 1 6+ +
--------------------- 12 7.2 V= = =

iL 0 v6

6
--------- 7.2

6
------- 1.2 A= = =

t 0+=

+

6

3 H

vC t
1 12 F

iL t

1

2

iC t
iR t

vC t e P t–
k1 k2t+=

P
1

2 1 2+ 1 12
--------------------------------------- 2= =

vC t e 2 t– k1 k2t+=
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Solutions to Exercises

With the initial condition  relation (1) becomes  or 
and (1) simplifies to

  (2)
Differentiating (2) we get

and

  (3)

Also,  and at 

  (4)

because at  the capacitor is an open circuit.

Equating (3) and (4) we get  or  and by substitution into (2)

We find  from  or  where 

and . Then,

6.

At  the circuit is as shown below where , , and thus
the initial conditions have been established.

vC 0 7.2 V= 7.2 e0 k1 0+= k1 7.2 V=

vC t e 2 t– 7.2 k2t+=

dvC

dt
-------- k2 e 2– t 2e 2 t– 7.2 k2t+–=

dvC

dt
--------

t 0=

k2 2 7.2 0+– k2 14.4–= =

dvC

dt
-------- iC

C
----= t 0=

dvC

dt
--------

t 0=

iC 0
C

------------ 0
C
---- 0= = =

t 0=

k2 14.4– 0= k2 14.4=

vC t e 2 t– 7.2 14.4t+ 7.2e 2t– 2t 1+= =

iL t iR t iC t iL t+ + 0= iL t iC t iR t––= iC t C dvC dt=

iR t vR t 1 2+ vC t 3= =

iL t 1
12
------ 14.4e 2t– 2t 1+ 14.4e 2t–+––

7.2
3

-------e 2t– 2t 1+– 2.4e 2t– t 1+–= =

t 0= iL 0 12 2 6 A= = vC 0 12 V=

+

12 V

4

2 H
1 4 F

BA

2

+
vC 0

iL 0
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For  the circuit is as shown below.

For this circuit

and with  the above relation can be written as

The characteristic equation of the last expression above yields  and  and thus

  (1)

With the initial condition  and (1) we get

  (2)

Differentiating (1) we get

and

  (3)

Also,  and at 

t 0

4

2 H 1 4 F

BA

2

+
vC t

iL t

R1 R2

L
C

R1 R2+ iL vC L
diL

dt
-------+ + 0=

iL iC C dvC dt= =

R1 R2+ C
dvC

dt
-------- LC

d2vC

dt2
---------- vC+ + 0=

d2vC

dt2
----------

R1 R2+
L

---------------------- dvC

dt
-------- 1

LC
-------vC+ + 0=

d2vC

dt2
---------- 3

dvC

dt
-------- 2vC+ + 0=

s1 1–= s2 2–=

vC t k1e t– k2 e 2t–+=

vC 0 12 V=

k1 k2+ 12=

dvC

dt
-------- k– 1e t– 2k2– e 2t–=

dvC

dt
--------

t 0=

k– 1 2k2–=

dvC

dt
-------- iC

C
---- iL

C
----= = t 0=
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Solutions to Exercises

  (4)

From (3) and (4)
  (5)

and from (2) and (5)  and . By substitution into (1) we get

Then, 

dvC

dt
--------

t 0=

iL 0
C

------------ 6
1 4
---------- 24= = =

k– 1 2k2– 24=

k1 48= k2 36–=

vC t 48e t– 36– e 2t–=

vAB vL t vC t– L
diL

dt
------- vC t– LC

d 2iC

dt2
---------- vC t–= = =

0.5 d 2

dt2
------- 48e t– 36– e 2t– 48e t– 36– e 2t––=

0.5 48e t– 144– e 2t– 48e t– 36– e 2t––=

24– e t– 108– e 2t– 24 e t– 4.5e 2t–+–==
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NOTES
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Chapter 2

Resonance

his chapter defines series and parallel resonance. The quality factor  is then defined in terms
of the series and parallel resonant frequencies. The half-power frequencies and bandwidth are
also defined in terms of the resonant frequency.

2.1 Series Resonance

Consider phasor series  circuit of Figure 2.1.

Figure 2.1. Series RLC phasor circuit

The impedance  is 

(2.1)

or

(2.2)

Therefore, the magnitude and phase angle of the impedance are:

(2.3)

and

(2.4)

The components of  are shown on the plot of Figure 2.2.

T Q

RLC

VS

I

R

1 j C

j L

Z

Impedance Z Phasor Voltage
Phasor Current 
---------------------------------------

VS
I

------ R j L 1
j C
----------+ + R j L 1

C
--------–+= = = = =

Z R2 L 1 C–
2

+ L 1 C– R1–tan=

Z R2 L 1 C– 2+=

Z L 1 C– R1–tan=

Z
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Figure 2.2. The components of  in a series RLC circuit

The frequency at which the capacitive reactance  and the inductive reactance 
are equal is called the resonant frequency. The resonant frequency is denoted as  or  and these
can be expressed in terms of the inductance  and capacitance  by equating the reactances, that is,

(2.5)

and

(2.6)

We observe that at resonance  where  denotes the impedance value at resonance, and
. In our subsequent discussion the subscript zero will be used to indicate that the circuit vari-

ables are at resonance.

Example 2.1  

For the circuit shown in Figure 2.3, compute , , , , , and . Then, draw a phasor
diagram showing , , and .

Series Resonance Curves
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Series Resonance

Figure 2.3. Circuit for Example 2.1

Solution:

At resonance,

and thus

Then,

Since

it follows that

Therefore,

or

Now,

and

The phasor diagram showing , , and  is shown in Figure 2.4.

VS

I

L=0.2 mH
C

j– XC120 0 V

R 1.2= jXL j10=

jXL jXC–=

Z0 R 1.2= =

I0
120 V
1.2
-------------- 100 A= =

XL0 0L 10= =

0
10
L
------ 10

0.2 10 3–
------------------------ 50000 rad s= = =

XC0 XL0 10 1
0C

----------= = =

C 1
10 50000
--------------------------- 2 F= =

VR0 RI0 1.2 100 120 V= = =

VL0 0LI0 50000 0.2 10 3– 100 1000= = =

VC0
1
0C

----------I0
1

50000 2 10 6–
----------------------------------------- 100 1000 V= = =

VR0 VL0 VC0
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Figure 2.4. Phasor diagram for Example 2.1

Figure 2.4 reveals that  and these voltages are much higher than the applied
voltage of . This illustrates the useful property of resonant circuits to develop high voltages
across capacitors and inductors.

2.2  Quality Factor Q0s in Series Resonance

The quality factor * is an important parameter in resonant circuits. Its definition is derived from the 
following relations:

At resonance,

and

Then

(2.7)

and

(2.8)

At series resonance the left sides of (2.7) and (2.8) are equal and therefore,

* We denote the quality factor for series resonant circuits as , and the quality factor for parallel resonant cir-
cuits as .

VR0 = 120 V

|VL0| = 1000 V

|VC0| = 1000 V

VL0 VC0 1000 V= =

120 V

Q0S
Q0P

0L 1
0C

----------=

I0
VS
R

---------=

VL0 0LI0 0L
VS
R

--------- 0L
R

--------- VS= = =

VC0
1
0C

----------I0
1
0C

----------
VS
R

--------- 1
0RC

-------------- VS= = =

0L
R

--------- 1
0RC

--------------=



Circuit Analysis II with MATLAB Applications 2-5
Orchard Publications

Quality Factor Q0s in Series Resonance

Then, by definition

(2.9)

In a practical circuit, the resistance  in the definition of  above, represents the resistance of the
inductor and thus the quality factor  is a measure of the energy storage property of the inductance

 in relation to the energy dissipation property of the resistance  of that inductance.

In terms of , the magnitude of the voltages across the inductor and capacitor are

(2.10)

and therefore, we say that there is a “resonant” rise in the voltage across the reactive devices and it is
equal to the  times the applied voltage. Thus in Example 2.1,

The quality factor  is also a measure of frequency selectivity. Thus, we say that a circuit with a high
 has a high selectivity, whereas a low  circuit has low selectivity. The high frequency selectivity is

more desirable in parallel circuits as we will see in the next section.

Figure 2.5 shows the relative response versus  for , and  where we observe that
highest  provides the best frequency selectivity, i.e., higher rejection of signal components outside
the bandwidth which is the difference in the  frequencies.

Figure 2.5. Selectivity curves with , and 
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We will see later that 

(2.11)

We also observe from (2.9) that selectivity depends on  and this dependence is shown on the plot 
of Figure 2.6.

Figure 2.6. Selectivity curves with different values of R

If we keep one reactive device, say , constant while varying , the relative response “shifts” as 
shown in Figure 2.7, but the general shape does not change.

Figure 2.7. Relative response with constant L and variable C

2.3 Parallel Resonance

Parallel resonance (antiresonance) applies to parallel circuits such as that shown in Figure 2.8.
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Parallel Resonance

Figure 2.8. Parallel GLC circuit for defining parallel resonance

The admittance  of this circuit is given by 

or

(2.12)

Therefore, the magnitude and phase angle of the admittance  are:

(2.13)

and

(2.14)

The frequency at which the inductive susceptance  and the capacitive susceptance
 are equal is, again, called the resonant frequency and it is also denoted as  We can find

 in terms of  and  as before.

Since

then,

and

(2.15)

as before. The components of  are shown on the plot of Figure 2.2.
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Figure 2.9. The components of  in a parallel RLC circuit

We observe that at this parallel resonant frequency,

(2.16)
and

(2.17)

Example 2.2  

For the circuit of Figure 2.10, . Compute , , and .

Figure 2.10. Circuit for Example 2.2

Solution:

The capacitive and inductive susceptances are 

and

and since , the given circuit operates at parallel resonance with . Then,
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Quality Factor Q0p in Parallel Resonance

and

Next, to compute and , we must first find . For this example,

In phasor form,

Now,

and in the -domain,

or

Similarly, 

and in the -domain,

or

We observe that  as expected.

2.4  Quality Factor Q0p in Parallel Resonance

At parallel resonance,

and

Then,

(2.18)

Also,

Y0 G 0.01 1–= =

iG t iS t 10 5000t mAcos= =

iL t iC t v0 t

v0 t
iG t

G
------------ 10 5000t mAcos

0.01 1–
--------------------------------------- 1000 5000t mVcos 5000t Vcos= = = =

v0 t 5000t Vcos= V0 1 0=

IL0 jBL– V0 1 90– 0.02 1 0 0.02 90– A= = =

t
IL0 0.02 90– A= iL0 t 0.02 5000t 90– Acos=

iL0 t 20 5000t mAsin=

IC0 jBCV0 1 90 0.02 1 0 0.02 90 A= = =

t
IC0 0.02 90 A= iC0 t 0.02 5000t 90+ Acos=

iC0 t 20– 5000t mAsin=

iL0 t iC0 t+ 0=

0C 1
0L

---------=

V0
IS
G

-------=

IC0 0CV0 0C
IS
G

------- 0C
G

---------- IS= = =
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(2.19)

At parallel resonance the left sides of (2.18) and (2.19) are equal and therefore,

Now, by definition

(2.20)

The above expressions indicate that at parallel resonance, it is possible to develop high currents
through the capacitors and inductors. This was found to be true in Example 2.2.

2.5  General Definition of Q

The general (and best) definition of  is

(2.21)

Essentially, the resonant frequency is the frequency at which the inductor gives up energy just as fast
as the capacitor requires it during one quarter cycle, and absorbs energy just as fast as it is released by
the capacitor during the next quarter cycle. This can be seen from Figure 2.11 where at the instant of
maximum current the energy is all stored in the inductance, and at the instant of zero current all the
energy is stored in the capacitor.

Figure 2.11. Waveforms for  and  at resonance
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Energy in L and C at Resonance

2.6 Energy in L and C at Resonance

For a series  circuit we let

Then,

Also,

(2.22)

and

(2.23)

Therefore, by (2.22) and (2.23), the total energy  at any instant is

(2.24)

and this expression is true for any series circuit, that is, the circuit need not be at resonance. How-
ever, at resonance,

or

By substitution into (2.24),

 (2.25)

and (2.25) shows that the total energy  is dependent only on the circuit constants ,  and res-
onant frequency, but it is independent of time.

Next, using the general definition of  we get:

RLC

i Ip tcos C
dvC
dt

---------= =

vC
Ip
C

-------- tsin=

WL
1
2
---Li2 1

2
---LIp

2 t2cos= =

WC
1
2
---Cv2 1

2
---

Ip
2

2C
---------- t2sin= =

WT

WT WL WC+
1
2
---Ip

2 L t2cos 1
2C

---------- t2sin+= =

0L 1
0C

----------=

L 1

0
2C

----------=

WT
1
2
---Ip

2 L 0t2cos L 0t2sin+
1
2
---Ip

2L 1
2
---Ip

2 1

0
2C

----------= = =

WT L C

Q

Q0S 2 Maximum Energy Stored
Energy Dissipated per Cycle
------------------------------------------------------------------------------ 2

1 2 Ip
2L

1 2 Ip
2R f0

-------------------------------- 2
f0L
R

-------= = =
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or

(2.26)

and we observe that (2.26) is the same as (2.9). Similarly,

or

(2.27)

and this is also the same as (2.9).

Following the same procedure for a simple  (or ) parallel circuit we can show that:

(2.28)

and this is the same as (2.20).

2.7 Half-Power Frequencies - Bandwidth

Parallel resonance is by far more important and practical than series resonance and therefore, the
remaining discussion will be on parallel  (or ) circuits.

The plot of Figure 2.12 shows the magnitude of the voltage response versus radian frequency for a
typical parallel  circuit.

Figure 2.12. Relative voltage vs.radian frequency in a parallel  circuit
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Half-Power Frequencies - Bandwidth

By definition, the half-power frequencies  and  in Figure 2.12 are the frequencies at which the
magnitude of the input admittance of a parallel resonant circuit, is greater than the magnitude at res-
onance by a factor of , or equivalently, the frequencies at which the magnitude of the input
impedance of a parallel resonant circuit, is less than the magnitude at resonance by a factor of  as
shown above. We observe also, that and  are not exactly equidistant from . However, it is
convenient to assume that they are equidistant, and unless otherwise stated, this assumption will be
followed in the subsequent discussion.

We call  the lower half-power point, and  the upper half-power point. The difference  is
the half-power bandwidth , that is,

(2.29)

The names half-power frequencies and half-power bandwidth arise from the fact that the power at

these frequencies drop to  since .

The bandwidth  can also be expressed in terms of the quality factor  as follows:

Consider the admittance

Multiplying the  term by , we get

Recalling that for parallel resonance

by substitution we get

(2.30)

and if , then

1 2

2

2

1 2 0

1 2 2 1–

BW

Bandwidth BW 2 1–= =

0.5 2 2
2

0.5=

BW Q

Y G j C 1
L

-------–+=

j G 0

0G
----------

Y G jG 0C

0G
-------------- 0

0LG
------------------–+=

Q0P
0C
G

---------- 1
0LG

--------------= =

Y G 1 jQ0P
0

------ 0------–+=
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Y G=
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Next, we want to find the bandwidth  in terms of the quality factor . At the half-power

points, the magnitude of the admittance is  and, if we use the half-power points as refer-
ence, then to obtain the admittance value of

we must set

for .

We must also set

for .

Recalling that  and solving the above expressions for and , we get

(2.31)

and

(2.32)

Subtraction of (2.32) from (2.31) yields

(2.33)

or

(2.34)

As mentioned earlier, and  are not equidistant from  In fact, the resonant frequency  is

the geometric mean* of and , that is,

(2.35)

* The geometric mean of n positive numbers , ,...,  is the nth root of the product.
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Half-Power Frequencies - Bandwidth

This can be shown by multiplication of the two expressions in (2.31) and (2.32) and substitution into
(2.33).

Example 2.3  

For the network of Figure 2.13, find:

a.

b. 

c. 

d.

e. 

Figure 2.13. Network for Example 2.3

Solution:

a.

or

b.

c.

d.

e.
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2.8 A Practical Parallel Resonant Circuit

In our previous discussion, we assumed that the inductors are ideal, but a real inductor has some
resistance. The circuit shown in Figure 2.14 is a practical parallel resonant circuit.

Figure 2.14. A practical parallel resonant circuit

To derive an expression for its resonant frequency, we proceed as follows:

The resonant frequency is independent of the conductance  and, for simplicity, it is omitted from
the network of Figure 2.14. We will therefore, find an expression for the network of Figure 2.15.

Figure 2.15. Simplified network for derivation of the resonant frequency

For the network of Figure 2.15,

and

where

and

Also,

and

Y

G
L C

R
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L

C
R

IL IC

+

V

IL
V

R j L+
------------------- R j– L

R2 L 2+
---------------------------V= =

IC
V

1 j C
--------------------- j C V= =

Re IL
R

R2 L 2+
---------------------------V=

Im IL
– L

R2 L 2+
---------------------------V=

Re IC 0=

Im IC C V=
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Radio and Television Receivers

Then,

(2.36)

Now, at resonance, the imaginary component of must be zero, that is,

and solving for  we get

(2.37)

or

(2.38)

We observe that for , (2.37) reduces to  as before.

2.9 Radio and Television Receivers

When a radio or TV receiver is tuned to a particular station or channel, it is set to operate at the res-
onant frequency of that station or channel. As we have seen, a parallel circuit has high impedance
(low admittance) at its resonant frequency. Therefore, it attenuates signals at all frequencies except
the resonant frequency. 

We have also seen that one particular inductor and one particular capacitor will resonate to one fre-
quency only. Varying either the inductance or the capacitance of the tuned circuit, will change the
resonant frequency. Generally, the inductance is kept constant and the capacitor value is changed as
we select different stations or channels. 

The block diagram of Figure 2.16 is a typical  (Amplitude Modulation) radio receiver.

IT IL IC+ Re IL Im IL+ V Re IC Im IC+ V+= =

Re IL Re IC Im IL Im IC+ + + V=
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Im IT Im IL Im IC+ 0C 0L
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0L 2+

-----------------------------– V 0= = =

0

0
1
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------- R2

L2
------–=

f0
1

2
------ 1

LC
------- R2

L2
------–=

R 0= 0
1
LC

-----------=
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Figure 2.16. Block diagram of a typical AM radio receiver

The antenna picks up signals from several stations and these are fed into the Radio Frequency ( )
Amplifier which improves the Signal-to-Noise ( ) ratio. The  amplifier also serves as a prese-
lector. This preselection suppresses the image-frequency interference as explained below.

When we tune to a station of, say , we are setting the  circuit to  and at the
same time the local oscillator is set at . This is accomplished by
the capacitor in the  amplifier which is also ganged to the local oscillator. These two signals, one
of  and the other of , are fed into the mixer whose output into the Intermediate
Frequency ( ) amplifier is ; this is the difference between these two frequencies
( ).

The  amplifier is always set at  and therefore if the antenna picks another signal from
another station, say , it would be mixed with the local oscillator to produce a frequency of

 but since the IF amplifier is set at , the unwanted
 signal will not be amplified. Of course, in order to hear the signal at  the radio

receiver must be retuned to that frequency and the local oscillator frequency will be changed to
 so that the difference of these frequencies will be again

.

Now let us assume that we select a station at . Then, the local oscillator will be set to
 so that the  signal will again be . Now, let us suppose

that a powerful nearby station broadcasts at  and this signal is picked up by the mixer cir-
cuit. The difference between this signal and the local oscillator will also be 

. The  amplifier will then amplify both signals and the result
will be a strong interference so that the radio speaker will produce unintelligent sounds. This inter-
ference is called image-frequency interference and it is reduced by the  amplifier before entering
the mixer circuit and for this reason the  amplifier is said to act as a preselector.

The function of the detector circuit is to convert the  signal which contains both the carrier and
the desired signal to an audio signal and this signal is amplified by the Audio Frequency ( ) Ampli-
fier whose output appears at the radio speaker.
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Radio and Television Receivers

Example 2.4  

A radio receiver with a parallel  circuit whose inductance is is tuned to a radio
station transmitting at  frequency.

a. What is the value of the capacitor of this circuit at this resonant frequency?

b. What is the value of conductance  if ?

c. If a nearby radio station transmits at  and both signals picked up by the antenna have the
same current amplitude  ( ), what is the ratio of the voltage at  to the voltage at

?

Solution:

a.

or

Then,

b.

or

c.

(2.39)

Also,

where

GLC L 0.5 mH=

810 KHz

G Q0P 75=

740 KHz
I A 810 KHz

740 KHz

0
2 1

LC
-------=

f0
2 1

4 2LC
----------------=

C 1

4 20.5 10 3– 810 103 2
----------------------------------------------------------------------- 77.2 pF= =

Q0P
0C
G

----------=

G
2 f0C
Q0P

--------------- 2 8.1 105 77.2 10 12–

75
---------------------------------------------------------------------- 5.4 1–= = =

V810 KHz
I

Y810 KHz
----------------------- I

Y0
----- I

G
---- I

5.24 10 6–
---------------------------= = = =

V740 KHz
I

Y740 KHz
-----------------------=

Y740 KHz G2 C 1
L

-------–
2

+=



Chapter 2  Resonance

2-20 Circuit Analysis II with MATLAB Applications
Orchard Publications

or

or

and

(2.40)

Then from (2.39) and (2.40), 

(2.41)

that is, the voltage developed across the parallel circuit when it is tuned at is
times larger than the voltage developed at .

2.10 Summary

In a series  circuit, the frequency at which the capacitive reactance  and the
inductive reactance  are equal, is called the resonant frequency.

The resonant frequency is denoted as  or  where

and

The quality factor  at series resonance is defined as

In a parallel  circuit, the frequency at which the inductive susceptance  and the
capacitive susceptance  are equal is, again, called the resonant frequency and it is also
denoted as  As in a series  circuit, the resonant frequency is 

Y740 KHz 5.24 10 6– 2
2 740 103 77.2 10 12– 1

2 740 103 0.5 10 3–
-------------------------------------------------------------------–

2
+=

Y740 KHz 71.2 1–=

V740 KHz
I

71.2 10 6–
---------------------------=

V810 KHz
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------------------------ I 5.24 10 6–

I 71.2 10 6–
--------------------------------- 71.2 10 6–

5.24 10 6–
--------------------------- 13.6= = =

f 810 KHz= 13.6
f 740 KHz=
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XL L=

0 f0
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1
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-----------=

f0
1

2 LC
------------------=

Q0S

Q0S
0L
R

--------- 1
0RC

--------------= =

GLC BL 1 L=
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Summary

The quality factor  at parallel resonance is defined as

The general definition of  is

In a parallel  circuit, the half-power frequencies and  are the frequencies at which the
magnitude of the input admittance of a parallel resonant circuit, is greater than the magnitude at
resonance by a factor of , or equivalently, the frequencies at which the magnitude of the input
impedance of a parallel resonant circuit, is less than the magnitude at resonance by a factor of .

We call  the lower half-power point, and  the upper half-power point. The difference
 is the half-power bandwidth , that is,

The bandwidth  can also be expressed in terms of the quality factor  as 

or

0
1
LC

-----------=

Q0P

Q0P
0C
G

---------- 1
0GL

--------------= =

Q

Q 2 Maximum Energy Stored
Energy Dissipated per Cycle
------------------------------------------------------------------------------=

RLC 1 2

2

2

1 2

2 1– BW

Bandwidth BW 2 1–= =

BW Q

BW 2 1– 0
Q0P
---------= =

BW f2 f1–
f0

Q0P
---------= =
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2.11 Exercises

1. A series  circuit is resonant at  with  and its half-power bandwidth
is . Find , , and  for this circuit.

2. For the network of Figure 2.17, the impedance  is variable,  and . To
what value should  be adjusted so that the network will operate at resonant frequency?

Figure 2.17. Network for Exercise 2

3. For the circuit of Figure 2.18 with the capacitance  adjusted to , the half-power frequen-
cies are  and .

a. Compute the approximate resonant frequency.

b. Compute the exact resonant frequency.

 c. Using the approximate value of the resonant frequency, compute the values of , , and .

Figure 2.18. Circuit for Exercise 3

4. The  circuit of Figure 2.19, is resonant at  with  and its half-power
bandwidth is .

a. Compute , , and  for this circuit.

b. Compute the magnitude of the admittances  and  corresponding to the half-power fre-
quencies  and . Use MATLAB to plot  in the  range.

Figure 2.19. Circuit for Exercise 4

RLC f0 1 MHz= Z0 100=

BW 20 KHz= R L C

Z1 Z2 3 j4+= Z3 4 j3–=

Z1
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5. For the circuit of Figure 2.20,  and . Find:
a.

b.  

c.  and 

d.

Figure 2.20. Circuit for Exercise 5

6. The series-parallel circuit of Figure 2.21, will behave as a filter if the parallel part is made resonant
to the frequency we want to suppress, and the series part is made resonant to the frequency we
wish to pass. Accordingly, we can adjust capacitor  to achieve parallel resonance which will
reject the unwanted frequency by limiting the current through the resistive load to its minimum
value. Afterwards, we can adjust  to make the entire circuit series resonant at the desired fre-
quency thus making the total impedance minimum so that maximum current will flow into the
load.

For this circuit, we want to set the values of capacitors so that  will be maximum at
 and minimum at . Compute the values of  and  that will

achieve these values. It is suggested that you use MATLAB to plot  versus frequency  in
the interval  to verify your answers.

Figure 2.21. Circuit for Exercise 6

vs 170 tcos= Q0 50=

0

BW

1 2

VC0

1 mH

R2C

LR1

1

vs

10
1 F

C2

C1

vLOAD

f1 10 KHz= f2 43 KHz= C1 C2

vLOAD f

1 KHz f 100 KH

2 mH
RL

LR1C1

C2

100

1vS 170 tcos=

vLOAD

+
+



Chapter 2  Resonance

2-24 Circuit Analysis II with MATLAB Applications
Orchard Publications

2.12 Solutions to Exercises

1. At series resonance  and thus . We find  from  where
. Also,

Then,

and from 

Check with MATLAB:

f0=10^6; w0=2*pi*f0; Z0=100; BW=2*pi*20000; w1=w0-BW/2; w2=w0+BW/2;...
R=Z0; Qos=w0/BW; L=R*Qos/w0; C=1/(w0^2*L); fprintf(' \n');...
fprintf('R = %5.2f Ohms \t', R); fprintf('L = %5.2e H \t', L);...
fprintf('C = %5.2e F \t', C); fprintf(' \n'); fprintf(' \n');

R = 100.00 Ohms   L = 7.96e-004 H    C = 3.18e-011 F

2.

where

We let  and . For resonance we must have

Z0 R 100= = R 100= L Q0S 0L R=

0 2 f0=

Q0S
0

2 1–
------------------ 0

BW
--------- 2 106

2 20 103
--------------------------------- 50= = = =

L
R Q0S

0
----------------- 100 50

2 106
--------------------- 0.796 mH= = =

0
2 1 LC=

C 1

0
2L

--------- 1

2 106 2
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-------------------------------------------------------------- 31.8 pF= = =
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Z2 Z3ZIN

ZIN Z1 Z2 Z3+=

Z2 Z3
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7 j+

------------------------------------------- 7 j–
7 j–
----------= =

168 j49 j24– 7+ +

72 12+
---------------------------------------------- 175 j25+

50
----------------------- 3.5 j0.5+= ==

ZIN RIN jXIN+= Z1 R1 jX1+=

ZIN RIN jXIN+ R1 jX1 3.5 j0.5+ + + RIN 0+ R1 jX1 3.5 j0.5+ + += = = =
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Solutions to Exercises

Equating real and imaginary parts we get

and while  can be any real number, we must have  and thus

3.
a. . Then,

b. The exact value of  is the geometric mean of  and  and thus

c. . Also, . Then

and

4.

a. . Also,  or

b.  and 
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Likewise,

We will use MATLAB to do the computations.

G=10^( 3); BC1=2*pi*490*10^3*7.96*10^( 9);...
BL1=1/(2*pi*490*10^3*12.73*10^( 6)); Y1=G+j*(BC1 BL1);...
BC2=2*pi*510*10^3*7.96*10^( 9); BL2=1/(2*pi*510*10^3*12.73*10^( 6));...
Y2=G+j*(BC2-BL2); fprintf(' \n'); fprintf('magY1 = %5.2e mho \t', abs(Y1));...
fprintf('magY2 = %5.2e mho \t', abs(Y2)); fprintf(' \n'); fprintf(' \n')

magY1 = 1.42e-003 mho magY2 = 1.41e-003 mho

We will use the following MATLAB code for the plot

f=100*10^3: 10^3: 1000*10^3; w=2*pi*f;...
G=10^( 3); C=7.96*10^( 9); L=12.73*10^( 6);...
BC=w.*C; BL=1./(w.*L); Y=G+j*(BC-BL); plot(f,abs(Y));...
xlabel('Frequency in Hz'); ylabel('Magnitude of Admittance');grid

The plot is shown below.

Y f f1=
G j 1C 1

1L
---------–+=

10 3– j 2 490 103 7.96 10 9– 1
2 490 103 12.73 10 6–
-------------------------------------------------------------------------–+=

Y f f2=
G j 1C 1

1L
---------–+=

10 3– j 2 510 103 7.96 10 9– 1
2 510 103 12.73 10 6–
-------------------------------------------------------------------------–+=
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Solutions to Exercises

5.

a. It is important to remember that the relation  applies only to series  and
parallel  circuits. For any other circuit we must find the input impedance , set the
imaginary part of  equal to zero, and solve for . Thus, for the given circuit

For resonance, the imaginary part of  must be zero, that is,

1 mH

R2

C

LR1

1

ZIN 10
1 F1

j C
----------

j L

0 1 LC= RLC

GLC ZIN

ZIN 0

ZIN R1
1

j C
---------- R2 j L++ 1 1 j C 10 j L+

10 j L 1 C–+
------------------------------------------------+= =

10 j L 1 C– 10 j C L C+ + +
10 j L 1 C–+

-------------------------------------------------------------------------------------------- 10 j L 1 C––
10 j L 1 C––
-----------------------------------------------=

100 j10 L 1 C– 100 j C 10L C j10 L 1 C––+ + +

100 L 1 C– 2+
-------------------------------------------------------------------------------------------------------------------------------------------------------------------=

+ L 1 C– 2 10 C L 1 C–– jL C L 1 C––

100 L 1 C– 2+
-------------------------------------------------------------------------------------------------------------------------------------------------------

100 10L C L 1 C– 2 10 C L 1 C––+ +

100 L 1 C– 2+
------------------------------------------------------------------------------------------------------------------------------------------=

+ 100 j C jL C L 1 C––

100 L 1 C– 2+
---------------------------------------------------------------------------------

ZIN

100
j 0C
------------ jL

C
----- 0L 1

0C
----------–– 0=

j
C
---- 100

0
--------- L 0L 1

0C
----------–+– 0=

100
0

--------- 0L2 L
0C

----------–+ 0=

L2C 0
2 100C L–+ 0=
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and thus

b.

c.

d. At resonance,  and .
The phasor equivalent circuit is shown below.

We let , , and . Using nodal analysis we get:

We wil use MATLAB to obtain the value of .

Vs=170; z1=1; z2= j*100/3; z3=10+j*30; Z=1/z1+1/z2+1/z3; Vc0=Vs/Z;...
fprintf(' \n'); fprintf('Vc0 = %6.2f', abs(Vc0)); fprintf(' \n'); fprintf(' \n')

Vc0 = 168.32

6. First, we will find the appropriate value of . We recall that at parallel resonance the voltage is
maximum and the current is minimum. For this circuit the parallel resonance was found as in
(2.37), that is,

0
2 1

LC
------- 100

L2
---------– 1

10 3– 10 6–
--------------------------- 100

10 6–
----------– 109 108– 9 108= = = =

0 9 108 30 000 r s= =

BW 0 Q 30 000 50 600 r s= = =

1 0 BW 2– 30 000 300– 29 700 r s= = =

2 0 BW 2+ 30 000 300+ 30 300 r s= = =

j 0L j3 104 10 3– j30= = 1 j 0C j10 4–– 106 3 j100 3–= =

VS

170 0 V

j30

j100 3–

1

10

VC0

z1 1= z2 j100 3–= z3 10 j30+=

VC0 VS–

z1
----------------------

VC0
z2

---------
VC0
z3

---------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ + VC0

VS
z1
------=

VC0

C2
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Solutions to Exercises

or

Next, we must find the value of  that will make the entire circuit series resonant (minimum
impedance, maximum current) at . In the circuit below we let ,

, , and . 

Then, 

and
  (1)

where  is found with the MATLAB code below.

format short g; f=10000; w=2*pi*f; C2=6.62*10^( 9); XC2=1/(w*C2); L=2*10^( 3);...
XL=w*L; R1=100; z2=-j*XC2; z3=R1+j*XL; Zp=z2*z3/(z2+z3)

Zp =
      111.12 + 127.72i

and by substitution into (1)

0
1

LC
------- R2

L2
------–=

2 43 000 1
2 10 3– C2

-------------------------- 104

4 10 6–
--------------------–=

103

2C2
--------- 104

4 10 6–
-------------------- 2 4.3 104 2

+ 104 2 4.3 104 2
4 10 6–+

4 10 6–
-----------------------------------------------------------------------------------= =

C2 500 4 10 6–

104 2 4.3 104 2
4 10 6–+

----------------------------------------------------------------------------------- 6.62 10 9– F 6.62 nF= = =

C1

f 10 KHz= z1 jXC1–=

z2 jXC2–= z3 R1 jXL+= zLOAD 1=

2 mH
RL

L

R1

C1
C2

100

1
VS 170 0 V=

vLOAD

+
+

jXC1–
jXL

jXC2–

ZIN

ZIN z1 z2 z3 zLOAD+ +=

ZIN f 10 KHz= z1 z2 z3 f 10 KHz=
zLOAD+ + z1 z2 z3 f 10 KHz=

1+ += =

z2 z3 f 10 KHz=
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  (2)

The expression of (2) will be minimum if we let  at . Then, the
capacitor  value must be such that  or

Shown below is the plot of  versus frequency and the MATLAB code that produces this
plot.

f=1000: 100: 60000; w=2*pi*f; Vs=170; C1=1.25*10^( 7); C2=6.62*10^( 9);... 
L=2.*10.^( 3);...
R1=100; Rload=1; z1= j./(w.*C1); z2= j./(w.*C2); z3=R1+j.*w.*L; Zload=Rload;...
Zin=z1+z2.*z3./(z2+z3); Vload=Zload.*Vs./(Zin+Zload); magVload=abs(Vload);...
plot(f,magVload); axis([1000 60000 0 2]);...
xlabel('Frequency f'); ylabel('|Vload|'); grid

This circuit is considered to be a special type of filter that allows a specific frequency (not a band
of frequencies) to pass, and attenuates another specific frequency.

ZIN f 10 KHz= z1 111.12 j127.72 1+ + + z1 113.12+ j127.72+= =

z1 j127.72–= f 10 KHz=

C1 1 C 127.72=

C1
1

2 104 127.72
-------------------------------------------- 1.25 10 7– F 0.125 F= = =

VLOAD
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Chapter 3

Elementary Signals

his chapter begins with a discussion of elementary signals that may be applied to electric net-
works. The unit step, unit ramp, and delta functions are then introduced. The sampling and
sifting properties of the delta function are defined and derived. Several examples for expressing

a variety of waveforms in terms of these elementary signals are provided. 

3.1 Signals Described in Math Form

Consider the network of Figure 3.1 where the switch is closed at time .

Figure 3.1. A switched network with open terminals.

We wish to describe  in a math form for the time interval . To do this, it is conve-
nient to divide the time interval into two parts, , and .

For the time interval  the switch is open and therefore, the output voltage  is zero. In
other words,

(3.1)

For the time interval  the switch is closed. Then, the input voltage  appears at the output,
i.e.,

(3.2)

Combining (3.1) and (3.2) into a single relationship, we get

(3.3)

We can express (3.3) by the waveform shown in Figure 3.2.

T

t 0=

+
+

vout

vS
t 0=

R

open terminals

vout t +–

t 0– 0 t

t 0– vout

vout 0 for t 0–=

0 t vS

vout vS for 0 t=

vout
0   – t 0
vS   0 t

=
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Figure 3.2. Waveform for  as defined in relation (3.3)

The waveform of Figure 3.2 is an example of a discontinuous function. A function is said to be dis-
continuous if it exhibits points of discontinuity, that is, the function jumps from one value to another
without taking on any intermediate values. 

3.2 The Unit Step Function 

A well-known discontinuous function is the unit step function * that is defined as

(3.4)

It is also represented by the waveform of Figure 3.3.

Figure 3.3. Waveform for 

In the waveform of Figure 3.3, the unit step function  changes abruptly from  to  at .
But if it changes at  instead, it is denoted as . Its waveform and definition are as
shown in Figure 3.4 and relation (3.5).

Figure 3.4. Waveform for 

* In some books, the unit step function is denoted as , that is, without the subscript 0. In this text, however, we

will reserve the  designation for any input.

0

voutvS

t

vout

u0 t

u0 t

u t
u t

u0 t
0 t 0
1 t 0

=

u0 t

0

1

t

u0 t

u0 t 0 1 t 0=

t t0= u0 t t0–

1

t00

u0 t t0–
t

u0 t t0–
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The Unit Step Function

(3.5)

If the unit step function changes abruptly from  to  at , it is denoted as . Its

waveform and definition are as shown in Figure 3.5 and relation (3.6).

Figure 3.5. Waveform for 

(3.6)

Example 3.1

Consider the network of Figure 3.6, where the switch is closed at time .

Figure 3.6. Network for Example 3.1

Express the output voltage  as a function of the unit step function, and sketch the appropriate
waveform.

Solution:

For this example, the output voltage  for , and  for . Therefore,

 (3.7)

and the waveform is shown in Figure 3.7.

u0 t t0–
0 t t0

1 t t0
=

0 1 t t0–= u0 t t0+

tt0 0

1 u0 t t0+

u0 t t0+

u0 t t0+
0 t t0–

1 t t0–
=

t T=

+
+

vout

vS
t T=

R

open terminals

vout

vout 0= t T vout vS= t T

vout vSu0 t T–=
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Figure 3.7. Waveform for Example 3.1

Other forms of the unit step function are shown in Figure 3.8.

Figure 3.8. Other forms of the unit step function

Unit step functions can be used to represent other time-varying functions such as the rectangular
pulse shown in Figure 3.9.

Figure 3.9. A rectangular pulse expressed as the sum of two unit step functions

Thus, the pulse of Figure 3.9(a) is the sum of the unit step functions of Figures 3.9(b) and 3.9(c) is
represented as .

T
t

0

vSu0 t T–
vout

0
t

t

t t

0

00

0

0

0

t

tt

0 0t t

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

A A A

A A A

A A A
Au0 t–

A– u0 t A– u0 t T– A– u0 t T+

Au0 t– T+ Au0 t– T–

A– u0 t– A– u0 t– T+ A– u0 t– T–

0 0 0
t t t

1

1

1
u0 t

u0 t 1––
a b c

u0 t u0 t 1––
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The Unit Step Function

The unit step function offers a convenient method of describing the sudden application of a voltage
or current source. For example, a constant voltage source of  applied at , can be denoted
as . Likewise, a sinusoidal voltage source  that is applied to a circuit at

, can be described as . Also, if the excitation in a circuit is a rect-
angular, or triangular, or sawtooth, or any other recurring pulse, it can be represented as a sum (dif-
ference) of unit step functions.

Example 3.2  

Express the square waveform of Figure 3.10 as a sum of unit step functions. The vertical dotted lines
indicate the discontinuities at  and so on.

Figure 3.10. Square waveform for Example 3.2

Solution:

Line segment  has height , starts at , and terminates at . Then, as in Example 3.1, this
segment is expressed as

(3.8)

Line segment  has height , starts at  and terminates at . This segment is expressed
as

(3.9)

Line segment  has height , starts at  and terminates at . This segment is expressed as 

(3.10)

Line segment  has height , starts at , and terminates at . It is expressed as 

(3.11)

Thus, the square waveform of Figure 3.10 can be expressed as the summation of (3.8) through (3.11),
that is,

24 V t 0=

24u0 t V v t Vm t Vcos=

t t0= v t Vm tcos u0 t t0– V=

T 2T 3T

t

v t

3T

A

0
A–

T 2T

A t 0= t T=

v1 t A u0 t u0 t T––=

A– t T= t 2T=

v2 t A– u0 t T– u0 t 2T––=

A t 2T= t 3T=

v3 t A u0 t 2T– u0 t 3T––=

A– t 3T= t 4T=

v4 t A– u0 t 3T– u0 t 4T––=
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(3.12)

Combining like terms, we get

(3.13)

Example 3.3  

Express the symmetric rectangular pulse of Figure 3.11 as a sum of unit step functions.

Figure 3.11. Symmetric rectangular pulse for Example 3.3

Solution:

This pulse has height , starts at , and terminates at . Therefore, with reference to
Figures 3.5 and 3.8 (b), we get

(3.14)

Example 3.4  

Express the symmetric triangular waveform of Figure 3.12 as a sum of unit step functions.

Figure 3.12. Symmetric triangular waveform for Example 3.4

Solution:

We first derive the equations for the linear segments  and  shown in Figure 3.13.

v t v1 t v2 t v3 t v4 t+ + +=

A u0 t u0 t T–– A– u0 t T– u0 t 2T––=

+A u0 t 2T– u0 t 3T–– A– u0 t 3T– u0 t 4T––

v t A u0 t 2u0 t T–– 2u0 t 2T– 2u0 t 3T––+ +=

t

A

T– 2 T 20

i t

A t T 2–= t T 2=

i t Au0 t T
2
---+ Au0 t T

2
---–– A u0 t T

2
---+ u0 t T

2
---––= =

t

1

0T 2–

v t

T 2
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The Unit Step Function

Figure 3.13. Equations for the linear segments of Figure 3.12

For line segment ,

(3.15)

and for line segment ,

(3.16)

Combining (3.15) and (3.16), we get

(3.17)

Example 3.5  

Express the waveform of Figure 3.14 as a sum of unit step functions.

Figure 3.14. Waveform for Example 3.5.

Solution:

As in the previous example, we first find the equations of the linear segments  and  shown in Fig-
ure 3.15.

t

1

0T 2–

v t

T 2

2
T
---– t 1+

2
T
--- t 1+

v1 t 2
T
--- t 1+ u0 t T

2
---+ u0 t–=

v2 t 2
T
---– t 1+ u0 t u0 t T

2
---––=

v t v1 t v2 t+=

2
T
--- t 1+ u0 t T

2
---+ u0 t– 2

T
---– t 1+ u0 t u0 t T

2
---––+=

1

2

3

1 2 30
t

v t
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Figure 3.15. Equations for the linear segments of Figure 3.14

Following the same procedure as in the previous examples, we get

Multiplying the values in parentheses by the values in the brackets, we get

or

and combining terms inside the brackets, we get

(3.18)

Two other functions of interest are the unit ramp function, and the unit impulse or delta function. We
will introduce them with the examples that follow.

Example 3.6  

In the network of Figure 3.16, where  is a constant source, the switch is closed at time .

Figure 3.16. Network for Example 3.6

1

2

3

1 2 30

2t 1+

v t

t

t– 3+

v t 2t 1+ u0 t u0 t 1–– 3 u0 t 1– u0 t 2––+=

 + t– 3+ u0 t 2– u0 t 3––

v t 2t 1+ u0 t 2t 1+ u0 t 1–– 3u0 t 1–+=

3u0 t 2–– t– 3+ u0 t 2– t– 3+ u0 t 3––+

v t 2t 1+ u0 t 2t 1+– 3+ u0 t 1–+=

 + 3– t– 3++ u0 t 2– t– 3+ u0 t 3––

v t 2t 1+ u0 t 2 t 1– u0 t 1–– t– u0 t 2– t 3– u0 t 3–+=

iS t 0=

vC t

t 0=iS

R

C

+
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The Unit Step Function

Express the capacitor voltage  as a function of the unit step.

Solution:

The current through the capacitor is , and the capacitor voltage  is

* (3.19)

where  is a dummy variable.

Since the switch closes at , we can express the current  as

(3.20)

and assuming that  for , we can write (3.19) as

(3.21)

or

(3.22)

Therefore, we see that when a capacitor is charged with a constant current, the voltage across it is a
linear function and forms a ramp with slope as shown in Figure 3.17.

Figure 3.17. Voltage across a capacitor when charged with a constant current source.

* Since the initial condition for the capacitor voltage was not specified, we express this integral with  at the
lower limit of integration so that any non-zero value prior to  would be included in the integration.

vC t

iC t iS cons ttan= = vC t

vC t 1
C
---- iC d

–

t
=

–
t 0

t 0= iC t

iC t iS u0 t=

vC t 0= t 0

vC t 1
C
---- iS u0 d

–

t
iS
C
---- u0 d

–

0

0

iS
C
---- u0 d

0

t
+= =

vC t
iS
C
----- tu0 t=

iS C

vC t

0

slope iS C=
t
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3.3 The Unit Ramp Function 

The unit ramp function, denoted as , is defined as

(3.23)

where  is a dummy variable.

We can evaluate the integral of (3.23) by considering the area under the unit step function  from
 as shown in Figure 3.18.

Figure 3.18. Area under the unit step function from

Therefore, we define  as

(3.24)

Since  is the integral of , then  must be the derivative of , i.e.,

(3.25)

Higher order functions of  can be generated by repeated integration of the unit step function. For
example, integrating  twice and multiplying by 2, we define  as

(3.26)

Similarly,

(3.27)

and in general,

u1 t

u1 t

u1 t u0 d
–

t
=

u0 t

to t–

Area 1 t= = =
1

t

to t–

u1 t

u1 t
0 t 0
t t 0

=

u1 t u0 t u0 t u1 t

d
dt
-----u1 t u0 t=

t
u0 t u2 t

u2 t
0 t 0

t2 t 0
= or u2 t 2 u1 d

–

t
=

u3 t
0 t 0

t3 t 0
= or u3 t 3 u2 d

–

t
=
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The Unit Ramp Function

(3.28)

Also,

(3.29)

Example 3.7  

In the network of Figure 3.19, the switch is closed at time  and  for .

Figure 3.19. Network for Example 3.7

Express the inductor current  in terms of the unit step function.

Solution:

The voltage across the inductor is

(3.30)

and since the switch closes at ,

(3.31)

Therefore, we can write (3.30) as

(3.32)

But, as we know,  is constant ( or ) for all time except at where it is discontinuous.
Since the derivative of any constant is zero, the derivative of the unit step  has a non-zero value
only at . The derivative of the unit step function is defined in the next section.

un t
0 t 0

t n t 0
= or un t 3 un 1– d

–

t
=

un 1– t 1
n
--- d

dt
-----un t=

t 0= iL t 0= t 0

R

iS

t 0=

L
vL tiL t

+

iL t

vL t L
diL
dt
-------=

t 0=

iL t iS u0 t=

vL t LiS
d
dt
-----u0 t=

u0 t 0 1 t 0=

u0 t

t 0=
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3.4 The Delta Function 

The unit impulse or delta function, denoted as , is the derivative of the unit step . It is also
defined as

(3.33)

and

(3.34)

To better understand the delta function , let us represent the unit step  as shown in Figure
3.20 (a). 

Figure 3.20. Representation of the unit step as a limit.

The function of Figure 3.20 (a) becomes the unit step as . Figure 3.20 (b) is the derivative of
Figure 3.20 (a), where we see that as ,  becomes unbounded, but the area of the rectangle
remains . Therefore, in the limit, we can think of  as approaching a very large spike or impulse
at the origin, with unbounded amplitude, zero width, and area equal to .

Two useful properties of the delta function are the sampling property and the sifting property.

3.5 Sampling Property of the Delta Function 

The sampling property of the delta function states that 

(3.35)

or, when ,

(3.36)

t

t u0 t

d
–

t
u0 t=

t 0 for all t 0=

t u0 t

1
2
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Figure (b)Area =1
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t
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0

0
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1 t
1

t

f t t a– f a t=

a 0=
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Sifting Property of the Delta Function

that is, multiplication of any function  by the delta function  results in sampling the function
at the time instants where the delta function is not zero. The study of discrete-time systems is based
on this property.

Proof:

Since  then, 

(3.37)

We rewrite  as

(3.38)

Integrating (3.37) over the interval  and using (3.38), we get

(3.39)

The first integral on the right side of (3.39) contains the constant term ; this can be written out-
side the integral, that is,

(3.40)

The second integral of the right side of (3.39) is always zero because

and

Therefore, (3.39) reduces to

(3.41)

Differentiating both sides of (3.41), and replacing  with , we get

(3.42)

3.6 Sifting Property of the Delta Function 

The sifting property of the delta function states that

f t t

t 0 for t 0 and t 0=

f t t 0 for t 0 and t 0=

f t

f t f 0 f t f 0–+=

to t–

f d
–

t
f 0 d

–

t
f f 0– d

–

t
+=

f 0

f 0 d
–

t
f 0 d

–

t
=

t 0 for t 0 and t 0=

f f 0– 0=
f 0 f 0– 0= =

f d
–

t
f 0 d

–

t
=

t

f t t f 0 t=

Sampling Property of t

t



Chapter 3  Elementary Signals

3-14 Circuit Analysis II with MATLAB Applications
Orchard Publications

(3.43)

that is, if we multiply any function  by  and integrate from , we will obtain the
value of  evaluated at .

Proof:

Let us consider the integral

(3.44)

We will use integration by parts to evaluate this integral. We recall from the derivative of products
that

(3.45)

and integrating both sides we get

(3.46)

Now, we let ; then, . We also let ; then, . By substitu-
tion into (3.46), we get

(3.47)

We have assumed that ; therefore,  for , and thus the first term of the
right side of (3.47) reduces to . Also, the integral on the right side is zero for , and there-
fore, we can replace the lower limit of integration  by . We can now rewrite (3.47) as

and letting , we get

(3.48)

f t t – td
–

f=

f t t – to +–

f t t =

f t t – t where a bd
a

b

d xy xdy ydx or xdy+ d xy ydx–= =

x yd xy y xd–=

x f t= dx f t= dy t –= y u0 t –=

f t t – td
a

b
f t u0 t –

a
b u0 t – f t td

a

b
–=

a b u0 t – 0= a

f b a
a

f t t – td
a

b
f b f t td

b
– f b f b f+–= =

a and b for any–

f t t – td
–

f=

Sifting Property of t
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Higher Order Delta Functions

3.7 Higher Order Delta Functions

An nth-order delta function is defined as the  derivative of , that is,

(3.49)

The function  is called doublet,  is called triplet, and so on. By a procedure similar to the
derivation of the sampling property of the delta function, we can show that 

(3.50)

Also, the derivation of the sifting property of the delta function can be extended to show that

(3.51)

Example 3.8  

Evaluate the following expressions:

a.

b.

c.

Solution:

a. The sampling property states that  For this example,  and
. Then,

b. The sifting property states that . For this example,  and .

Then,

c. The given expression contains the doublet; therefore, we use the relation

nth u0 t

n t
n
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–
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t =

=
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Then, for this example,

Example 3.9  

a. Express the voltage waveform  shown in Figure 3.21 as a sum of unit step functions for the
time interval .

b. Using the result of part (a), compute the derivative of  and sketch its waveform.

Figure 3.21. Waveform for Example 3.9

Solution:

a. We first derive the equations for the linear segments of the given waveform. These are shown in
Figure 3.22.

Next, we express  in terms of the unit step function , and we get

(3.52)

Multiplying and collecting like terms in (3.52), we get

f t ' t a– f a ' t a– f ' a t a––=

t2 ' t 3– t2
t 3=

' t 3–
d
dt
-----t2

t 3=
t 3––=

9 ' t 3– 6 t 3––=

v t
1 t 7 s–

v t

1

2

1

1

2

3

1 2 3 4 5 6 7
0

V

t s

v t

v t u0 t

v t 2t u0 t 1+ u0 t 1–– 2 u0 t 1– u0 t 2––+=

 + t– 5+ u0 t 2– u0 t 4–– u0 t 4– u0 t 5––+

 + t– 6+ u0 t 5– u0 t 7––



Circuit Analysis II with MATLAB Applications 3-17
Orchard Publications

Higher Order Delta Functions

Figure 3.22. Equations for the linear segments of Figure 3.21

or

b. The derivative of  is

(3.53)

From the given waveform, we observe that discontinuities occur only at , , and
. Therefore, , , and , and the terms that contain these

delta functions vanish. Also, by application of the sampling property,

and by substitution into (3.53), we get 

1
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t s
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(3.54)

The plot of  is shown in Figure 3.23.

Figure 3.23. Plot of the derivative of the waveform of Figure 3.23.

We observe that a negative spike of magnitude  occurs at , and two positive spikes of
magnitude  occur at , and . These spikes occur because of the discontinuities at
these points.

MATLAB* has built-in functions for the unit step, and the delta functions. These are denoted by the
names of the mathematicians who used them in their work. The unit step function  is referred
to as Heaviside(t), and the delta function  is referred to as Dirac(t). Their use is illustrated with
the examples below.

syms k a t; %  Define symbolic variables
u=k*sym('Heaviside(t a)') %  Create unit step function at t = a

u =
k*Heaviside(t-a)

d=diff(u) % Compute the derivative of the unit step function

d =
k*Dirac(t-a)

* An introduction to MATLAB® is given in Appendix A.

dv
dt
------ 2u0 t 1+ 2– t 1+ 2u0 t 1– u0 t 2–––=
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Summary

int(d) % Integrate the delta function

ans =
Heaviside(t-a)*k

3.8 Summary

The unit step function  that is defined as

The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source.

The unit ramp function, denoted as , is defined as

The unit impulse or delta function, denoted as , is the derivative of the unit step . It is also
defined as

and

The sampling property of the delta function states that 

or, when ,

The sifting property of the delta function states that

The sampling property of the doublet function  states that

u0 t

u0 t
0 t 0
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3.9 Exercises

1. Evaluate the following functions:

a.

b.

c.

d.

e.

f.

2.

a. Express the voltage waveform  shown in Figure 3.24, as a sum of unit step functions for
the time interval .

b. Using the result of part (a), compute the derivative of , and sketch its waveform.

Figure 3.24. Waveform for Exercise 2
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Solutions to Exercises

3.10 Solutions to Exercises

1. We apply the sampling property of the  function for all expressions except (e) where we apply
the sifting property. For part (f) we apply the sampling property of the doublet.

We recall that the sampling property states that . Thus,

a.

b.

c.

d.

We recall that the sampling property states that . Thus,

e.

We recall that the sampling property for the doublet states that

Thus,

f.

2.

a.

or

t
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b.

  (1)

Referring to the given waveform we observe that discontinuities occur only at , ,
and . Therefore,  and . Also, by the sampling property of the delta
function

and with these simplifications (1) above reduces to

The waveform for  is shown below.
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Chapter 4
The Laplace Transformation

his chapter begins with an introduction to the Laplace transformation, definitions, and proper-
ties of the Laplace transformation. The initial value and final value theorems are also discussed
and proved. It concludes with the derivation of the Laplace transform of common functions

of time, and the Laplace transforms of common waveforms.

4.1 Definition of the Laplace Transformation

The two-sided or bilateral Laplace Transform pair is defined as

 (4.1)

(4.2)

where  denotes the Laplace transform of the time function ,  denotes the
Inverse Laplace transform, and  is a complex variable whose real part is , and imaginary part ,
that is, .

In most problems, we are concerned with values of time  greater than some reference time, say
, and since the initial conditions are generally known, the two-sided Laplace transform

pair of (4.1) and (4.2) simplifies to the unilateral or one-sided Laplace transform defined as

(4.3)

(4.4)

The Laplace Transform of (4.3) has meaning only if the integral converges (reaches a limit), that is, if

 (4.5)

To determine the conditions that will ensure us that the integral of (4.3) converges, we rewrite (4.5)

T
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2 j
-------- F s
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s

s j+=

t
t t0 0= =

L f t F= s f t
t0

e st– dt f t
0

e st– dt= =

L 1– F s f= t 1
2 j
-------- F s

j–

j+

estds=

f t
0

e st– dt
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as

(4.6)

The term  in the integral of (4.6) has magnitude of unity, i.e., , and thus the condition
for convergence becomes

(4.7)

Fortunately, in most engineering applications the functions  are of exponential order*. Then, we
can express (4.7) as,

(4.8)

and we see that the integral on the right side of the inequality sign in (4.8), converges if .
Therefore, we conclude that if  is of exponential order, exists if

(4.9)

where  denotes the real part of the complex variable .

Evaluation of the integral of (4.4) involves contour integration in the complex plane, and thus, it will
not be attempted in this chapter. We will see, in the next chapter, that many Laplace transforms can
be inverted with the use of a few standard pairs, and therefore, there is no need to use (4.4) to obtain
the Inverse Laplace transform.

In our subsequent discussion, we will denote transformation from the time domain to the complex
frequency domain, and vice versa, as

(4.10)

4.2 Properties of the Laplace Transform

1. Linearity Property

The linearity property states that if

have Laplace transforms

* A function  is said to be of exponential order if .

f t e t–

0
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0
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Properties of the Laplace Transform

respectively, and

are arbitrary constants, then,

(4.11)

Proof:

Note 1:

It is desirable to multiply  by  to eliminate any unwanted non-zero values of  for .

2. Time Shifting Property

The time shifting property states that a right shift in the time domain by  units, corresponds to mul-

tiplication by  in the complex frequency domain. Thus,

(4.12)

Proof:

(4.13)

Now, we let ; then,  and . With these substitutions, the second integral
on the right side of (4.13) becomes

3. Frequency Shifting Property

The frequency shifting property states that if we multiply some time domain function  by an

exponential function  where a is an arbitrary positive constant, this multiplication will produce a
shift of the s variable in the complex frequency domain by  units. Thus,

F1 s F2 s Fn s

c1 c2 cn

c1 f1 t c2 f2 t cn fn t+ + + c1 F1 s c2 F2 s cn Fn s+ + +
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t0

dt=
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t0

e st– dt c2 f2 t
t0

e st– dt  + cn fn t
t0

e st– dt+ +=

c1 F1 s c2 F2 s cn Fn s+ + +=

f t u0 t f t t 0

a
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f t a– u0 t a– e as– F s
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0

a
e st– dt f t a–

a
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t a– = t a+= dt d=

f
0

e s a+– d e as– f
0

e s– d e as– F s= =

f t
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(4.14)

Proof:

Note 2:

A change of scale is represented by multiplication of the time variable  by a positive scaling factor
. Thus, the function  after scaling the time axis, becomes .

4. Scaling Property

Let  be an arbitrary positive constant; then, the scaling property states that 

(4.15)

Proof:

and letting , we get

Note 3: 

Generally, the initial value of  is taken at  to include any discontinuity that may be present
at . If it is known that no such discontinuity exists at , we simply interpret  as .

5. Differentiation in Time Domain

The differentiation in time domain property states that differentiation in the time domain corresponds
to multiplication by  in the complex frequency domain, minus the initial value of  at .
Thus,

(4.16)

Proof:

e at– f t F s a+

L e at– f t e at– f t
0

e st– dt f t
0

e s a+ t– dt F s a+= = =

t
a f t f at

a

f at 1
a
---F s

a
---

L f at f at
0

e st– dt=

t a=

L f at f
0

e s a– d a
--- 1

a
--- f

0
e s a– d 1

a
---F s

a
---= = =

f t t 0=

t 0= t 0= f 0 f 0

s f t t 0=

f ' t d
dt
----- f t= sF s f 0–

L f ' t f ' t
0
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Properties of the Laplace Transform

Using integration by parts where

(4.17)

we let  and . Then, , , and thus

The time differentiation property can be extended to show that

(4.18)

(4.19)

and in general

(4.20)

To prove (4.18), we let

and as we found above,

Then,

Relations (4.19) and (4.20) can be proved by similar procedures.

We must remember that the terms , and so on, represent the initial conditions.
Therefore, when all initial conditions are zero, and we differentiate a time function   times,
this corresponds to  multiplied by  to the power.

v ud uv u vd–=

du f ' t= v e st–= u f t= dv se st––=

L f ' t f t e st–

0
s f t

0
e st– dt+ f t e st–

0

a

a
lim sF s+= =

e sa– f a f 0–
a
lim sF s+ 0 f 0– sF s+==

d 2

dt 2
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d n
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dt
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s 2F s sf 0– f ' 0–=

f 0 f ' 0 f '' 0
f t n

F s s nth
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6. Differentiation in Complex Frequency Domain

This property states that differentiation in complex frequency domain and multiplication by minus one,
corresponds to multiplication of  by  in the time domain. In other words,

(4.21)

Proof:

Differentiating with respect to s, and applying Leibnitz’s rule* for differentiation under the integral, we

get

In general,

(4.22)

The proof for  follows by taking the second and higher-order derivatives of  with respect
to .

7. Integration in Time Domain

This property states that integration in time domain corresponds to  divided by  plus the initial
value of  at , also divided by . That is,

(4.23)

* This rule states that if a function of a parameter  is defined by the equation  where f is some

known function of integration x and the parameter , a and b are constants independent of x and , and the par-

tial derivative  exists and it is continuous, then .
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Properties of the Laplace Transform

Proof:

We express the integral of (4.23) as two integrals, that is,

(4.24)

The first integral on the right side of (4.24), represents a constant value since neither the upper, nor
the lower limits of integration are functions of time, and this constant is an initial condition denoted
as . We will find the Laplace transform of this constant, the transform of the second integral
on the right side of (4.24), and will prove (4.23) by the linearity property. Thus,

(4.25)

This is the value of the first integral in (4.24). Next, we will show that

We let

then,

and

Now,

(4.26)

and the proof of (4.23) follows from (4.25) and (4.26).
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8. Integration in Complex Frequency Domain

This property states that integration in complex frequency domain with respect to  corresponds to

division of a time function  by the variable , provided that the limit  exists. Thus,

(4.27)

Proof:

Integrating both sides from  to , we get

Next, we interchange the order of integration, i.e., 

and performing the inner integration on the right side integral with respect to , we get

9. Time Periodicity

The time periodicity property states that a periodic function of time with period  corresponds to

the integral  divided by  in the complex frequency domain. Thus, if we let 

be a periodic function with period , that is, , for  we get the trans-
form pair

(4.28)

s
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Properties of the Laplace Transform

Proof:

The Laplace transform of a periodic function can be expressed as

In the first integral of the right side, we let , in the second , in the third ,
and so on. The areas under each period of  are equal, and thus the upper and lower limits of
integration are the same for each integral. Then,

(4.29)

Since the function is periodic, i.e., , we can write
(4.29) as

(4.30)

By application of the binomial theorem, that is,

(4.31)

we find that expression (4.30) reduces to

10. Initial Value Theorem

The initial value theorem states that the initial value  of the time function  can be found
from its Laplace transform multiplied by  and letting .That is,

(4.32)

Proof:

From the time domain differentiation property,

or
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0
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Taking the limit of both sides by letting , we get

Interchanging the limiting process, we get

and since

the above expression reduces to

or

11. Final Value Theorem

The final value theorem states that the final value  of the time function  can be found from
its Laplace transform multiplied by s, then, letting . That is,

(4.33)

Proof:

From the time domain differentiation property,

or

Taking the limit of both sides by letting , we get
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sF s
s
lim f 0=

f f t
s 0

f t
t
lim sF s

s 0
lim f= =

d
dt
----- f t sF s f 0–

L d
dt
----- f t sF s f 0–

d
dt
----- f t

0
e st– dt= =

s 0
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Properties of the Laplace Transform

and by interchanging the limiting process, we get

Also, since

the above expression reduces to

and therefore,

12. Convolution in the Time Domain

Convolution* in the time domain corresponds to multiplication in the complex frequency domain,
that is,

(4.34)

Proof:

(4.35)

We let ; then, , and . By substitution into (4.35),

* Convolution is the process of overlapping two signals. The convolution of two time functions  and  is 

denoted as , and by definition,  where  is a dummy variable. It is 

discussed in detail Signals and Systems with MATLAB Applications by this author.

sF s f 0–
s 0
lim d

dt
----- f t

T
e st– dt

T
0

lim
s 0
lim=

sF s f 0–
s 0
lim d

dt
----- f t

T
e st–

s 0
lim dt

T
0

lim=

e st–

s 0
lim 1=

sF s f 0–
s 0
lim d

dt
----- f t

T
dt

T
0

lim f t
T

T
0

lim= =

f T f–
T

0

lim f f 0–==

sF s
s 0
lim f=

f1 t f2 t

f1 t *f2 t f1 t *f2 t f1 f2 t –
–

d=

f1 t *f2 t F1 s F2 s

L f1 t *f2 t L f1 f2 t –
–

d f1 f2 t –
0

d
0

e st– dt= =

f1 f2 t –
0

e st– dt
0

d=

t – = t += dt d=
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13. Convolution in the Complex Frequency Domain

Convolution in the complex frequency domain divided by , corresponds to multiplication in the
time domain. That is,

(4.36)

Proof:

(4.37)

and recalling that the Inverse Laplace transform from (4.2) is

by substitution into (4.37), we get

We observe that the bracketed integral is ; therefore,

For easy reference, we have summarized the Laplace transform pairs and theorems in Table 4.1.

4.3 The Laplace Transform of Common Functions of Time

In this section, we will present several examples for finding the Laplace transform of common func-
tions of time.

Example 4.1

Find

L f1 t *f2 t f1 f2
0

e s +– d
0

d f1 e s– d
0

f2
0

e s– d= =

F1 s F2 s=

1 2 j

f1 t f2 t 1
2 j
-------- F1 s *F2 s

L f1 t f2 t f1 t f2 t
0

e st– dt=

f1 t 1
2 j
-------- F1

j–

j+

e td=

L f1 t f2 t 1
2 j
-------- F1

j–

j+

e td f2 t
0

e st– dt=

1
2 j
-------- F1

j–

j+

f2 t
0

e s – t– dt d=

F2 s –

L f1 t f2 t 1
2 j
-------- F1

j–

j+

F2 s – d 1
2 j
--------F1 s *F2 s= =

L u0 t
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The Laplace Transform of Common Functions of Time

TABLE 4.1  Summary of Laplace Transform Properties and Theorems

Property/Theorem Time Domain Complex Frequency Domain

1 Linearity

2 Time Shifting

3 Frequency Shifting

4 Time Scaling

5 Time Differentiation
See also (4.18) through (4.20)

6 Frequency Differentiation
See also (4.22)

7 Time Integration

8 Frequency Integration

9 Time Periodicity

10 Initial Value Theorem

11 Final Value Theorem

12 Time Convolution

13 Frequency Convolution

c1 f1 t c2 f2 t+

     + cn fn t+

c1 F1 s c2 F2 s+

       + cnFn s+

f t a– u0 t a– e as– F s

e as– f t F s a+

f at 1
a
---F s

a
---

d
dt
----- f t sF s f 0–

tf t d
ds
-----– F s

f
–

t
d F s

s
----------- f 0

s
------------+

f t
t

-------- F s sd
s

f t nT+
f t

0

T
e st– dt

1 e sT–
–

--------------------------------

f t
t 0
lim sF s

s
lim f 0=

f t
t

lim sF s
s 0
lim f=

f1 t *f2 t F1 s F2 s

f1 t f2 t 1
2 j
-------- F1 s *F2 s
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Solution:

We start with the definition of the Laplace transform, that is,

For this example,

Thus, we have obtained the transform pair

(4.38)

for .*

Example 4.2

Find

Solution:

We apply the definition

and for this example,

We will perform integration by parts recalling that

(4.39)

We let

then,

By substitution into (4.39),

* This condition was established in (4.9).

L f t F s f t
0

e st– dt= =

L u0 t 1
0

e st– dt est–
s

---------
0

0 1
s
---––

1
s
---= = = =

u0 t 1
s
---

Re s 0=

L u1 t

L f t F s f t
0

e st– dt= =

L u1 t L t t
0

e st– dt= =

u vd uv v ud–=

u t  and  dv e st–= =

du 1  and  v e st––
s

-----------= =
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The Laplace Transform of Common Functions of Time

(4.40)

Since the upper limit of integration in (4.40) produces an indeterminate form, we apply L’ Hôpital’s
rule*, that is, 

Evaluating the second term of (4.40), we get 

Thus, we have obtained the transform pair

(4.41)

for .

Example 4.3

Find

Solution:

To find the Laplace transform of this function, we must first review the gamma or generalized facto-
rial function  defined as

(4.42)

* Often, the ratio of two functions, such as , for some value of x, say a, results in an indeterminate form. To

work around this problem, we consider the limit , and we wish to find this limit, if it exists. To find this

limit, we use L’Hôpital’s rule which states that if , and if the limit  as x

approaches a exists, then, 

L t t– e st–

s
-------------

0

e st––
s

-----------
0

– dt t– e st–

s
------------- e st–

s2
--------–

0

= =

f x
g x
----------

f x
g x
----------

x a
lim

f a g a 0= =
d

dx
------f x d

dx
------g x

f x
g x
----------

x a
lim d

dx
------f x d

dx
------g x

x a
lim=

te st–

t
lim t

est
------

t
lim td

d t

td
d est
----------------

t
lim 1

sest
--------

t
lim 0= = = =

L t 1
s2
----=

t 1
s2
----

0

L t nu0 t

n

n xn 1– e x– xd
0

=
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The integral of (4.42) is an improper integral* but converges (approaches a limit) for all .

We will now derive the basic properties of the gamma function, and its relation to the well known
factorial function

The integral of (4.42) can be evaluated by performing integration by parts. Thus, in (4.39) we let

Then,

and (4.42) is written as

(4.43)

With the condition that , the first term on the right side of (4.43) vanishes at the lower limit
. It also vanishes at the upper limit as . This can be proved with L’ Hôpital’s rule by dif-

ferentiating both numerator and denominator m times, where . Then,

Therefore, (4.43) reduces to

and with (4.42), we have

* Improper integrals are two types and these are:

a.  where the limits of integration a or b or both are infinite

b.  where f(x) becomes infinite at a value x between the lower and upper limits of integration inclusive.

n 0

f x xd
a

b

f x xd
a

b

n! n n 1– n 2– 3 2 1=

u e x– and   dv xn 1–==

du e x–– dx   and   v xn

n
-----==

n xne x–

n
------------

x 0=

1
n
--- xne x– xd

0
+=

n 0
x 0= x

m n

xne x–

n
------------

x
lim xn

nex
--------

x
lim xm

m

d

d xn

xm

m

d

d nex
-------------------

x
lim xm 1–

m 1–

d

d nxn 1–

xm 1–

m 1–

d

d ne
x

------------------------------------
x
lim= = = =

n n 1– n 2– n m– 1+ xn m–

nex
------------------------------------------------------------------------------------

x
lim n 1– n 2– n m– 1+

xm n– e
x

--------------------------------------------------------------------
x
lim 0= ==

n 1
n
--- xne x– xd

0
=
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The Laplace Transform of Common Functions of Time

(4.44)

By comparing the integrals in (4.44), we observe that

(4.45)

or

(4.46)

It is convenient to use (4.45) for , and (4.46) for . From (4.45), we see that  becomes
infinite as .

For , (4.42) yields

(4.47)

and thus we have the important relation,

(4.48)

From the recurring relation of (4.46), we obtain

(4.49)

and in general

(4.50)

for

The formula of (4.50) is a noteworthy relation; it establishes the relationship between the 
function and the factorial 

We now return to the problem of finding the Laplace transform pair for , that is,

(4.51)

To make this integral resemble the integral of the gamma function, we let , or , and

n xn 1– e x– xd
0

1
n
--- xne x– xd

0
= =

n n 1+
n

---------------------=

n n n 1+=

n 0 n 0 n
n 0

n 1=

1 e x– xd
0

e x–
0– 1= = =

1 1=

2 1 1 1= =

3 2 2 2 1 2!= = =

4 3 3 3 2 3!= = =

n 1+ n!=

n 1 2 3=

n
n!

t nu0t

L t nu0t t n

0
e st– dt=

st y= t y s=
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thus . Now, we rewrite (4.51) as

Therefore, we have obtained the transform pair

(4.52)

for positive integers of  and .

Example 4.4

Find

Solution:

and using the sifting property of the delta function, we get

Thus, we have the transform pair 

(4.53)

for all .

Example 4.5

Find

Solution:

and again, using the sifting property of the delta function, we get

dt dy s=

L t nu0t y
s
--

n

0
e y– d y

s
-- 1

sn 1+
----------- yn

0
e y– dy n 1+

sn 1+
-------------------- n!

sn 1+
-----------= = = =

t nu0 t n!

sn 1+
-----------

n 0

L t

L t t
0

e st– dt=

L t t
0

e st– dt e s 0– 1= = =

t 1

L t a–

L t a– t a–
0

e st– dt=

L t a– t a–
0

e st– dt e as–= =
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The Laplace Transform of Common Functions of Time

Thus, we have the transform pair 

(4.54)

for .

Example 4.6

Find

Solution:

Thus, we have the transform pair 

(4.55)

for .

Example 4.7

Find

Solution:

For this example, we will use the transform pair of (4.52), i.e.,

(4.56)

and the frequency shifting property of (4.14), that is,

(4.57)

Then, replacing  with  in (4.56), we get the transform pair

t a– e as–

0

L e at– u0 t

L e at– u0 t e at–

0
e st– dt e s a+ t–

0
dt==

1
s a+
-----------– e s a+ t–

0

1
s a+
-----------==

e at– u0 t 1
s a+
-----------

a–

L t ne
at–

u0 t

t nu0 t n!

sn 1+
-----------

e at– f t F s a+

s s a+
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(4.58)

where  is a positive integer, and  Thus, for , we get the transform pair

(4.59)

for .

For , we get the transform

(4.60)

and in general,

(4.61)

for

Example 4.8

Find

Solution:

and from tables of integrals*

Then,

* This can also be derived from , and the use of (4.55) where . By the lin-

earity property, the sum of these terms corresponds to the sum of their Laplace transforms. Therefore,

t ne
at–

u0 t n!

s a+ n 1+
-------------------------

n a– n 1=

te at– u0 t 1
s a+ 2

------------------

a–

n 2=

t 2e
at–

u0 t 2!

s a+ 3
------------------

t ne
at–

u0 t n!

s a+ n 1+
-------------------------

a–

L t u0sin t

L t u0sin t tsin
0

e st– dt tsin
0

a
e st– dt

a
lim= =

tsin 1
j2
----- e j t e j t–

–= e at– u0 t 1
s a+
-----------

L tu0sin t 1
j2
----- 1

s j–
-------------- 1

s j+
--------------–

s2 2+
-----------------= =

eax bxsin dx eax a bxsin b bxcos–

a2 b2+
------------------------------------------------------=
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The Laplace Transform of Common Functions of Time

Thus, we have obtained the transform pair

(4.62)

for

Example 4.9

Find

Solution:

and from tables of integrals*

Then,

Thus, we have the fransform pair

* We can use the relation  and the linearity property, as in the derivation of the transform

of  on the footnote of the previous page. We can also use the transform pair ; this

is the time differentiation property of (4.16). Applying this transform pair for this derivation, we get

L t u0sin t e st– s– tsin tcos–

s2 2+
-----------------------------------------------------------

0

a

a
lim=

e as– s– asin acos–

s2 2+
--------------------------------------------------------------

s2 2+
-----------------+

a
lim

s2 2+
-----------------==

t u0tsin
s2 2+
-----------------

0

L cos t u0 t

L cos t u0 t tcos
0

e st– dt tcos
0

a
e st– dt

a
lim= =

tcos 1
2
--- e j t e j t–

+=

sin t d
dt
----- f t sF s f 0–

L cos tu0 t L 1---- d
dt
----- sin tu0 t 1----L d

dt
----- sin tu0 t 1----s

s2 2+
----------------- s

s2 2+
-----------------= = = =

eax bxcos dx eax bxacos b bxsin+

a2 b2+
------------------------------------------------------=

L cos t u0 t e st– s– tcos tsin+

s2 2+
-----------------------------------------------------------

0

a

a
lim=

e as– s– acos asin+

s2 2+
--------------------------------------------------------------- s

s2 2+
-----------------+

a
lim s

s2 2+
-----------------==
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(4.63)

for

Example 4.10

Find

Solution:

Since

using the frequency shifting property of (4.14), that is,

(4.64)

we replace  with , and we get

(4.65)

for  and .

Example 4.11

Find

Solution:

Since

using the frequency shifting property of (4.14), we replace  with , and we get

(4.66)

for  and .

For easy reference, we have summarized the above derivations in Table 4.2.

cos t u0t s
s2 2+
-----------------

0

L e at– t u0sin t

tu0tsin
s2 2+
-----------------

e at– f t F s a+

s s a+

e at– t u0sin t
s a+ 2 2+

-------------------------------

0 a 0

L e at– cos t u0 t

cos t u0 t s
s2 2+
-----------------

s s a+

e at– cos t u0 t s a+

s a+ 2 2+
-------------------------------

0 a 0
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The Laplace Transform of Common Waveforms

4.4 The Laplace Transform of Common Waveforms

In this section, we will present some examples for deriving the Laplace transform of several wave-
forms using the transform pairs of Tables 4.1 and 4.2.

Example 4.12

Find the Laplace transform of the waveform  of Figure 4.1. The subscript  stands for pulse.

TABLE 4.2  Laplace Transform Pairs for Common Functions

1

2

3

4

5

6

7

8

9

10

11

f t F s

u0 t 1 s

t u0 t 1 s2

t nu0 t n!

sn 1+
-----------

t 1

t a– e as–

e at– u0 t 1
s a+
-----------

t ne
at–

u0 t n!

s a+ n 1+
-------------------------

t u0 tsin
s2 2+
-----------------

cos t u0 t s
s2 2+
-----------------

e at– t u0 tsin
s a+ 2 2+

-------------------------------

e at– cos t u0 t s a+

s a+ 2 2+
-------------------------------

fP t P



Chapter 4  The Laplace Transformation

4-24 Circuit Analysis II with MATLAB Applications
Orchard Publications

Figure 4.1. Waveform for Example 4.12

Solution:

We first express the given waveform as a sum of unit step functions. Then,

(4.67)

Next, from Table 4.1,

and from Table 4.2,

For this example,

and

Then, by the linearity property, the Laplace transform of the pulse of Figure 4.1 is

Example 4.13

Find the Laplace transform for the waveform of Figure 4.4. The subscript  stands for line.

Figure 4.2. Waveform for Example 4.13

A

a
t

0

fP t

fP t A u0 t u0 t a––=

f t a– u0 t a– e as– F s

u0 t 1 s

Au0 t A s

Au0 t a– e as– A
s
---

A u0 t u0 t a––
A
s
--- e as––

A
s
--- A

s
--- 1 e as––=

fL t L

1

t

0

1

2

fL t
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Solution:

We must first derive the equation of the linear segment. This is shown in Figure 4.3. Then, we
express the given waveform in terms of the unit step function.

Figure 4.3. Waveform for Example 4.13 with the equation of the linear segment

For this example,

From Table 4.1, 

and from Table 4.2,

Therefore, the Laplace transform of the linear segment of Figure 4.2 is 

(4.68)

Example 4.14

Find the Laplace transform for the triangular waveform  of Figure 4.4.

Solution:

We must first derive the equations of the linear segments. These are shown in Figure 4.5. Then, we
express the given waveform in terms of the unit step function.

Figure 4.4. Waveform for Example 4.14

1

t

0

1

2

fL t t 1–

fL t t 1– u0 t 1–=

f t a– u0 t a– e as– F s

tu0 t 1
s2
----

t 1– u0 t 1– e s– 1
s2
----

fT t

1
t

0

1

2

fT t
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Figure 4.5. Waveform for Example 4.13 with the equations of the linear segments

For this example,

and collecting like terms,

From Table 4.1, 

and from Table 4.2,

Then,

or

Therefore, the Laplace transform of the triangular waveform of Figure 4.3 is 

(4.69)

Example 4.15

Find the Laplace transform for the rectangular periodic waveform  of Figure 4.6. 

1
t

0

1

2

fT t
t– 2+t

fT t t u0 t u0 t 1–– t– 2+ u0 t 1– u0 t 2––+=

tu0 t tu0 t 1–– tu0 t 1–– 2u0 t 1– tu0 t 2– 2u0 t 2––+ +=

fT t tu0 t 2 t 1– u0 t 1– t 2– u0 t 2–+–=

f t a– u0 t a– e as– F s

tu0 t 1
s2
----

tu0 t 2 t 1– u0 t 1– t 2– u0 t 2–+– 1
s2
---- 2e–

s– 1
s2
---- e 2s– 1

s2
----+

tu0 t 2 t 1– u0 t 1– t 2– u0 t 2–+–
1
s2
---- 1 2e s–– e 2s–+

fT t 1
s2
---- 1 e s––

2

fR t
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Figure 4.6. Waveform for Example 4.15

Solution:

This is a periodic waveform with period , and thus we can apply the time periodicity prop-
erty

where the denominator represents the periodicity of . For this example,

or

or

(4.70)

a
t

0

A

2a 3a

A

fR t

T 2a=

L f
f

0

T
e s– d

1 e sT––
-------------------------------=

f t

L fR t 1
1 e 2as––
--------------------- fR t

0

2a
e st– dt 1

1 e 2as––
--------------------- A

0

a
e st– dt A–

a

2a
e st– dt+= =

A
1 e 2as––
--------------------- e st––

s
-----------

0

a
e st–

s
--------

a

2a

+=

L fR t A
s 1 e 2as––
---------------------------- e as–– 1 e 2as– e as––+ +=

A
s 1 e 2as––
---------------------------- 1 2e as–– e 2as–+ A 1 e as––

2

s 1 e as–+ 1 e as––
--------------------------------------------------==

A
s
--- 1 e as––

1 e as–+
----------------------- A

s
--- eas 2e as 2– e as 2– e as 2––

eas 2e as 2– e as 2– e as 2–+
---------------------------------------------------------------==

A
s
--- e as 2–

e as 2–
-------------- eas 2 e as 2––

eas 2 e as 2–+
--------------------------------- A

s
--- as 2sinh

as 2cosh
-----------------------------==

fR t A
s
--- as

2
-----tanh
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Example 4.16

Find the Laplace transform for the half-rectified sine wave  of Figure 4.7. 

Figure 4.7. Waveform for Example 4.16

Solution:

This is a periodic waveform with period . We will apply the time periodicity property

where the denominator represents the periodicity of . For this example, 

or

(4.71)

fHW t

sint
1

2 3 4

fHW t

T 2=

L f
f

0

T
e s– d

1 e sT––
-------------------------------=

f t

L fHW t 1
1 e 2 s––
--------------------- f t

0

2
e st– dt 1

1 e 2 s––
--------------------- tsin

0
e st– dt= =

1
1 e 2 s––
--------------------- e st– s t tcos–sin

s2 1+
------------------------------------------

0

1
s2 1+

------------------ 1 e s–+

1 e 2 s––
--------------------------==

L fHW t 1
s2 1+

------------------ 1 e s–+

1 e s–+ 1 e s––
-----------------------------------------------=

fHW t 1
s2 1+ 1 e s––

------------------------------------------
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4.5 Summary

The two-sided or bilateral Laplace Transform pair is defined as

where  denotes the Laplace transform of the time function ,  denotes
the Inverse Laplace transform, and  is a complex variable whose real part is , and imaginary
part , that is, .

The unilateral or one-sided Laplace transform defined as

We denote transformation from the time domain to the complex frequency domain, and vice
versa, as

The linearity property states that

The time shifting property states that

The frequency shifting property states that

The scaling property states that 

The differentiation in time domain property states that

L f t F s= f t
–

e st– dt=

L 1– F s f t=
1

2 j
-------- F s

j–

j+

estds=

L f t f t L 1– F s
s

s j+=

L f t F= s f t
t0

e st– dt f t
0

e st– dt= =

f t F s

c1 f1 t c2 f2 t cn fn t+ + + c1 F1 s c2 F2 s cn Fn s+ + +

f t a– u0 t a– e as– F s

e at– f t F s a+

f at 1
a
---F s

a
---

f ' t d
dt
----- f t= sF s f 0–
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and in general

where the terms , and so on, represent the initial conditions.

The differentiation in complex frequency domain property states that

and in general,

The integration in time domain property states that

The integration in complex frequency domain property states that

provided that the limit  exists.

The time periodicity property states that

The initial value theorem states that

d 2

dt 2
-------- f t s 2F s sf 0– f ' 0–

d 3

dt 3
-------- f t s3F s s2f 0– sf ' 0– f '' 0–

d n

dt n
-------- f t snF s sn 1– f 0– sn 2– f ' 0– f– n 1– 0–

f 0 f ' 0 f '' 0

tf t d
ds
-----– F s

t nf t 1– n d n

dsn
--------F s

f
–

t
d F s

s
----------- f 0

s
------------+

f t
t

-------- F s sd
s

f t
t

--------
t 0
lim

f t nT+

f t
0

T
e st– dt

1 e sT––
-----------------------------

f t
t 0
lim sF s

s
lim f 0= =
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Summary

The final value theorem states that

Convolution in the time domain corresponds to multiplication in the complex frequency domain,
that is,

Convolution in the complex frequency domain divided by , corresponds to multiplication
in the time domain. That is,

The Laplace transforms of some common functions of time are shown below.

f t
t
lim sF s

s 0
lim f= =

f1 t *f2 t F1 s F2 s

1 2 j

f1 t f2 t 1
2 j
-------- F1 s *F2 s

u0 t 1 s

t 1 s2

t nu0 t n!

sn 1+
-----------

t 1

t a– e as–

e at– u0 t 1
s a+
-----------

te at– u0 t 1
s a+ 2

------------------

t 2e
at–

u0 t 2!

s a+ 3
------------------

t ne
at–

u0 t n!

s a+ n 1+
-------------------------

t u0tsin
s2 2+
-----------------

cos t u0t s
s2 2+
-----------------
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The Laplace transforms of some common waveforms are shown below.

e at– t u0sin t
s a+ 2 2+

-------------------------------

e at– cos t u0 t s a+

s a+ 2 2+
-------------------------------

A

a
t

0

fP t

A u0 t u0 t a––
A
s
--- e as––

A
s
--- A

s
--- 1 e as––=

1

t

0

1

2

fL t

t 1– u0 t 1– e s– 1
s2
----

1
t

0

1

2

fT t

fT t 1
s2
---- 1 e s––

2

a
t

0

A

2a 3a

A

fR t

fR t A
s
--- as

2
-----tanh
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Summary

sint
1

2 3 4

fHW t

fHW t 1
s2 1+ 1 e s––

------------------------------------------
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4.6 Exercises

1. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

2. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

3. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.  Be careful with this! Comment and skip derivation.

4. Find the Laplace transform of the following time domain functions:

a.

b.

c.

12

6u0 t

24u0 t 12–

5tu0 t

4t 5u0 t

j8

j5 90–

5e 5t– u0 t

8t 7e 5t– u0 t

15 t 4–

t 3 3t 2 4t 3+ + + u0 t

3 2t 3– t 3–

3 5tsin u0 t

5 3tcos u0 t

2 4ttan u0 t

3t 5tsin u0 t

2t 2 3tcos u0 t

2e 5t– 5tsin
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Exercises

d.

e.

5. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

6. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

7. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

8e 3t– 4tcos

tcos t 4–

5tu0 t 3–

2t 2 5t 4+– u0 t 3–

t 3– e 2t– u0 t 2–

2t 4– e 2 t 2– u0 t 3–

4te 3t– 2tcos u0 t

td
d 3tsin

td
d 3e 4t–

td
d t 2 2tcos

td
d e 2t– 2tsin

td
d t 2e

2t–

tsin
t

---------

sin----------d
0

t

atsin
t

------------

cos-----------d
t
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e.

8. Find the Laplace transform for the sawtooth waveform of Figure 4.8.

Figure 4.8. Waveform for Exercise 8.

9. Find the Laplace transform for the full rectification waveform  of Figure 4.9.

Figure 4.9. Waveform for Exercise 9

e–

-------d
t

fST t

A

a 2a
t

fST t

3a

fFR t

Full Rectified Waveform
sint

1

a 2a 3a 4a

fFR t
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Solutions to Exercises

4.7 Solutions to Exercises

1. From the definition of the Laplace transform or from Table 4.2 we get:

a.   b.   c.   d.   e. 

2. From the definition of the Laplace transform or from Table 4.2 we get:

a.   b.   c.   d.   e. 

3.

a. From Table 4.2 and the linearity property 

b.  and 

c.   d.   e. . This answer looks sus-

picious because  and the Laplace transform is unilateral, that is, there is one-to-
one correspondence between the time domain and the complex frequency domain. The fallacy
with this procedure is that if we assume that  and , we cannot con-

clude that . For this exercise  and as we’ve learned

multiplication in the time domain corresponds to convolution in the complex frequency

domain. Accordingly, we must use the Laplace transform definition  and this

requires integration by parts. We skip this analytical derivation. The interested reader may try
to find the answer with the MATLAB code syms s t; 2*laplace(sin(4*t)/cos(4*t))

4. From (4.22)

Then,

a.

12 s 6 s e 12s– 24
s

------ 5 s2 4 5!

s6
-----

j8 s 5 s 5
s 5+
----------- 8 7!

s 5+ 8
------------------ 15e 4s–

3!

s4
----- 3 2!

s3
-------------- 4

s2
---- 3

s
---+ + +

3 2t 3– t 3– 3 2t 3– t 3=
t 3– 9 t 3–= = 9 t 3– 9e 3s–

3 5
s2 52+
---------------- 5 s

s2 32+
---------------- 2 4ttan 2 4tsin

4tcos
------------- 2 4 s2 22+

s s2 22+
---------------------------- 8

s
---==

8 s 8u0 t

f1 t F1 s f2 t F2 s

f1 t
f2 t
----------

F1 s
F2 s
------------- f1 t f2 t 4t 1

4tcos
-------------sin=

2 4ttan e st– td
0

t nf t 1– n d n

dsn
--------F s

3 1– 1 d
ds
----- 5

s2 52+
---------------- 3 5 2s–

s2 25+
2

------------------------– 30s

s2 25+
2

------------------------= =
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b.

c.

d.

e.
 and 

5.
a.

b.

c.

2 1– 2 d2

ds2
-------- s

s2 32+
---------------- 2 d

ds
----- s2 32 s 2s–+

s2 9+
2

----------------------------------- 2 d
ds
----- s2– 9+

s2 9+
2

---------------------= =

2 s2 9+
2

2s– 2 s2 9+ 2s s2– 9+–

s2 9+
4

--------------------------------------------------------------------------------------------------=

2 s2 9+ 2s– 4s s2– 9+–

s2 9+
3

-------------------------------------------------------------------- 2 2s3– 18s– 4s3 36s–+

s2 9+
3

--------------------------------------------------------==

2 2s3 54s–

s2 9+
3

---------------------- 2 2s s2 27–

s2 9+
3

--------------------------- 4s s2 27–

s2 9+
3

---------------------------= ==

2 5
s 5+ 2 52+

------------------------------ 10
s 5+ 2 25+

-------------------------------=

8 s 3+

s 3+ 2 42+
------------------------------ 8 s 3+

s 3+ 2 16+
-------------------------------=

t 4cos t 4– 2 2 t 4–= 2 2 t 4– 2 2 e 4 s–

5tu0 t 3– 5 t 3– 15+ u0 t 3– e 3s– 5
s2
---- 15

s
------+

5
s
---e 3s– 1

s
--- 3+==

2t 2 5t 4+– u0 t 3– 2 t 3– 2 12t 18– 5t– 4+ + u0 t 3–=

2 t 3– 2 7t 14–+ u0 t 3–=

2 t 3– 2 7 t 3– 21 14–+ + u0 t 3–=

2 t 3– 2 7 t 3– 7+ + u0 t 3– e 3s– 2 2!

s3
-------------- 7

s2
---- 7

s
---+ +=

t 3– e 2t– u0 t 2– t 2– 1– e 2 t 2–– e 4– u0 t 2–=

e 4– e 2s– 1
s 2+ 2

------------------ 1
s 2+

----------------– e 4– e 2s– s 1+–

s 2+ 2
-------------------=
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Solutions to Exercises

d.

e.

6.
a.

b.

c.

Thus,

2t 4– e 2 t 2– u0 t 3– 2 t 3– 6 4–+ e 2 t 3–– e 2– u0 t 3–=

e 2– e 3s– 2
s 3+ 2

------------------ 2
s 3+

----------------+ 2e 2– e 3s– s 4+

s 3+ 2
------------------=

4te 3t– 2tcos u0 t 4 1– 1 d
ds
----- s 3+

s 3+ 2 22+
------------------------------ 4–

d
ds
----- s 3+

s2 6s 9 4+ + +
-----------------------------------=

4–
d
ds
----- s 3+

s2 6s 13+ +
----------------------------- 4 s2 6s 13 s 3+ 2s 6+–+ +

s2 6s 13+ +
2

------------------------------------------------------------------------–=

4 s2 6s 13 2s2– 6s– 6s– 18–+ +

s2 6s 13+ +
2

------------------------------------------------------------------------------ 4 s2 6s 5+ +

s2 6s 13+ +
2

------------------------------------=–

3t 3
s2 32+
----------------sin d

dt
-----f t sF s f 0– f 0 3tsin t 0=

0= =

td
d 3tsin s 3

s2 32+
---------------- 0– 3s

s2 9+
--------------=

3e 4t– 3
s 4+
----------- d

dt
-----f t sF s f 0– f 0 3e 4t–

t 0=
3= =

td
d 3e 4t– s 3

s 4+
----------- 3– 3s

s 4+
----------- 3 s 4+

s 4+
-------------------– 12–

s 4+
-----------= =

2tcos s
s2 22+
---------------- t 2 2tcos 1– 2 d2

ds2
-------- s

s2 4+
--------------

d
ds
----- s2 4 s 2s–+

s2 4+
2

--------------------------------- d
ds
----- s– 2 4+

s2 4+
2

--------------------- s2 4+
2

2s– s– 2 4+ s2 4+ 2 2s–

s2 4+
4

-------------------------------------------------------------------------------------------------= =

s2 4+ 2s– s– 2 4+ 4s–

s2 4+
3

------------------------------------------------------------------------ 2s3– 8s– 4s3 16s–+

s2 4+
3

----------------------------------------------------- 2s s2 12–

s2 4+
3

---------------------------= ==

t 2 2tcos 2s s2 12–

s2 4+
3

---------------------------
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and

d.

e.

7.
a.

 but to find  we must show that the limit  exists. Since

 this condition is satisfied and thus . From tables of integrals

. Then,   and the constant of inte-

gration  is evaluated from the final value theorem. Thus,

 and 

b.

From (a) above  and since , it follows that

td
d t 2 2tcos sF s f 0–

s2s s2 12–

s2 4+
3

--------------------------- 0– 2s2 s2 12–

s2 4+
3

------------------------------=

2sin t 2
s2 22+
---------------- e 2t– 2tsin 2

s 2+ 2 4+
---------------------------- d

dt
-----f t sF s f 0–

td
d e 2t– 2tsin s 2

s 2+ 2 4+
---------------------------- 0– 2s

s 2+ 2 4+
----------------------------=

t 2 2!

s3
----- t 2e

2t– 2!

s 2+ 3
------------------ d

dt
-----f t sF s f 0–

td
d t 2e

2t–
s 2!

s 2+ 3
------------------ 0– 2s

s 2+ 3
------------------=

tsin 1
s2 1+
-------------- L tsin

t
--------- tsin

t
---------

t 0
lim

xsin
x

----------
x 0
lim 1=

tsin
t

--------- 1
s2 1+
-------------- sd

s

1
x2 a2+
---------------- xd 1

a
--- x a1–tan C+=

1
s2 1+
-------------- sd 1 s1–tan= C+

C

f t
t
lim sF s

s 0
lim s 1 s1–tan C+

s 0
lim 0= = =

tsin
t

--------- 1 s1–tan

tsin
t

--------- 1 s1–tan f
–

t
d F s

s
----------- f 0

s
------------+

sin----------
0

t
d 1

s
--- 1 s1–tan
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Solutions to Exercises

c.

From (a) above  and since , it follows that

 or 

d.

, , and from tables of integrals 

. Then,  and the constant of inte-

gration  is evaluated from the final value theorem. Thus,

 and using  we

get 

e.

, , and from tables of integrals 

. Then,  and the constant of integration 

is evaluated from the final value theorem. Thus,

 and using  we

get 

8.

This is a periodic waveform with period  and its Laplace transform is

tsin
t

--------- 1 s1–tan f at 1
a
---F s

a
---

atsin
at

------------ 1
a
--- 1 s

a
---------

1–
tan atsin

t
------------ a s1–tan

tcos s
s2 1+
-------------- tcos

t
---------- s

s2 1+
-------------- sd

s

x
x2 a2+
---------------- xd 1

2
--- x2 a2+ln C+=

s
s2 1+
-------------- sd 1

2
--- s2 1+ln C+=

C

f t
t
lim sF s

s 0
lim s 1

2
--- s2 1+ln C+

s 0
lim 0= = = f

–

t
d F s

s
----------- f 0

s
------------+

cos-----------d
t

1
2s
----- s2 1+ln

e t– 1
s 1+
----------- e t–

t
------ 1

s 1+
----------- sd

s

1
ax b+
--------------- xd 1

2
--- ax b+ln=

1
s 1+
----------- sd s 1+ln C+= C

f t
t
lim sF s

s 0
lim s s 1+ln C+

s 0
lim 0= = = f

–

t
d F s

s
----------- f 0

s
------------+

e–

-------d
t

1
s
--- s 1+ln

A

a 2a
t

fST t

3a

A
a
---t

T a=
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  (1)

and from (4.40) of Example 4.2 and limits of integration  to  we get

Adding and subtracting  we get

By substitution into (1) we get

9.
This is a periodic waveform with period  and its Laplace transform is

From tables of integrals

Then,

F s 1
1 e as––
------------------ A

a
---te st– td

0

a A
a 1 e as––
-------------------------- te st– td

0

a
= =

0 a

L t 0
a te st– td

0

a te st–

s
----------– e st–

s2
--------–

0

a
te st–

s
---------- e st–

s2
--------+

a

0

= = =

1
s2
---- ae as–

s
------------– e as–

s2
---------–

1
s2
---- 1 1 as+ e as––==

as

L t 0
a 1

s2
---- 1 as+ 1 as+ e as– as––

1
s2
---- 1 as+ 1 e as–– as–= =

F s A
a 1 e as––
-------------------------- 1

s2
---- 1 as+ 1 e as–– as–

A
as2 1 e as––
------------------------------- 1 as+ 1 e as–– as–= =

A 1 as+

as2
----------------------- Aa

as 1 e as––
-----------------------------–

A
as
----- 1 as+

s
------------------- a

1 e as––
-----------------------–==

T a= =

F s 1
1 e sT––
------------------ f t e st– td

0

T 1
1 e s––

----------------------- te st–sin td
0

= =

bxeaxsin xd eax bx b bxcos–asin
a2 b2+

-----------------------------------------------------=

F s 1
1 e s––
------------------ e st– s tsin tcos–

s2 1+
------------------------------------------

0

1
1 e s––
------------------ 1 e s–+

s2 1+
-------------------= =

1
s2 1+
-------------- 1 e s–+

1 e s––
------------------- 1

s2 1+
-------------- s

2
-----coth==



Circuit Analysis II with MATLAB Applications 5-1
Orchard Publications           

Chapter 5
The Inverse Laplace Transformation

his chapter is a continuation to the Laplace transformation topic of the previous chapter and
presents several methods of finding the Inverse Laplace Transformation. The partial fraction
expansion method is explained thoroughly and it is illustrated with several examples. 

5.1 The Inverse Laplace Transform Integral

The Inverse Laplace Transform Integral was stated in the previous chapter; it is repeated here for con-
venience.

(5.1)

This integral is difficult to evaluate because it requires contour integration using complex variables
theory. Fortunately, for most engineering problems we can refer to Tables of Properties, and Com-
mon Laplace transform pairs to lookup the Inverse Laplace transform.

5.2 Partial Fraction Expansion

Quite often the Laplace transform expressions are not in recognizable form, but in most cases appear
in a rational form of , that is,

(5.2)

where  and  are polynomials, and thus (5.2) can be expressed as

(5.3)

The coefficients  and  are real numbers for , and if the highest power  of 
is less than the highest power  of , i.e., ,  is said to be expressed as a proper rational
function. If ,  is an improper rational function.

In a proper rational function, the roots of in (5.3) are found by setting ; these are
called the zeros of . The roots of , found by setting , are called the poles of .
We assume that  in (5.3) is a proper rational function. Then, it is customary and very convenient

T

L 1– F s f t=
1

2 j
-------- F s

j–

j+

estds=

s

F s N s
D s
-----------=

N s D s

F s N s
D s
-----------

bmsm bm 1– sm 1– bm 2– sm 2– b1s b0+ + + + +

ansn an 1– sn 1– an 2– sn 2– a1s a0+ + + + +
-------------------------------------------------------------------------------------------------------------------= =

ak bk k 1 2 n= m N s

n D s m n F s
m n F s

N s N s 0=

F s D s D s 0= F s
F s
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to make the coefficient of  unity; thus, we rewrite  as

(5.4)

The zeros and poles of (5.4) can be real and distinct, or repeated, or complex conjugates, or combina-
tions of real and complex conjugates. However, we are mostly interested in the nature of the poles, so
we will consider each case separately.

Case I: Distinct Poles

If all the poles  of  are distinct (different from each another), we can factor the
denominator of  in the form 

(5.5)

where  is distinct from all other poles. Next, using the partial fraction expansion method,*we can
express (5.5) as

(5.6)

where  are the residues, and  are the poles of .

To evaluate the residue , we multiply both sides of (5.6) by ; then, we let , that is,

(5.7)

Example 5.1  

Use the partial fraction expansion method to simplify of (5.8) below, and find the time domain
function  corresponding to .

(5.8)

* The partial fraction expansion method applies only to proper rational functions. It is used extensively in integra-
tion, and in finding the inverses of the Laplace transform, the Fourier transform, and the z-transform. This
method allows us to decompose a rational polynomial into smaller rational polynomials with simpler denomina-
tors from which we can easily recognize their integrals and inverse transformations. This method is also being
taught in intermediate algebra and introductory calculus courses. 

sn F s

F s N s
D s
-----------

1
an
----- bmsm bm 1– sm 1– bm 2– sm 2– b1s b0+ + + + +

sn an 1–

an
-----------sn 1– an 2–

an
-----------sn 2– a1

an
-----s

a0
an
-----+ + + + +

-----------------------------------------------------------------------------------------------------------------------------= =

p1 p2 p3 pn F s

F s

F s N s
s p1– s p2– s p3– s pn–

-------------------------------------------------------------------------------------------------=

pk

F s r1

s p1–
------------------ r2

s p2–
------------------ r3

s p3–
------------------

rn
s pn–

------------------+ + + +=

r1 r2 r3 rn p1 p2 p3 pn F s

rk s pk– s pk

rk s pk– F s
s pk

lim s pk– F s
s pk=

= =

F1 s

f1 t F1 s

F1 s 3s 2+

s2 3s 2+ +
--------------------------=
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Partial Fraction Expansion

Solution:

Using (5.6), we get

(5.9)

The residues are

(5.10)

and

(5.11)

Therefore, we express (5.9) as

(5.12)

and from Table 4.2 of Chapter 4

(5.13)

Then,

(5.14)

The residues and poles of a rational function of polynomials such as (5.8), can be found easily using
the MATLAB residue(a,b) function. For this example, we use the code

Ns = [3, 2]; Ds = [1, 3, 2]; [r, p, k] = residue(Ns, Ds)

and MATLAB returns the values

r =
     4
    -1
p =
    -2
    -1
k =
     []

F1 s 3s 2+

s2 3s 2+ +
-------------------------- 3s 2+

s 1+ s 2+
--------------------------------- r1

s 1+
---------------- r2

s 2+
----------------+= = =

r1 s 1+ F s
s 1–
lim 3s 2+

s 2+
----------------

s 1–=

1–= = =

r2 s 2+ F s
s 2–
lim 3s 2+

s 1+
----------------

s 2–=

4= = =

F1 s 3s 2+

s2 3s 2+ +
-------------------------- 1–

s 1+
---------------- 4

s 2+
----------------+= =

e at– u0 t 1
s a+
-----------

F1 s 1–
s 1+

---------------- 4
s 2+

----------------+= e t–– 4e 2t–+ u0 t f1 t=
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For this MATLAB code, we defined Ns and Ds as two vectors that contain the numerator and
denominator coefficients of . When this code is executed, MATLAB displays the r and p vec-
tors that represent the residues and poles respectively. The first value of the vector r is associated
with the first value of the vector p, the second value of r is associated with the second value of p,
and so on.

The vector k is referred to as the direct term and it is always empty (has no value) whenever  is
a proper rational function, that is, when the highest degree of the denominator is larger than that of
the numerator. For this example, we observe that the highest power of the denominator is ,
whereas the highest power of the numerator is  and therefore the direct term is empty.

We can also use the MATLAB ilaplace(f) function to obtain the time domain function directly from
. This is done with the code that follows. 

syms s t; Fs=(3*s+2)/(s^2+3*s+2); ft=ilaplace(Fs); pretty(ft)

When this code is executed, MATLAB displays the expression

   4 exp(-2 t)- exp(-t)

Example 5.2

Use the partial fraction expansion method to simplify of (5.15) below, and find the time
domain function  corresponding to .

(5.15)

Solution:

First, we use the MATLAB factor(s) symbolic function to express the denominator polynomial of
 in factored form. For this example,

syms s; factor(s^3 + 12*s^2 + 44*s + 48)

ans =
(s+2)*(s+4)*(s+6)

Then, 

(5.16)

The residues are

F s

F s

s2

s

F s

F2 s

f2 t F2 s

F2 s 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
-------------------------------------------------=

F2 s

F2 s 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 3s2 2s 5+ +

s 2+ s 4+ s 6+
-------------------------------------------------- r1

s 2+
---------------- r2

s 4+
---------------- r3

s 6+
----------------+ += = =
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Partial Fraction Expansion

(5.17)

(5.18)

(5.19)

Then, by substitution into (5.16) we get

(5.20)

From Table 2.2 of Chapter 2

(5.21)

Then,

(5.22)

Check with MATLAB:

syms s t; Fs = (3*s^2 + 4*s + 5) / (s^3 + 12*s^2 + 44*s + 48); ft = ilaplace(Fs)

ft =
-37/4*exp(-4*t)+9/8*exp(-2*t)+89/8*exp(-6*t)

Case II: Complex Poles

Quite often, the poles of  are complex*, and since complex poles occur in complex conjugate
pairs, the number of complex poles is even. Thus, if  is a complex root of , then, its complex

conjugate pole, denoted as , is also a root of . The partial fraction expansion method can
also be used in this case, but it may be necessary to manipulate the terms of the expansion in order to
express them in a recognizable form. The procedure is illustrated with the following example.

Example 5.3

Use the partial fraction expansion method to simplify of (5.23) below, and find the time

* A review of complex numbers is presented in Appendix B of Circuit Analysis I with MATLAB Applications.

r1
3s2 2s 5+ +
s 4+ s 6+

---------------------------------
s 2–=

9
8
---= =

r2
3s2 2s 5+ +
s 2+ s 6+

---------------------------------
s 4–=

37
4

------–= =

r3
3s2 2s 5+ +
s 2+ s 4+

---------------------------------
s 6–=

89
8

------= =

F2 s 3s2 2s 5+ +

s3 12s+
2

44s 48+ +
------------------------------------------------- 9 8

s 2+
---------------- 37 4–

s 4+
---------------- 89 8

s 6+
----------------+ += =

e at– u0 t 1
s a+
-----------

F2 s 9 8
s 2+

---------------- 37 4–
s 4+

---------------- 89 8
s 6+

----------------+ +=
9
8
---e 2t– 37

4
------– e 4t– 89

8
------e 6t–+ u0 t f2 t=

F s
pk D s

pk D s

F3 s
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domain function  corresponding to .

(5.23)

Solution:

Let us first express the denominator in factored form to identify the poles of  using the MAT-
LAB factor(s) function. Then,

syms s; factor(s^3 + 5*s^2 + 12*s + 8)

ans =
(s+1)*(s^2+4*s+8)

The factor(s) function did not factor the quadratic term. We will use the roots(p) function.

p=[1  4  8]; roots_p=roots(p)

roots_p =
  -2.0000 + 2.0000i
  -2.0000 - 2.0000i

Then,

or

(5.24)

The residues are

(5.25)

(5.26)

(5.27)

By substitution into (5.24),

f3 t F3 s

F3 s s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=

F3 s

F3 s s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- s 3+

s 1+ s 2 j2+ + s 2 j2–+
------------------------------------------------------------------------= =

F3 s s 3+

s3 5s+
2

12s 8+ +
------------------------------------------- r1

s 1+
---------------- r2

s 2 j2+ +
---------------------------

r2
s 2 j– 2+

-------------------------+ += =

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2
s 3+

s 1+ s 2 j– 2+
------------------------------------------

s 2– j2–=

1 j2–
1– j2– j4–

------------------------------------ 1 j2–
8– j4+

------------------= = =

1 j2–
8– j4+

----------------------- 8– j4–
8– j4–

----------------------- 16– j12+
80

------------------------ 1
5
---– j3

20
------+= ==

r2
1
5
---– j3

20
------+ 1

5
---– j3

20
------–= =
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Partial Fraction Expansion

(5.28)

The last two terms on the right side of (5.28), do not resemble any Laplace transform pair that we
derived in Chapter 2. Therefore, we will express them in a different form. We combine them into a
single term*, and now (5.28) is written as

(5.29)

For convenience, we denote the first term on the right side of (5.29) as , and the second as
. Then,

(5.30)

Next, for 

(5.31)

and recalling that

(5.32)

we express  as 

(5.33)

* Here, we used MATLAB with simple(( 1/5 +3j/20)/(s+2+2j)+( 1/5 3j/20)/(s+2 2j)). The simple func-
tion, after several simplification tools that were displayed on the screen, returned (-2*s-1)/
(5*s^2+20*s+40)

F3 s 2 5
s 1+

---------------- 1 5– j3 20+
s 2 j2+ +

----------------------------------- 1 5– j3 20–
s 2 j– 2+

-----------------------------------+ +=

F3 s 2 5
s 1+

---------------- 1
5
--- 2s 1+

s2 4s 8+ +
-------------------------------–=

F31 s

F32 s

F31 s 2 5
s 1+

----------------=
2
5
---e t– f31 t=

F32 s

F32 s 1
5
---–

2s 1+

s2 4s 8+ +
-------------------------------=

e at– tu0tsin
s a+ 2 2+

-------------------------------

e at– tu0tcos s a+

s a+ 2 2+
-------------------------------

F32 s

F32 s 2
5
---–

s 1
2
--- 3

2
--- 3

2
---–+ +

s 2+ 2 22+
--------------------------------- 2

5
---– s 2+

s 2+ 2 22+
--------------------------------- 3 2–

s 2+ 2 22+
---------------------------------+= =

2
5
---–

s 2+

s 2+ 2 22+
--------------------------------- 6 10

2
------------- 2

s 2+ 2 22+
---------------------------------+=

2
5
---–

s 2+

s 2+ 2 22+
--------------------------------- 3

10
------ 2

s 2+ 2 22+
---------------------------------+=
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Addition of (5.30) with (5.33) yields

Check with MATLAB:

syms a s t w; % Define several symbolic variables
Fs=(s + 3)/(s^3 + 5*s^2 + 12*s + 8); ft=ilaplace(Fs)

ft =
2/5*exp(-t)-2/5*exp(-2*t)*cos(2*t)
+3/10*exp(-2*t)*sin(2*t)

Case III: Multiple (Repeated) Poles

In this case,  has simple poles, but one of the poles, say , has a multiplicity . For this condi-
tion, we express it as

(5.34)

Denoting the  residues corresponding to multiple pole  as , the partial frac-
tion expansion of (5.34) is written as

(5.35)

For the simple poles , we proceed as before, that is, we find the residues as

(5.36)

The residues  corresponding to the repeated poles, are found by multiplication of

both sides of (5.35) by . Then, 

(5.37)

F3 s F31 s F32 s+
2 5
s 1+

---------------- 2
5
---–

s 2+

s 2+ 2 22+
--------------------------------- 3

10
------ 2

s 2+ 2 22+
---------------------------------+= =

2
5
---e t– 2

5
---e 2t– 2t 3

10
------e 2t– 2tsin+cos– f3 t=

F s p1 m

F s N s
s p1– m s p2– s pn 1–– s pn–

------------------------------------------------------------------------------------------=

m p1 r11 r12 r13 r1m

F s r11

s p1– m
--------------------- r12

s p1– m 1–
---------------------------- r13

s p1– m 2–
---------------------------- r1m

s p1–
------------------+ + + +=

 + 
r2

s p2–
------------------ r3

s p3–
------------------

rn
s pn–

------------------+ + +

p1 p2 pn

rk s pk– F s
s pk

lim s pk– F s
s pk=

= =

r11 r12 r13 r1m

s p– m

s p1– mF s r11 s p1– r12 s p1– 2r13 s p1– m 1– r1m+ + + +=

 + s p1– m r2

s p2–
------------------ r3

s p3–
------------------

rn
s pn–

------------------+ + +
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Partial Fraction Expansion

Next, taking the limit as  on both sides of (5.37), we get

or

(5.38)

and thus (5.38) yields the residue of the first repeated pole.

The residue for the second repeated pole , is found by differentiating (5.37) with respect to 
and again, we let , that is, 

(5.39)

In general, the residue  can be found from

(5.40)

whose  derivative of both sides is

(5.41)

or

(5.42)

Example 5.4

Use the partial fraction expansion method to simplify of (5.43) below, and find the time
domain function  corresponding to .

(5.43)

Solution:

We observe that there is a pole of multiplicity 2 at , and thus in partial fraction expansion
form,  is written as

s p1

s p1– mF s
s p1

lim r11 s p1– r12 s p1– 2r13 s p1– m 1– r1m+ + +
s p1

lim+=

 + s p1– m r2

s p2–
------------------ r3

s p3–
------------------

rn
s pn–

------------------+ + +
s p1

lim

r11 s p1– mF s
s p1

lim=

r12 p1 s

s p1

r12
d
ds
-----

s p1

lim s p1– mF s=

r1k

s p1– mF s r11 r12 s p1– r13 s p1– 2+ + +=

m 1– th

k 1– !r1k
1

k 1– !
------------------

s p1

lim d k 1–

dsk 1–
-------------- s p1– mF s=

r1k
1

k 1– !
------------------

s p1

lim d k 1–

dsk 1–
-------------- s p1– mF s=

F4 s

f4 t F4 s

F4 s s 3+

s 2+ s 1+ 2
-----------------------------------=

s 1–=

F4 s
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(5.44)

The residues are

The value of the residue  can also be found without differentiation as follows:

Substitution of the already known values of  and  into (5.44), and letting *, we get

or

from which  as before. Finally, 

(5.45)

Check with MATLAB:

syms s t; Fs=(s+3)/((s+2)*(s+1)^2); ft=ilaplace(Fs)

ft = exp(-2*t)+2*t*exp(-t)-exp(-t)

We can use the following code to check the partial fraction expansion.

syms s
Ns = [1  3]; % Coefficients of the numerator N(s) of F(s)
expand((s + 1)^2); % Expands (s + 1)^2 to s^2 + 2*s + 1;
d1 = [1  2  1]; % Coefficients of (s + 1)^2 = s^2 + 2*s + 1 term in D(s)
d2 = [0  1  2]; % Coefficients of (s + 2) term in D(s)

* This is permissible since (5.44) is an identity.

F4 s s 3+

s 2+ s 1+ 2
-----------------------------------

r1
s 2+

----------------
r21

s 1+ 2
------------------

r22
s 1+

----------------+ += =

r1
s 3+

s 1+ 2
------------------

s 2–=

1= =

r21
s 3+
s 2+
-----------

s 1–=

2= =

r22
d
ds
----- s 3+

s 2+
-----------

s 1–=

s 2+ s 3+–

s 2+ 2
---------------------------------------

s 1–=

1–= = =

r22

r1 r21 s 0=

s 3+

s 1+ 2 s 2+
-----------------------------------

s 0=

1
s 2+

----------------
s 0=

2
s 1+ 2

------------------
s 0=

r22
s 1+

----------------
s 0=

+ +=

3
2
--- 1

2
--- 2 r22+ +=

r22 1–=

F4 s s 3+

s 2+ s 1+ 2
-----------------------------------= 1

s 2+
---------------- 2

s 1+ 2
------------------ 1–

s 1+
----------------+ += e 2t– 2te t– e t––+ f4 t=



Circuit Analysis II with MATLAB Applications 5-11
Orchard Publications
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Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express the
% denominator D(s) of F(s) as a polynomial

[r,p,k]=residue(Ns,Ds)

r =
    1.0000
   -1.0000
    2.0000
p =
   -2.0000
   -1.0000
   -1.0000
k =
     []

Example 5.5

Use the partial fraction expansion method to simplify of (5.46) below, and find the time
domain function  corresponding to the given .

(5.46)

Solution:

We observe that there is a pole of multiplicity  at , and a pole of multiplicity  at .
Then, in partial fraction expansion form,  is written as

(5.47)

The residues are

F5 s

f5 t F5 s

F5 s s2 3+ s 1+

s 1+ 3 s 2+ 2
--------------------------------------=

3 s 1–= 2 s 2–=

F5 s

F5 s r11

s 1+ 3
------------------ r12

s 1+ 2
------------------ r13

s 1+
---------------- r21

s 2+ 2
------------------ r22

s 2+
----------------+ + + +=

r11
s2 3+ s 1+

s 2+ 2
--------------------------

s 1–=

1–= =

r12
d
ds
----- s2 3+ s 1+

s 2+ 2
--------------------------

s 1–=

=

s 2+ 2 2s 3+ 2 s 2+ s2 3+ s 1+–

s 2+ 4
----------------------------------------------------------------------------------------------

s 1–=

s 4+

s 2+ 3
------------------

s 1–=

3= ==
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Next, for the pole at ,

and

By substitution of the residues into (5.47), we get

(5.48)

We will check the values of these residues with the MATLAB code below.

syms s; % The function collect(s) below multiplies (s+1)^3 by (s+2)^2
% and we use it to express the denominator D(s) as a polynomial so that we can
% we can use the coefficients of the resulting polynomial with the residue function

Ds=collect(((s+1)^3)*((s+2)^2))

Ds =
s^5+7*s^4+19*s^3+25*s^2+16*s+4

Ns=[1 3 1];  Ds=[1 7 19 25 16 4];  [r,p,k]=residue(Ns,Ds)

r =
    4.0000
    1.0000
   -4.0000
    3.0000
   -1.0000

r13
1
2!
----- d 2

ds2
-------- s2 3+ s 1+

s 2+ 2
--------------------------

s 1–=

1
2
--- d

ds
----- d

ds
----- s2 3+ s 1+

s 2+ 2
--------------------------

s 1–=

= =

1
2
--- d

ds
----- s 4+

s 2+ 3
------------------

s 1–=

1
2
--- s 2+ 3 3 s 2+ 2 s 4+–

s 2+ 6
----------------------------------------------------------------

s 1–=

==

1
2
--- s 2 3s– 12–+

s 2+ 4
-----------------------------------

s 1–=

s– 5–

s 2+ 4
------------------

s 1–=

4–= ==

s 2–=

r21
s2 3+ s 1+

s 1+ 3
--------------------------

s 2–=

1= =

r22
d
ds
----- s2 3+ s 1+

s 1+ 3
--------------------------

s 2–=

s 1+ 3 2s 3+ 3 s 1+ 2 s2 3+ s 1+–

s 1+ 6
---------------------------------------------------------------------------------------------------

s 2–=

= =

s 1+ 2s 3+ 3 s2 3+ s 1+–

s 1+ 4
-----------------------------------------------------------------------------

s 2–=

s2– 4s–

s 1+ 4
--------------------

s 2–=

4= ==

F5 s 1–

s 1+ 3
------------------ 3

s 1+ 2
------------------ 4–

s 1+
---------------- 1

s 2+ 2
------------------ 4

s 2+
----------------+ + + +=
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Case for m  n

p =
   -2.0000
   -2.0000
   -1.0000
   -1.0000
   -1.0000
k =
     []

From Table 2.2 of Chapter 2

and with these, we derive  from (5.48) as

(5.49)

We can verify (5.49) with MATLAB as follows:

syms s t; Fs= 1/((s+1)^3) + 3/((s+1)^2)  4/(s+1) + 1/((s+2)^2) + 4/(s+2);
ft=ilaplace(Fs)

ft = -1/2*t^2*exp(-t)+3*t*exp(-t)-4*exp(-t)
          +t*exp(-2*t)+4*exp(-2*t)

5.3 Case for m  n

Our discussion thus far, was based on the condition that  is a proper rational function. However,
if  is an improper rational function, that is, if , we must first divide the numerator  by
the denominator  to obtain an expression of the form

(5.50)

where  is a proper rational function.

Example 5.6

Derive the Inverse Laplace transform  of

(5.51)

e at– 1
s a+
----------- te at– 1

s a+ 2
------------------ t n 1– e at– n 1– !

s a+ n
------------------

f5 t

f5 t 1
2
---– t 2e t– 3te t– 4e t–– te 2t– 4e 2t–+ + +=

F s
F s m n N s

D s

F s k0 k1s k2s2 km n– sm n– N s
D s
-----------+ + + + +=

N s D s

f6 t

F6 s s2 2s 2+ +
s 1+

--------------------------=
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Solution:

For this example,  is an improper rational function. Therefore, we must express it in the form
of (5.50) before we use the partial fraction expansion method.

By long division, we get

Now, we recognize that

and

but

To answer that question, we recall that

and

where  is the doublet of the delta function. Also, by the time differentiation property

Therefore, we have the new transform pair

(5.52)

and thus,

(5.53)

In general,

(5.54)

We verify (5.53) with MATLAB as follows:

Ns = [1  2  2]; Ds = [1  1]; [r, p, k] = residue(Ns, Ds)

r =
     1

F6 s

F6 s s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- 1 s+ += =

1
s 1+
----------- e t–

1 t

s ?

u0' t t=

u0'' t ' t=

' t

u0'' t ' t= s2F s sf 0 f '– 0– s2F s s2 1
s
--- s= = =

s ' t

F6 s s2 2s 2+ +
s 1+

-------------------------- 1
s 1+
----------- 1 s+ += = e t– t ' t+ + f6 t=

d n

dt n
-------- t sn



Circuit Analysis II with MATLAB Applications 5-15
Orchard Publications

Alternate Method of Partial Fraction Expansion

p =
    -1
k =
     1     1

Here, the direct terms k= [1 1] are the coefficients of  and  respectively.

5.4 Alternate Method of Partial Fraction Expansion

Partial fraction expansion can also be performed with the method of clearing the fractions, that is,
making the denominators of both sides the same, then equating the numerators. As before, we
assume that  is a proper rational function. If not, we first perform a long division, and then work
with the quotient and the remainder as we did in Example 5.6. We also assume that the denominator

can be expressed as a product of real linear and quadratic factors. If these assumptions prevail,

we let  be a linear factor of , and we assume that  is the highest power of 
that divides . Then, we can express  as

 (5.55)

Let  be a quadratic factor of , and suppose that  is the highest power
of this factor that divides . Now, we perform the following steps:

1. To this factor, we assign the sum of n partial fractions, that is,

2. We repeat step 1 for each of the distinct linear and quadratic factors of 

3. We set the given  equal to the sum of these partial fractions

4. We clear the resulting expression of fractions and arrange the terms in decreasing powers of 

5. We equate the coefficients of corresponding powers of 

6. We solve the resulting equations for the residues

Example 5.7

Express  of (5.56) below as a sum of partial fractions using the method of clearing the fractions.

(5.56)

t ' t

F s

D s

s a– D s s a– m s a–

D s F s

F s N s
D s
-----------

r1
s a–
-----------

r2

s a– 2
------------------

rm

s a– m
-------------------+ += =

s2 s+ + D s s2 s+ +
n

D s

r1s k1+

s2 s+ +
---------------------------

r2s k2+

s2 s+ +
2

----------------------------------
rns kn+

s2 s+ +
n

----------------------------------+ + +

D s

F s

s

s

F7 s

F7 s 2s– 4+

s2 1+ s 1– 2
-------------------------------------=
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Solution:

Using Steps 1 through 3 above, we get

(5.57)

With Step 4,

(5.58)

and with Step 5,

(5.59)

Relation (5.59) will be an identity is  if each power of  is the same on both sides of this relation.
Therefore, we equate like powers of  and we get

(5.60)

Subtracting the second equation of (5.60) from the fourth, we get

or

(5.61)

By substitution of (5.61) into the first equation of (5.60), we get

or
(5.62)

Next, substitution of (5.61) and (5.62) into the third equation of (5.60) yields

or
(5.63)

Finally by substitution of (5.61), (5.62), and (5.63) into the fourth equation of (5.60), we get

F7 s 2s– 4+

s2 1+ s 1– 2
------------------------------------- r1s A+

s2 1+
------------------ r21

s 1– 2
------------------ r22

s 1–
----------------+ += =

2s– 4+ r1s A+ s 1– 2 r21 s2 1+ r22 s 1– s2 1++ +=

2s– 4+ r1 r22+ s3 2r1– A r22 r21+–+ s2+=

 + r1 2A– r22+ s A r22– r21++

s s
s

0 r1 r22+=

0 2r1– A r22 r21+–+=

2– r1 2A– r22+=

4 A r22– r21+=

4 2r1=

r1 2=

0 2 r22+=

r22 2–=

2– 2 2A– 2–=

A 1=
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or

(5.64)

Substitution of these values into (5.57) yields

(5.65)

Example 5.8

Use partial fraction expansion to simplify  of (5.66) below, and find the time domain function
 corresponding to .

(5.66)

Solution:

This is the same transform as in Example 5.3, where we found that the denominator  can be
expressed in factored form of a linear term and a quadratic. Thus, we write  as

(5.67)

and using the method of clearing the fractions, we rewrite (5.67) as

(5.68)

As in Example 5.3,

(5.69)

Next, to compute  and , we follow the procedure of this section and we get

 (5.70)

Since  is already known, we only need two equations in  and . Equating the coefficient of 

on the left side, which is zero, with the coefficients of on the right side of (5.70), we get

(5.71)

4 1 2 r21+ +=

r21 1=

F7 s 2s– 4+

s2 1+ s 1– 2
------------------------------------- 2s 1+

s2 1+
------------------ 1

s 1– 2
------------------ 2

s 1–
----------------–+= =

F8 s

f8 t F8 s

F8 s s 3+

s3 5s+
2

12s 8+ +
-------------------------------------------=

D s
F8 s

F8 s s 3+

s 1+ s2 4s 8+ +
------------------------------------------------=

F8 s s 3+

s 1+ s2 4s 8+ +
------------------------------------------------

r1
s 1+
-----------

r2s r3+

s2 4s 8+ +
--------------------------+= =

r1
s 3+

s2 4s 8+ +
--------------------------

s 1–=

2
5
---= =

r2 r3

s 3+ r1 s2 4s 8+ + r2s r3+ s 1++=

r1 r2 r3 s2

s2

0 r1= r2+
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and since , then .

To obtain the third residue , we equate the constant terms of (5.70). Then,  or
, or . Then, by substitution into (5.68), we get 

(5.72)

as before.

The remaining steps are the same as in Example 5.3, and thus  is the same as , that is,

5.5 Summary

The Inverse Laplace Transform Integral defined as

is difficult to evaluate because it requires contour integration using complex variables theory. 

For most engineering problems we can refer to Tables of Properties, and Common Laplace trans-
form pairs to lookup the Inverse Laplace transform.

The partial fraction expansion method offers a convenient means of expressing Laplace trans-
forms in a recognizable form from which we can obtain the equivalent time-domain functions.

If the highest power  of the numerator  is less than the highest power  of the denomina-
tor , i.e., ,  is said to be expressed as a proper rational function. If ,  is
an improper rational function.

The Laplace transform  must be expressed as a proper rational function before applying the
partial fraction expansion. If  is an improper rational function, that is, if , we must first
divide the numerator  by the denominator  to obtain an expression of the form

In a proper rational function, the roots of numerator are called the zeros of  and the
roots of the denominator  are called the poles of .

r1 2 5= r2 2 5–=

r3 3 8r1 r3+=

3 8 2 5 r3+= r3 1 5–=

F8 s 2 5
s 1+

---------------- 1
5
--- 2s 1+

s2 4s 8+ +
-------------------------------–=

f8 t f3 t

f8 t f3 t 2
5
---e t– 2

5
---e 2t– 2t 3

10
------e 2t– 2tsin+cos– u0 t==

L 1– F s f t=
1

2 j
-------- F s

j–

j+

estds=

m N s n
D s m n F s m n F s

F s
F s m n

N s D s

F s k0 k1s k2s2 km n– sm n– N s
D s
-----------+ + + + +=

N s F s
D s F s
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Summary

The partial fraction expansion method can be applied whether the poles of  are distinct, com-
plex conjugates, repeated, or a combination of these.

When  is expressed as 

 are called the residues and  are the poles of .

The residues and poles of a rational function of polynomials can be found easily using the MAT-
LAB residue(a,b) function. The direct term is always empty (has no value) whenever  is a
proper rational function.

We can use the MATLAB factor(s) symbolic function to convert the denominator polynomial
form of  into a factored form.

We can use the MATLAB collect(s) and expand(s) symbolic functions to convert the denomi-
nator factored form of  into a polynomial form.

In this chapter we developed the new transform pair

and in general,

The method of clearing the fractions is an alternate method of partial fraction expansion.

F s

F s

F s r1

s p1–
------------------ r2

s p2–
------------------ r3

s p3–
------------------

rn
s pn–

------------------+ + + +=

r1 r2 r3 rn p1 p2 p3 pn F s

F s

F2 s

F2 s

s ' t

d n

dt n
-------- t sn
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5.6 Exercises

1. Find the Inverse Laplace transform of the following:

a.

b.

c.

d.

e.

2. Find the Inverse Laplace transform of the following:

a.

b.

c.

d.

e.

3. Find the Inverse Laplace transform of the following:

a.

b.   (See hint on next page)

4
s 3+
-----------

4
s 3+ 2

------------------

4
s 3+ 4

------------------

3s 4+

s 3+ 5
------------------

s2 6s 3+ +

s 3+ 5
--------------------------

3s 4+

s2 4s 85+ +
-----------------------------

4s 5+

s2 5s 18.5+ +
---------------------------------

s2 3s 2+ +

s3 5s2 10.5s 9+ + +
------------------------------------------------

s2 16–

s3 8s2 24s 32+ + +
----------------------------------------------

s 1+

s3 6s2 11s 6+ + +
-------------------------------------------

3s 2+

s2 25+
-----------------

5s2 3+

s2 4+
2

---------------------
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Exercises

Hint:

c.

d.

e.

4. Use the Initial Value Theorem to find  given that the Laplace transform of  is

Compare your answer with that of Exercise 3(c).

5. It is known that the Laplace transform  has two distinct poles, one at , the other at
. It also has a single zero at , and we know that . Find  and .

1
2
------- t t tcos+sin s2

s2 2+
2

------------------------

1
2 3
--------- tsin t tcos–

1

s2 2+
2

------------------------

2s 3+

s2 4.25s 1+ +
---------------------------------

s3 8s2 24s 32+ + +

s2 6s 8+ +
----------------------------------------------

e 2s– 3
2s 3+ 3

----------------------

f 0 f t

2s 3+

s2 4.25s 1+ +
---------------------------------

F s s 0=

s 1–= s 1= f t
t
lim 10= F s f t
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5.7 Solutions to Exercises

1.
a.

  b.   c. 

d.

e.

2.
a.

b.

c. Using the MATLAB factor(s) function we get:

syms s; factor(s^2+3*s+2), factor(s^3+5*s^2+10.5*s+9)

ans = (s+2)*(s+1)

ans = 1/2*(s+2)*(2*s^2+6*s+9)

4
s 3+
----------- 4e 3t– 4

s 3+ 2
------------------ 4te 3t– 4

s 3+ 4
------------------ 4

3!
-----t3e

3t– 2
3
---t3e

3t–
=

3s 4+

s 3+ 5
------------------ 3 s 4 3 5 3 5 3–++

s 3+ 5
----------------------------------------------------------- 3 s 3+ 5 3–

s 3+ 5
-------------------------------- 3 1

s 3+ 4
------------------ 5 1

s 3+ 5
------------------–= = =

3
3!
-----t3e 3t– 5

4!
-----t4e 3t––

1
2
--- t3e 3t– 5

12
------t4e 3t––=

s2 6s 3+ +

s 3+ 5
-------------------------- s2 6s 9 6–+ +

s 3+ 5
----------------------------------- s 3+ 2

s 3+ 5
------------------ 6

s 3+ 5
------------------– 1

s 3+ 3
------------------ 6 1

s 3+ 5
------------------–= = =

1
2!
-----t2e 3t– 6

4!
-----t4e 3t––

1
2
--- t2e 3t– 1

2
---t4e 3t––=

3s 4+

s2 4s 85+ +
----------------------------- 3 s 4 3 2 3 2 3–++

s 2+ 2 81+
----------------------------------------------------------- 3 s 2+ 2 3–

s 2+ 2 92+
-------------------------------- 3 s 2+

s 2+ 2 92+
------------------------------ 1

9
--- 2 9

s 2+ 2 92+
------------------------------–= = =

3 s 2+

s 2+ 2 92+
------------------------------ 2

9
--- 9

s 2+ 2 92+
------------------------------ 3e 2t– 9tcos 2

9
---e 2t– 9tsin––=

4s 5+

s2 5s 18.5+ +
--------------------------------- 4s 5+

s2 5s 6.25 12.25+ + +
----------------------------------------------------- 4s 5+

s 2.5+ 2 3.52+
--------------------------------------- 4 s 5 4+

s 2.5+ 2 3.52+
---------------------------------------= = =

4 s 10 4 10 4– 5 4+ +

s 2.5+ 2 3.52+
--------------------------------------------------------- 4 s 2.5+

s 2.5+ 2 3.52+
--------------------------------------- 1

3.5
------- 5 3.5

s 2.5+ 2 3.52+
---------------------------------------–==

4 s 2.5+

s 2.5+ 2 3.52+
--------------------------------------- 10

7
------ 3.5

s 2.5+ 2 3.52+
---------------------------------------– 4e 2.5t– 3.5tcos 10

7
------e 2.5t– 3.5tsin–=
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Solutions to Exercises

Then,

d.

e.

3.
a.

b.

s2 3s 2+ +

s3 5s2 10.5s 9+ + +
------------------------------------------------ s 1+ s 2+

s 2+ s2 3s 4.5+ +
---------------------------------------------------- s 1+

s2 3s 4.5+ +
----------------------------------- s 1+

s2 3s 2.25 2.25– 4.5+ + +
----------------------------------------------------------------= = =

s 1.5 1.5– 1+ +

s 1.5+ 2 1.5 2+
-------------------------------------------- s 1.5+

s 1.5+ 2 1.5 2+
-------------------------------------------- 1

1.5
------- 0.5 1.5

s 1.5+ 2 1.5 2+
--------------------------------------------–==

s 1.5+

s 1.5+ 2 1.5 2+
-------------------------------------------- 1

3
--- 1.5

s 2.5+ 2 3.52+
---------------------------------------– e 1.5t– 1.5tcos 1

3
---e 1.5t– 1.5tsin–=

s2 16–

s3 8s2 24s 32+ + +
---------------------------------------------- s 4+ s 4–

s 4+ s2 4s 8+ +
------------------------------------------------ s 4–

s 2+ 2 22+
------------------------------ s 2 2– 4–+

s 2+ 2 22+
------------------------------= = =

s 2+

s 2+ 2 22+
------------------------------ 1

2
--- 6 2

s 2+ 2 22+
------------------------------–=

s 2+

s 2+ 2 22+
------------------------------ 3 2

s 2+ 2 22+
------------------------------– e 2t– 2tcos 3e 2t– 2tsin–=

s 1+

s3 6s2 11s 6+ + +
------------------------------------------- s 1+

s 1+ s 2+ s 3+
-------------------------------------------------- 1

s 2+ s 3+
---------------------------------= =

1
s 2+ s 3+

---------------------------------
r1

s 2+
-----------

r2
s 3+
-----------     r1

1
s 3+
-----------

s 2–=

1     r2
1

s 2+
-----------

s 3–=

1–= == =+==

1
s 2+ s 3+

--------------------------------- 1
s 2+
----------- 1

s 3+
-----------–= e 2t– e 3t––=

3s 2+

s2 25+
----------------- 3s

s2 52+
---------------- 1

5
--- 2 5

s2 52+
----------------+ 3 s

s2 52+
---------------- 2

5
--- 5

s2 52+
----------------+ 3 5t 2

5
--- 5tsin+cos= =

5s2 3+

s2 4+
2

--------------------- 5s2

s2 22+
2

----------------------- 3

s2 22+
2

-----------------------+ 5 1
2 2
------------ 2t 2t 2tcos+sin 3 1

2 8
------------ 2t 2t 2tcos–sin+=

5
4
--- 3

16
------+ 2tsin 5

4
--- 3

16
------– 2t 2tcos+

23
16
------ 2t 17

8
------t 2tcos+sin=



Chapter 5  The Inverse Laplace Transformation

5-24 Circuit Analysis II with MATLAB Applications
Orchard Publications

c.

d.

e.

4. The initial value theorem states that . Then,

The value  is the same as in the time domain expression that we found in Exercise 3(c).

5. We are given that  and . Then, 

. Therefore,

, that is,

 and we see that 

2s 3+

s2 4.25s 1+ +
--------------------------------- 2s 3+

s 4+ s 1 4+
----------------------------------------

r1
s 4+
-----------

r2
s 1 4+
------------------+= =

r1
2s 3+

s 1 4+
------------------

s 4–=

5–
15– 4

---------------- 4
3
---          r2

2s 3+
s 4+

---------------
s 1 4–=

5 2
15 4
-------------= = 2

3
---== = =

4 3
s 4+
----------- 2 3

s 1 4+
------------------+

2
3
--- 2e 4t– e t 4–+

s3 8s2 24s 32+ + +

s2 6s 8+ +
---------------------------------------------- s 4+ s2 4s 8+ +

s 2+ s 4+
------------------------------------------------ s2 4s 8+ +

s 2+
-------------------------------= =    and by long division

s2 4s 8+ +
s 2+

-------------------------- s 2 4
s 2+
-----------+ += ' t 2 t 4e 2t–+ +

e 2s– 3
2s 3+ 3

---------------------- e 2s– F s f t 2– u0 t 2–

F s 3
2s 3+ 3

----------------------= 3 23

2s 3+ 3 23
------------------------------- 3 8

2s 3+ 2 3
---------------------------------- 3 8

s 3 2+ 3
-------------------------- 3

8
--- 1

2!
-----t2e 3 2 t– 3

16
------t2e 3 2 t–== = =

e 2s– F s e 2s– 3
2s 3+ 3

----------------------=
3

16
------ t 2– 2e 3 2 t 2–– u0 t 2–

f t
t 0
lim sF s

s
lim=

f 0 s 2s 3+

s2 4.25s 1+ +
---------------------------------

s
lim 2s2 3s+

s2 4.25s 1+ +
---------------------------------

s
lim= =

2s2 s2 3s s2+

s2 s2 4.25s s2 1 s2+ +
------------------------------------------------------------

s
lim 2 3 s+

1 4.25 s 1 s2+ +
--------------------------------------------

s
lim 2= ==

f 0 2=

F s A s 1–
s s 1+
--------------------= f t

t
lim sF s

s 0
lim 10= =

sA s 1–
s s 1+
--------------------

s 0
lim A s 1–

s 1+
----------------

s 0
lim A– 10= = =

F s 10– s 1–
s s 1+

-------------------------
r1
s
----

r2
s 1+
-----------+ 10

s
------ 20

s 1+
-----------–= = = 10 20e t–– u0 t

f t 10 20e t–– u0 t= f t
t
lim 10=
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Chapter 6
Circuit Analysis with Laplace Transforms

his chapter presents applications of the Laplace transform. Several examples are given to illus-
trate how the Laplace transformation is applied to circuit analysis. Complex impedance, com-
plex admittance, and transfer functions are also defined. 

6.1 Circuit Transformation from Time to Complex Frequency

In this section we will derive the voltage-current relationships for the three elementary circuit
devices, i.e., resistors, inductors, and capacitors in the complex frequency domain.

a. Resistor

The time and complex frequency domains for purely resistive circuits are shown in Figure 6.1.

Figure 6.1. Resistive circuit in time domain and complex frequency domain

b. Inductor

The time and complex frequency domains for purely inductive circuits is shown in Figure 6.2.

Figure 6.2. Inductive circuit in time domain and complex frequency domain

c. Capacitor

The time and complex frequency domains for purely capacitive circuits is shown in Figure 6.3.

T

vR t RiR t=

iR t
vR t

R
------------=R

+

Time Domain

vR t
iR t

R

+

Complex Frequency Domain

VR s IR s

VR s RIR s=

IR s
VR s

R
--------------=

+

Time Domain

LvL t iL t

vL t L
diL
dt
-------=

iL t 1
L
--- vL td

–

t
=

+

Complex Frequency Domain

+

sL

LiL 0

VL s
IL s

VL s sLIL s LiL 0–=

IL s
VL s

Ls
-------------

iL 0
s

--------------+=
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Figure 6.3. Capacitive circuit in time domain and complex frequency domain

Note:

In the complex frequency domain, the terms  and are called complex inductive impedance,
and complex capacitive impedance respectively. Likewise, the terms and  and  are called com-
plex capacitive admittance and complex inductive admittance respectively.

Example 6.1

Use the Laplace transform method to find the voltage across the capacitor for the circuit of

Figure 6.4, given that .

Figure 6.4. Circuit for Example 6.1

Solution:

We apply KCL at node  as shown in Figure 6.5.

Figure 6.5. Application of KCL for the circuit of Example 6.1

Then,

or

+

Time Domain

+C
vC t

iC t
iC t C

dvC
dt

---------=

vC t 1
C
---- iC td

–

t
=

+

Complex Frequency Domain

+

+

VC s

vC 0
s

----------------

IC s

1
sC
------ IC s sCVC s CvC 0–=

VC s
IC s
sC

------------
vC 0

s
----------------+=

sL 1 sC
sC 1 sL

vC t

vC 0 6 V=

R

C ++

V 1 F12u0 t

vS

vC t

A

R

C ++

V 1 F12u0 t

vS

vC t

AiR

iC

iR iC+ 0=
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Circuit Transformation from Time to Complex Frequency

or

(6.1)

The Laplace transform of (6.1) is

or

or

By partial fraction expansion,

Therefore,

Example 6.2

Use the Laplace transform method to find the current through the capacitor for the circuit of

Figure 6.6, given that .

Figure 6.6. Circuit for Example 6.2

vC t 12u0 t–

1
------------------------------------- 1

dvC
dt

---------+ 0=

dvC
dt

--------- vC t+ 12u0 t=

sVC s vC 0 VC s+– 12
s

------=

s 1+ VC s 12
s

------ 6+=

VC s 6s 12+
s s 1+
-------------------=

VC s 6s 12+
s s 1+
------------------- r1

s
---- r2

s 1+
----------------+= =

r1
6s 12+

s 1+
------------------

s 0=

12= =

r2
6s 12+

s
------------------

s 1–=

6–= =

VC s 12
s

------ 6
s 1+
-----------–= 12 6e t–– 12 6e t–– u0 t vC t= =

iC t

vC 0 6 V=

C ++

V 1 F12u0 t

vS

vC t

iC t
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Solution:

This is the same circuit as in Example 6.1. We apply KVL for the loop shown in Figure 6.7.

Figure 6.7. Application of KVL for the circuit of Example 6.2

and with  and , we get

(6.2)

Next, taking the Laplace transform of both sides of (6.2), we get

or

Check: From Example 6.1,

Then,

(6.3)

The presence of the delta function in (6.3) is a result of the unit step that is applied at .

R

C ++

V 1 F12u0 t

vS

vC tiC t

RiC t 1
C
---- iC t td

–

t
+ 12u0 t=

R 1= C 1=

iC t iC t td
–

t
+ 12u0 t=

IC s
IC s

s
------------

vC 0
s

----------------+ + 12
s

------=

1 1
s
---+ IC s 12

s
------ 6

s
---– 6

s
---= =

s 1+
s

----------- IC s 6
s
---=

IC s 6
s 1+
-----------= iC t 6e t– u0 t=

vC t 12 6e t–– u0 t=

iC t C
dvC
dt

--------- dvC
dt

---------
td

d 12 6e t–– u0 t 6e t– u0 t 6 t+= = = =

t 0=
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Circuit Transformation from Time to Complex Frequency

Example 6.3

In the circuit of Figure 6.8, switch  closes at , while at the same time, switch  opens. Use
the Laplace transform method to find  for .

Figure 6.8. Circuit for Example 6.3

Solution:

Since the circuit contains a capacitor and an inductor, we must consider two initial conditions One
is given as . The other initial condition is obtained by observing that there is an initial
current of  in inductor ; this is provided by the  current source just before switch 

opens. Therefore, our second initial condition is .

For , we transform the circuit of Figure 6.8 into its s-domain* equivalent shown in Figure 6.9.

Figure 6.9. Transformed circuit of Example 6.3

In Figure 6.9 the current in  has been replaced by a voltage source of . This is found from the
relation

(6.4)

* Henceforth, for convenience, we will refer the time domain as t-domain and the complex frequency domain as s-
domain

S1 t 0= S2

vout t t 0

+

C +

1

2 A

1 F
2

0.5 H

0.5 H

vC 0 3 V=

t 0=

t 0=
is t

vout t
iL1 t

L2

R1

R2

L1

S1

S2

vC 0 3 V=

2 A L1 2 A S2

iL1 0 2 A=

t 0

++

1
2 0.5s

0.5s
+

1/s

3/s

1 V

1

Vout s

L1 1 V

L1iL1 0 1
2
--- 2 1 V= =
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The polarity of this voltage source is as shown in Figure 6.9 so that it is consistent with the direction
of the current  in the circuit of Figure 6.8 just before switch  opens.
The initial capacitor voltage is replaced by a voltage source equal to .

Applying KCL at node , we get

(6.5)

and after simplification

(6.6)

We will use MATLAB to factor the denominator  of (6.6) into a linear and a quadratic factor.

p=[1  8  10  4]; r=roots(p) % Find the roots of D(s)

r =
  -6.5708
  -0.7146 + 0.3132i
  -0.7146 - 0.3132i

y=expand((s + 0.7146  0.3132j)*(s + 0.7146 + 0.3132j))% Find quadratic form

y =
s^2+3573/2500*s+3043737/5000000

3573/2500 % Find coefficient of s

ans =
    1.4292

3043737/5000000 % Find constant term

ans =
    0.6087

Therefore,

(6.7)

Now, we perform partial fraction expansion.

(6.8)

iL1 t S2

3 s

Vout s 1– 3 s–

1 s 2 s 2+ +
------------------------------------------

Vout s
1

-----------------
Vout s

s 2
-----------------+ + 0=

Vout s 2s s 3+

s3 8s2 10s 4+ + +
-------------------------------------------=

D s

Vout s 2s s 3+

s3 8s2 10s 4+ + +
------------------------------------------- 2s s 3+

s 6.57+ s2 1.43s 0.61+ +
----------------------------------------------------------------------= =

Vout s 2s s 3+

s 6.57+ s2 1.43s 0.61+ +
---------------------------------------------------------------------- r1

s 6.57+
------------------- r2 s r3+

s2 1.43s 0.61+ +
-----------------------------------------+==
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Circuit Transformation from Time to Complex Frequency

(6.9)

The residues  and  are found from the equality 

(6.10)

Equating constant terms of (6.10), we get

and by substitution of the known value of  from (6.9), we get

Similarly, equating coefficients of , we get

and using the known value of , we get

(6.11)

By substitution into (6.8),

*

or

(6.12)

Taking the Inverse Laplace of (6.12), we get

* We perform these steps to express the term  in a form that resembles the transform pairs

 and . The remaining steps are carried out in

(6.12).

r1
2s s 3+

s2 1.43s 0.61+ +
-----------------------------------------

s 6.57–=

1.36= =

r2 r3

2s s 3+ r1 s2 1.43s 0.61+ + r2 s r3+ s 6.57++=

0 0.61r1 6.57r3+=

r1

r3 0.12–=

s2

2 r1 r2+=

r1

r2 0.64=

Vout s 1.36
s 6.57+
------------------- 0.64s 0.12–

s2 1.43s 0.61+ +
-----------------------------------------+ 1.36

s 6.57+
------------------- 0.64s 0.46 0.58–+

s2 1.43s 0.51 0.1+ + +
-------------------------------------------------------+= =

0.64s 0.12–

s2 1.43s 0.61+ +
-----------------------------------------

e at– tu0 tcos s a+

s a+
2 2

+
-------------------------------- e at– tu0 tsin

s a+
2 2

+
--------------------------------

Vout s 1.36
s 6.57+
------------------- 0.64 s 0.715 0.91–+

s 0.715+ 2 0.316 2+
--------------------------------------------------------+=

1.36
s 6.57+
------------------- 0.64 s 0.715+

s 0.715+ 2 0.316 2+
-------------------------------------------------------- 0.58

s 0.715+ 2 0.316 2+
--------------------------------------------------------–+=

1.36
s 6.57+
------------------- 0.64 s 0.715+

s 0.715+ 2 0.316 2+
-------------------------------------------------------- 1.84 0.316

s 0.715+ 2 0.316 2+
--------------------------------------------------------–+=
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(6.13)

6.2 Complex Impedance Z(s)

Consider the -domain  series circuit of Figure 6.10, where the initial conditions are assumed to
be zero.

Figure 6.10. Series RLC circuit in s-domain

For this circuit, the sum  represents the total opposition to current flow. Then,

(6.14)

and defining the ratio  as , we get

(6.15)

and thus, the -domain current  can be found from

(6.16)

where

(6.17)

We recall that . Therefore,  is a complex quantity, and it is referred to as the complex
input impedance of an -domain  series circuit. In other words,  is the ratio of the voltage
excitation to the current response  under zero state (zero initial conditions).

vout t 1.36e 6.57t– 0.64e 0.715t– 0.316tcos 1.84e 0.715t– 0.316tsin–+ u0 t=

s RLC

+
R

+

VS s
I s

sL

1
sC
------

Vout s

R sL 1
sC
------+ +

I s
VS s

R sL 1 sC+ +
------------------------------------=

Vs s I s Z s

Z s
VS s
I s

------------- R sL 1
sC
------+ +=

s I s

I s
VS s
Z s
-------------=

Z s R sL 1
sC
------+ +=

s j+= Z s
s RLC Z s

Vs s I s
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Complex Impedance Z(s)

Example 6.4

Find  for the circuit of Figure 6.11. All values are in  (ohms).

Figure 6.11. Circuit for Example 6.4

Solution:

First Method:

We will first find , and we will compute  from (6.15). We assign the voltage  at node
 as shown in Figure 6.12. 

Figure 6.12. Circuit for finding  in Example 6.4

By nodal analysis,

The current  is now found as

and thus, 

(6.18)

Z s

+
1

VS s
1 ss s

I s Z s VA s

A

+
1

VS s

1 s

s s
I s

VA s
A

I s

VA s VS s–

1
---------------------------------

VA s
s

--------------
VA s

s 1 s+
------------------+ + 0=

1 1
s
--- 1

s 1 s+
------------------+ + VA s VS s=

VA s s3 1+

s3 2s2 s 1+ + +
------------------------------------- VS s=

I s

I s
VS s VA s–

1
--------------------------------- 1 s3 1+

s3 2s2 s 1+ + +
-------------------------------------– VS s 2s2 1+

s3 2s2 s 1+ + +
------------------------------------- VS s= = =

Z s
VS s
I s

------------- s3 2s2 s 1+ + +

2s2 1+
-------------------------------------= =
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Second Method:

We can also compute  by successive combinations of series and parallel impedances, as it is
done with series and parallel resistances. For this example, we denote the network devices as

 and  shown in Figure 6.13.

Figure 6.13. Computation of the impedance of Example 6.4 by series  parallel combinations

To find the equivalent impedance , looking to the right of terminals  and , we start on the
right side of the network and we proceed to the left combining impedances as we combine resis-
tances. Then, 

(6.19)

We observe that (6.19) is the same as (6.18).

6.3 Complex Admittance Y(s)

Consider the -domain  parallel circuit of Figure 6.14 where the initial conditions are zero.

Figure 6.14. Parallel GLC circuit in s-domain

For this circuit,

Defining the ratio  as , we get

Z s

Z1 Z2 Z3 Z4

1 1 s

s sZ s
Z1

Z2

Z3
Z4

a

b

Z s a b

Z s Z3 Z4+  || Z2 Z1+=

Z s s s 1 s+
s s 1 s+ +
-------------------------- 1+ s2 1+

2s2 1+ s
---------------------------- 1+ s3 s+

2s2 1+
----------------- 1+ s3 2s2 s 1+ + +

2s2 1+
-------------------------------------= = = =

s GLC

G

+

IS s
V s 1

sL
------

sC

GV s 1
sL
------V s sCV s+ + I s=

G 1
sL
------ sC+ + V s I s=

IS s V s Y s
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Complex Admittance Y(s)

(6.20)

and thus the -domain voltage  can be found from

(6.21)

where

(6.22)

We recall that . Therefore,  is a complex quantity, and it is referred to as the complex
input admittance of an -domain  parallel circuit. In other words,  is the ratio of the cur-
rent excitation to the voltage response  under zero state (zero initial conditions). 

Example 6.5

Compute  and  for the circuit of Figure 6.15. All values are in  (ohms). Verify your
answers with MATLAB.

Figure 6.15. Circuit for Example 6.5

Solution:

It is convenient to represent the given circuit as shown in Figure 6.16.

Figure 6.16. Simplified circuit for Example 6.5

Y s I s
V s
----------- G 1

sL
------ sC+ + 1

Z s
----------= =

s V s

V s
IS s
Y s
-----------=

Y s G 1
sL
------ sC+ +=

s j+= Y s
s GLC Y s

IS s V s

Z s Y s

Z s

Y s

13s
8 s

5s
16 s

10 20

Z3Z2

Z1

Z s Y s
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where

Then,

Check with MATLAB:

syms s; z1 = 13*s + 8/s; z2 = 5*s + 10; z3 = 20 + 16/s; z = z1 + z2 * z3 / (z2+z3)

z =
13*s+8/s+(5*s+10)*(20+16/s)/(5*s+30+16/s)

z10 = simplify(z)

z10 =
(65*s^4+490*s^3+528*s^2+400*s+128)/s/(5*s^2+30*s+16)

pretty(z10)

               4        3        2
           65 s  + 490 s  + 528 s  + 400 s + 128
           -------------------------------------
                         2
                   s (5 s  + 30 s + 16)

The complex input admittance  is found by taking the reciprocal of , that is,

(6.23)

Z1 13s 8
s
---+ 13s2 8+

s
--------------------= =

Z2 10 5s+=

Z3 20 16
s

------+ 4 5s 4+
s

-----------------------= =

Z s Z1
Z2Z3

Z2 Z3+
-----------------+ 13s2 8+

s
--------------------

10 5s+
4 5s 4+

s
-----------------------

10 5s+ 4 5s 4+
s

-----------------------+
----------------------------------------------------+= =

13s2 8+
s

--------------------
10 5s+

4 5s 4+
s

-----------------------

5s2 10s 4 5s 4++ +
s

----------------------------------------------------
----------------------------------------------------- 13s2 8+

s
-------------------- 20 5s2 14s 8+ +

5s2 30s 16+ +
-------------------------------------------+=+=

65s4 490s3 528s2 400s 128+ + + +

s 5s2 30s 16+ +
-------------------------------------------------------------------------------------=

Y s Z s

Y s 1
Z s
---------- s 5s2 30s 16+ +

65s4 490s3 528s2 400s 128+ + + +
-------------------------------------------------------------------------------------= =
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Transfer Functions

6.4 Transfer Functions

In an -domain circuit, the ratio of the output voltage  to the input voltage  under
zero state conditions, is of great interest in network analysis. This ratio is referred to as the voltage
transfer function and it is denoted as , that is, 

(6.24)

Similarly, the ratio of the output current  to the input current  under zero state condi-

tions, is called the current transfer function denoted as , that is, 

(6.25)

The current transfer function of (6.25) is rarely used; therefore, from now on, the transfer function
will have the meaning of the voltage transfer function, i.e., 

(6.26)

Example 6.6

Derive an expression for the transfer function  for the circuit of Figure 6.17, where  repre-
sents the internal resistance of the applied (source) voltage , and  represents the resistance of
the load that consists of , , and .

Figure 6.17. Circuit for Example 6.6

Solution:

No initial conditions are given, and even if they were, we would disregard them since the transfer
function was defined as the ratio of the output voltage  to the input voltage  under

s Vout s Vin s

Gv s

Gv s
Vout s
Vin s
-----------------

Iout s Iin s

Gi s

Gi s
Iout s
Iin s
----------------

G s
Vout s
Vin s
-----------------

G s Rg

VS RL

RL L C

+

+

Rg

RL

L

C

vout
vg

Vout s Vin s
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zero initial conditions. The -domain circuit is shown in Figure 6.18.

Figure 6.18. The s-domain circuit for Example 6.6

The transfer function  is readily found by application of the voltage division expression of the
-domain circuit of Figure 6.18, i.e.,

Then,

(6.27)

Example 6.7

Compute the transfer function  for the circuit of Figure 6.19 in terms of the circuit constants
 Then, replace the complex variable  with , and the circuit constants with

their numerical values and plot the magnitude  versus radian frequency .

Figure 6.19. Circuit for Example 6.7

Solution:

The -domain equivalent circuit is shown in Figure 6.20.

s

+

+

Vin s

Rg

RL

sL

1
sC
------

Vout s

G s
s

Vout s
RL sL 1 sC+ +

Rg RL sL 1 sC+ + +
---------------------------------------------------Vin s=

G s
Vout s
Vin s
-----------------=

RL Ls 1 sC+ +

Rg RL Ls 1 sC+ + +
---------------------------------------------------=

G s
R1 R2 R3 C1 and C2 s j

G s Vout s Vin s=

vin vout

40 K

200 K 50K

25 nF

10 nF
R2

R1

C2

C1

R3

s
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Transfer Functions

Figure 6.20. The s-domain circuit for Example 6.7

Next, we write nodal equations at nodes 1 and 2.

At node 1,

(6.28)

At node 2,

(6.29)

Since (virtual ground), we express (6.29) as

(6.30)

and by substitution of (6.30) into (6.28), rearranging, and collecting like terms, we get:

or

(6.31)

By substitution of  with  and the given values for resistors and capacitors, we get

or

R2

1/sC1

R3R1

1/sC2

Vin (s) Vout (s)

1 2

V1 s V2 s

V1 s Vin s–

R1
---------------------------------- V1

1 sC1
---------------

V1 s Vout s–

R2
------------------------------------- V1 s V2 s–

R3
--------------------------------+ + + 0=

V2 s V1 s–
R3

--------------------------------
Vout s
1 sC2
------------------=

V2 s 0=

V1 s sR– 3C2 Vout s=

1
R1
----- 1

R2
----- 1

R3
----- sC1+ + + sR– 3C2

1
R2
-----– Vout s 1

R1
-----Vin s=

G s
Vout s
Vin s
------------------= 1–

R1
1

R1
----- 1

R2
----- 1

R3
----- sC1+ + + sR3C2

1
R2
-----+

-----------------------------------------------------------------------------------------------------=

s j

G j 1–

2 105 1
20 103
------------------- j2.5 10 8–+ j5 104 10 8– 1

4 104
----------------+

--------------------------------------------------------------------------------------------------------------------------------------------------------------=
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                (6.32)

We use MATLAB to plot the magnitude of (6.32) on a semilog scale with the following code:

w=1:10:10000; Gs= 1./(2.5.*10.^( 6).*w.^2 5.*j.*10.^( 3).*w+5);
semilogx(w,abs(Gs)); grid; hold on
xlabel('Radian Frequency w'); ylabel('|Vout/Vin|'); 
title('Magnitude Vout/Vin vs. Radian Frequency')

The plot is shown in Figure 6.21. We observe that the given op amp circuit is a second order low-
pass filter whose cutoff frequency ( ) occurs at about .

Figure 6.21.  versus  for the circuit of Example 6.7

G j
Vout j
Vin j
---------------------= 1–

2.5 10 6– 2 j5 10 3– 5+–
------------------------------------------------------------------------=

3 dB– 700 r s

G j
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Summary

6.5 Summary

The Laplace transformation provides a convenient method of analyzing electric circuits since
integrodifferential equations in the -domain are transformed to algebraic equations in the -
domain.

In the -domain the terms  and are called complex inductive impedance, and complex
capacitive impedance respectively. Likewise, the terms and  and  are called complex
capacitive admittance and complex inductive admittance respectively.

The expression

is a complex quantity, and it is referred to as the complex input impedance of an -domain 
series circuit. 

In the -domain the current  can be found from

The expression

is a complex quantity, and it is referred to as the complex input admittance of an -domain 
parallel circuit.

In the -domain the voltage  can be found from

In an -domain circuit, the ratio of the output voltage  to the input voltage  under
zero state conditions is referred to as the voltage transfer function and it is denoted as , that
is, 

t s

s sL 1 sC
sC 1 sL

Z s R sL 1
sC
------+ +=

s RLC

s I s

I s
VS s
Z s
-------------=

Y s G 1
sL
------ sC+ +=

s GLC

s V s

V s
IS s
Y s
-----------=

s Vout s Vin s

G s

G s
Vout s
Vin s
-----------------
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6.6 Exercises

1. In the circuit of Figure 6.22, switch  has been closed for a long time, and opens at . Use
the Laplace transform method to compute for .

Figure 6.22. Circuit for Exercise 1

2. In the circuit of Figure 6.23, switch  has been closed for a long time, and opens at . Use
the Laplace transform method to compute for .

Figure 6.23. Circuit for Exercise 2

3. Use mesh analysis and the Laplace transform method, to compute  and  for the circuit

of Figure 6.24, given that  and .

Figure 6.24. Circuit for Exercise 3

S t 0=

iL t t 0

1 mH

S

t 0=

iL t
+

L

32 V

10 

20 

R1

R2

S t 0=

vc t t 0

S

t 0=

+

72 V

6 K

C +60 K

30 K 20 K

10 K
40
9
------ F

vC t

R1

R2

R3 R4

R5

i1 t i2 t

iL(0 0= vC(0 0=

+
C +

1

3

1 F
i1 t +

1 H

v1 t u0 t=
v2 t 2u0 t=

2 H

i2 t

L1

R1

R2

L2
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Exercises

4. For the -domain circuit of Figure 6.25,

a. compute the admittance 

b. compute the -domain value of  when , and all initial conditions are zero.

Figure 6.25. Circuit for Exercise 4

5. Derive the transfer functions for the networks (a) and (b) of Figure 6.26.

Figure 6.26. Networks for Exercise 5

6. Derive the transfer functions for the networks (a) and (b) of Figure 6.27.

Figure 6.27. Networks for Exercise 6

7. Derive the transfer functions for the networks (a) and (b) of Figure 6.28.

s

Y s I1 s V1 s=

t i1 t v1 t u0 t=

R1

R2+

1

+

R3

1

31 s

V1 s

VC sI1 s

+

V2 s 2VC s=2R4

R

C

++

Vin s Vout s R

L

+

Vin s

+

Vout s

(a) (b)

R

C

++

Vin s Vout s

R

L

+

Vin s

+

Vout s

(a) (b)
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Figure 6.28. Networks for Exercise 7

8. Derive the transfer function for the networks (a) and (b) of Figure 6.29.

Figure 6.29. Networks for Exercise 8

9. Derive the transfer function for the network of Figure 6.30. Using MATLAB, plot  versus
frequency in Hertz, on a semilog scale.

Figure 6.30. Network for Exercise 9

R

C ++

Vin s Vout s

R
L

+

Vin s

+

Vout s

(a) (b)

L

R2R1

C

R1

Vin s
Vout s

R2

C

Vin s Vout s

(a) (b)

G s

R1 R2

R3

C1

C2

Vout s
Vin s

R4 R1 = 11.3 k

R2 = 22.6 k

R3=R4 = 68.1 k

C1=C2 = 0.01 F
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Solutions to Exercises

6.7 Solutions to Exercises

1. At  the -domain circuit is as shown below and the  resistor is shorted out by the
inductor.

Then,

and thus the initial condition has been established as 

For all  the -domain and -domain circuits are as shown below.

From the -domain circuit above we get

2. At  the -domain circuit is as shown below.

Then, 

t 0= t 20

1 mH

S

iL t
+

L

32 V

10 

20 

iL t
t 0-

=

32
10
------ 3.2 A= =

iL 0 3.2 A=

t 0 t s

1 mH

iL 0 3.2 A=

+

20 

LiL 0 3.2 10 3– V=

20 

IL s
10 3– s

s

IL s 3.2 10 3–

20 10 3– s+
------------------------- 3.2

s 20000+
-----------------------= = 3.2e 20000t– u0 t iL t=

t 0= t

+

72 V

6 K +

60 K

30 K 20 K

10 KvC t

iT t i2 t
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and

Therefore, the initial condition is

For all  the -domain circuit is as shown below.

Then,

3. The -domain circuit is shown below where , , and 

iT 0 72 V
6 K 60 K 60 K+
------------------------------------------------------------ 72 V

6 K 30 K+
------------------------------------- 72 V

36 K
-----------------= = 2 mA= =

i2 0 1
2
--- iT 0 1 mA= =

vC 0 20 K 10 K+ i2 0 30 K 1 mA 30 V= = =

t 0 s

+
60 K

30 K 20 K

10 K

1
40 9 10 6– s
----------------------------------

30 s
+

22.5 K

9 106

40s
-------------------

30 s

60 K 30 K+ 20 K 10 K+ 22.5 K=

VC s

VR

VR VC s=

+

VC s VR
22.5 103

9 106 40s 22.5 103+
------------------------------------------------------------- 30

s
------ 30 22.5 103

9 106 40 22.5 103s+
-------------------------------------------------------------= = =

30 22.5 103 22.5 103

9 106 40 22.5 103 s+
---------------------------------------------------------------------------- 30

9 106 90 104 s+
--------------------------------------------------- 30

10 s+
--------------= ==

VC s 30
s 10+
--------------= 30e 10t– u0 t V vC t=

s z1 2s= z2 1 1 s+= z3 s 3+=

+
+I1 s +I2 s

2s

1 s

1 s1 s
2 s

3

z1
z3

z2
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Solutions to Exercises

Then,

and in matrix form

Using MATLAB we get

Z=[z1+z2  z2; z2  z2+z3]; Vs=[1/s  2/s]'; Is=Z\Vs; fprintf(' \n');...
disp('Is1 = '); pretty(Is(1)); disp('Is2 = '); pretty(Is(2))

 Is1 = 

                                          2
                                 2 s - 1 + s
                        -------------------------------
                                      2      3
                        (6 s + 3 + 9 s  + 2 s ) conj(s)
Is2 = 

                                     2
                                  4 s  + s + 1
                       - -------------------------------
                                      2      3
                         (6 s + 3 + 9 s  + 2 s ) conj(s)

Therefore,

  (1)

  (2)

We express the denominator of (1) as a product of a linear and quadratic term using MATLAB.

p=[2  9  6  3]; r=roots(p); fprintf(' \n'); disp('root1 ='); disp(r(1));...
disp('root2 ='); disp(r(2)); disp('root3 ='); disp(r(3)); disp('root2+root3 ='); disp(r(2)+r(3));...
disp('root2 * root3 ='); disp(r(2)*r(3))

 root1 =
   -3.8170

root2 =

z1 z2+ I1 s z2I2 s– 1 s=

z2I1 s– z2 z3+ I2 s+ 2– s=

z1 z2+ z2–

z2– z2 z3+

I1 s
I2 s

1 s
2– s

=

I1 s s2 2s 1–+

2s3 9s2 6s 3+ + +
--------------------------------------------=

I2 s 4s2 s 1+ +

2s3 9s2 6s 3+ + +
--------------------------------------------–=
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  -0.3415 + 0.5257i
root3 =
  -0.3415 - 0.5257i

root2 + root3 =
   -0.6830

root2 * root3 =
    0.3930

and with these values (1) is written as

  (3)

Multiplying every term by the denominator and equating numerators we get

Equating , , and constant terms we get

We will use MATLAB to find these residues.

A=[1  1  0; 0.683  3.817  1; 0.393  0  3.817]; B=[1  2  1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f',r(3))

 r1 = 0.48   r2 = 0.52   r3 = -0.31

By substitution of these values into (3) we get

   (4)

By inspection, the Inverse Laplace of first term on the right side of (4) is

  (5)

The second term on the right side of (4) requires some manipulation. Therefore, we will use the
MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t
IL=ilaplace((0.52*s 0.31)/(s^2+0.68*s+0.39));

I1 s s2 2s 1–+

s 3.817+ s2 0.683s 0.393+ +
-----------------------------------------------------------------------------------

r1
s 3.817+

---------------------------
r2s r3+

s2 0.683s 0.393+ +
----------------------------------------------------+= =

s2 2s 1–+ r1 s2 0.683s 0.393+ + r2s r3+ s 3.817++=

s2 s

r1 r2+ 1=

0.683r1 3.817r2 r3+ + 2=

0.393r1 3.817r3+ 1–=

I1 s
r1

s 3.817+
---------------------------

r2s r3+

s2 0.683s 0.393+ +
----------------------------------------------------+ 0.48

s 3.817+
--------------------------- 0.52s 0.31–

s2 0.683s 0.393+ +
----------------------------------------------------+= =

0.48
s 3.82+

------------------------ 0.48e 3.82t–
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Solutions to Exercises

pretty(IL)
      1217       17      1/2            1/2
    - ---- exp(- -- t) 14    sin(7/50 14    t)
      4900       50

           13       17               1/2
         + -- exp(- -- t) cos(7/50 14    t)

           25       50
Thus, 

Next, we will find . We found earlier that

and following the same procedure we have

  (6)

Multiplying every term by the denominator and equating numerators we get

Equating , , and constant terms we get

We will use MATLAB to find these residues.

A=[1  1  0; 0.683  3.817  1; 0.393  0  3.817]; B=[ 4 1 1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f',r(3))

r1 = -4.49   r2 = 0.49   r3 = 0.20

By substitution of these values into (6) we get

   (7)

By inspection, the Inverse Laplace of first term on the right side of (7) is

i1 t 0.48e 3.82t– 0.93e 0.34t– 0.53t 0.52e 0.34t– 0.53tcos+sin–=

I2 s

I2 s 4s2 s 1+ +

2s3 9s2 6s 3+ + +
--------------------------------------------–=

I2 s 4s2 s– 1––

s 3.817+ s2 0.683s 0.393+ +
-----------------------------------------------------------------------------------

r1
s 3.817+

---------------------------
r2s r3+

s2 0.683s 0.393+ +
----------------------------------------------------+= =

4s2 s– 1–– r1 s2 0.683s 0.393+ + r2s r3+ s 3.817++=

s2 s

r1 r2+ 4–=

0.683r1 3.817r2 r3+ + 1–=

0.393r1 3.817r3+ 1–=

I1 s
r1

s 3.817+
---------------------------

r2s r3+

s2 0.683s 0.393+ +
----------------------------------------------------+ 4.49–

s 3.817+
--------------------------- 0.49s 0.20+

s2 0.683s 0.393+ +
----------------------------------------------------+= =
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  (8)

The second term on the right side of (7) requires some manipulation. Therefore, we will use the
MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t
IL=ilaplace((0.49*s 0.20)/(s^2+0.68*s+0.39)); pretty(IL)

  167        17  1/2            1/2 
 ---- exp(- -- t) 14    sin(7/50 14    t)
  9800       50

    49       17               1/2
 + --- exp(- -- t) cos(7/50 14    t)
   100       50

Thus, 

4.

a. Mesh 1:

or
  (1)

Mesh 2:
  (2)

Addition of (1) and (2) yields

or

0.48
s 3.82+

------------------------ 4.47– e 3.82t–

i2 t 4.47– e 3.82t– 0.06e 0.34t– 0.53t 0.49e 0.34t– 0.53tcos+sin+=

+

1

+

1

31 s

V1 s

VC s

I1 s

+

V2 s 2VC s=2
I2 s

2 1 s+ I1 s I2 s– V1 s=

6 2 1 s+ I1 s 6I2 s– 6V1 s=

I1– s 6I2 s+ V– 2 s 2 s I1 s–= =

12 6 s+ I1 s 2 s 1– I1 s+ 6V1 s=

11 8 s+ I1 s 6V1 s=
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Solutions to Exercises

and thus

b. With  we get

5.
Circuit (a):

and

Circuit (b):

and

Both of these circuits are first-order low-pass filters.

Y s I1 s
V1 s
------------- 6

11 8 s+
--------------------- 6s

11s 8+
------------------= ==

V1 s 1 s=

I1 s Y s V1 s 6s
11s 8+
------------------ 1

s
--- 6

11s 8+
------------------ 6 11

s 8 11+
---------------------= = = =

6
11
------e 8 11 t– i1 t=

R

++

Vin s Vout s
1 Cs

Vout s 1 Cs
R 1 Cs+
----------------------- Vin s=

G s
Vout s
Vin s
----------------- 1 Cs

R 1 Cs+
----------------------- 1 Cs

RCs 1+ Cs
---------------------------------------- 1

RCs 1+
-------------------- 1 RC

s 1 RC+
-----------------------= = = = =

R

L

+

Vin s

+

Vout s

Vout s R
Ls R+
---------------- Vin s=

G s
Vout s
Vin s
----------------- R

Ls R+
---------------- R L

s R L+
-------------------= = =
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6.
Circuit (a):

and

Circuit (b):

and

Both of these circuits are first-order high-pass filters.

7.
Circuit (a):

R

C

++

Vin s Vout s

Vout s R
1 Cs R+
----------------------- Vin s=

G s
Vout s
Vin s
----------------- R

1 Cs R+
----------------------- RCs

RCs 1+
------------------------ s

s 1 RC+
-----------------------= = = =

R

L

+

Vin s

+

Vout s

Vout s Ls
R Ls+
---------------- Vin s=

G s
Vout s
Vin s
----------------- Ls

R Ls+
---------------- s

s R L+
-------------------= = =

R

C ++

Vin s Vout s

L

Vout s R
Ls 1+ Cs R+
------------------------------------ Vin s=
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Solutions to Exercises

and

This circuit is a second-order band-pass filter.

Circuit (b):

and

This circuit is a second-order band-elimination (band-reject) filter.

8.
Circuit (a):

Let  and  and since for inverting op-amp , for this circuit

This circuit is a first-order active low-pass filter.

G s
Vout s
Vin s
----------------- R

Ls 1+ Cs R+
------------------------------------ RCs

LCs2 1 RCs+ +
--------------------------------------- R L s

s2 R L s 1 LC+ +
--------------------------------------------------= = = =

R
L

+

Vin s

+

Vout s

Vout s Ls 1+ Cs
R Ls 1+ + Cs
------------------------------------ Vin s=

G s
Vout s
Vin s
----------------- Ls 1+ Cs

R Ls 1+ + Cs
------------------------------------ LCs2 1+

LCs2 RCs 1+ +
--------------------------------------- s2 1 LC+

s2 R L s 1 LC+ +
--------------------------------------------------= = = =

R2R1

C

Vin s
Vout s

z1 R1= z2
R2 1 Cs
R2 1 Cs+
--------------------------=

Vout s
Vin s
-----------------

z2
z1
----–=

G s
Vout s
Vin s
-----------------

R2 1 Cs R2 1 Cs+–

R1
--------------------------------------------------------------------------

R2 1 Cs–

R1 R2 1 Cs+
-----------------------------------------

R1C–

s 1 R2C+
--------------------------= = = =
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Circuit (b):

Let  and  and since for inverting op-amp , for this circuit

This circuit is a first-order active high-pass filter.

9.

At Node :

 or

  (1)

At Node :

R1

R2

C

Vin s Vout s

z1 R1 1 Cs+= z2 R2=
Vout s
Vin s
-----------------

z2
z1
----–=

G s
Vout s
Vin s
-----------------

R2–

R1 1 Cs+
--------------------------

R2 R1 s–

s 1 R1C+
--------------------------= = =

R1 R2

R3

C1

C2

Vout s
Vin s

R4 R1 = 11.3 K

R2 = 22.6 K

R3=R4 = 68.1 K

C1=C2 = 0.01 FV3

V2

V1

V1

V1 s
R3

-------------
V1 s Vout s–

R4
-------------------------------------+ 0=

1
R3
------ 1

R4
------+ V1 s 1

R4
------Vout s=
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Solutions to Exercises

and since  we express the last relation above as

or

  (2)

At Node :

or

  (3)

From (1)

  (4)

From (2)

and with (4)

  (5)

By substitution of (4) and (5) into (3) we get

or

and thus

By substitution of the given values and after simplification we get

V3 s V1 s=

V1 s V2 s–

R2
--------------------------------- C1sV1 s+ 0=

1
R2
------ C1s+ V1 s 1

R2
------V2 s=

V2

V2 s Vin s–

R1
----------------------------------

V2 s V1 s–

R2
---------------------------------

V2 s Vout s–

1 C2s
-------------------------------------+ + 0=

1
R1
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R2
------ C2s+ + V2 s

Vin s
R1

---------------
V1 s

R2
------------- C2sVout s+ +=

V1 s
1 R4

R3 R4+ R3R4
---------------------------------------Vout s

R3
R3 R4+

-----------------------Vout s= =

V2 s R2
1

R2
------ C1s+ V1 s 1 R2C1s+ V1 s= =

V2 s
R3 1 R2C1s+

R3 R4+
------------------------------------Vout s=

1
R1
------ 1

R2
------ C2s+ +

R3 1 R2C1s+

R3 R4+
------------------------------------Vout s

Vin s
R1

--------------- 1
R2
------

R3
R3 R4+

-----------------------Vout s C2sVout s+ +=

1
R1
------ 1

R2
------ C2s+ +

R3 1 R2C1s+

R3 R4+
------------------------------------ 1

R2
------

R3
R3 R4+

-----------------------– C2s– Vout s 1
R1
------Vin s=

G s
Vout s
Vin s
----------------- 1

R1
1

R1
------ 1

R2
------ C2s+ +

R3 1 R2C1s+

R3 R4+
------------------------------------ 1

R2
------

R3
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w=1:10:10000; s=j.*w; Gs=7.83.*10.^7./(s.^2+1.77.*10.^4.*s+5.87.*10.^7);...
semilogx(w,abs(Gs)); grid; hold on
xlabel('Radian Frequency w'); ylabel('|Vout/Vin|'); 
title('Magnitude Vout/Vin vs. Radian Frequency')

The plot above indicates that this circuit is a second-order low-pass filter.

G s 7.83 107

s2 1.77 104s 5.87 107+ +
----------------------------------------------------------------------=



Circuit Analysis II with MATLAB Applications 7-1
Orchard Publications

Chapter 7

Frequency Response and Bode Plots

his chapter discusses frequency response in terms of both amplitude and phase. This topic will
enable us to determine which frequencies are dominant and which frequencies are virtually
suppressed. The design of electric filters is based on the study of the frequency response. We

will also discuss the Bode method of linear system analysis using two separate plots; one for the mag-
nitude of the transfer function, and the other for the phase, both versus frequency. These plots reveal
valuable information about the frequency response behavior.

Note: Throughout this text, the common (base 10) logarithm of a number  will be denoted as
while its natural (base e) logarithm will be denoted as . However, we should remember

that in MATLAB the  function displays the natural logarithm, and the common (base 10) log-
arithm is defined as .

7.1  Decibels

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
decibels ( ). For instance, we say that an amplifier has  power gain or a transmission line
has a power loss of  (or gain ). If the gain (or loss) is , the output is equal to the
input. We should remember that a negative voltage or current gain  or  indicates that there is a

 phase difference between the input and the output waveforms. For instance, if an amplifier has
a gain of  (dimensionless number), it means that the output is  out-of-phase with the
input. For this reason we use absolute values of power, voltage and current when these are expressed
in  terms to avoid misinterpretation of gain or loss. 

By definition,

(7.1)

Therefore,

 represents a power ratio of  

 represents a power ratio of 

 represents a power ratio of 

 represents a power ratio of 

 represents a power ratio of 

T
x

xlog xln
xlog

10 xlog

dB 10 dB
7 dB 7– dB 0 dB

AV AI

180
100– 180

dB

dB 10 Pout
Pin
---------log=

10 dB 10

10n dB 10n

20 dB 100

30 dB 1 000

60 dB 1 000 000
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Also,

 represents a power ratio of approximately 

 represents a power ratio of approximately 

 represents a power ratio of approximately 

From these, we can estimate other values. For instance,  which is equivalent to a
power ratio of approximately Likewise,  and this is equivalent
to a power ratio of approximately .

Since  and , if we let  the  values for the voltage and
current ratios become:

(7.2)

and

(7.3)

Example 7.1  

Compute the gain in  for the amplifier shown in Figure 7.1.

Figure 7.1. Amplifier for Example 7.1

Solution:

Example 7.2  

Compute the gain in for the amplifier shown in Figure 7.2 given that .

Figure 7.2. Amplifier for Example 7.2.

1 dB 1.25

3 dB 2

7 dB 5

4 dB 3 dB 1 dB+=

2 1.25 2.5= 27 dB 20 dB 7 dB+=

100 5 500=

y x2log 2 xlog= = P V 2 R I 2R= = R 1= dB

dBv 10 Vout
Vin
----------

2
log 20 Vout

Vin
----------log= =

dBi 10 Iout
Iin
--------

2
log 20 Iout

Iin
--------log= =

dBW

Pin Pout

1 w 10 w

dBW 10
Pout
Pin
----------log 10 10

1
------log 10 10log 10 1 10 dBW= = = = =

dBV 2log 0.3=

Vin Vout

1 v 2v
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Bandwidth and Frequency Response

Solution:

7.2 Bandwidth and Frequency Response

Electric and electronic circuits, such as filters and amplifiers, exhibit a band of frequencies over
which the output remains nearly constant. Consider, for example, the magnitude of the output volt-
age  of an electric or electronic circuit as a function of radian frequency  as shown in Figure
7.3.

Figure 7.3. Definition of the bandwidth.

As shown in Figure 7.3, the bandwidth is  where  and  are the lower and upper

cutoff frequencies respectively. At these frequencies,  and these two points
are known as the  or half-power points. They derive their name from the fact that since

power , for  and for or  the power is ,
that is, it is “halved”. Alternately, we can define the bandwidth as the frequency band between half-
power points. 

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the
input as shown in Figure 7.4.

Figure 7.4. Amplifier with partial output feedback

Figure 7.5 shows an amplifier where the entire output is fed back to the input.

dBV 20
Vout
Vin
----------log 20 2

1
---log 20 0.3log 20 0.3 6 dBV= = = = =

Vout

Vout1

0.707

Bandwith

1 2

BW 2 1–= 1 2

Vout 2 2 0.707= =

3 dB down

p v2 R i2R= = R 1= v 0.707 Vout= i 0.707 Iout= 1 2

GAIN AMPLIFIER

FEEDBACK CIRCUIT

INPUT OUTPUT

+
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Figure 7.5. Amplifier with entire output feedback

The symbol  (Greek capital letter sigma) inside the circle indicates the summing point where the
output signal, or portion of it, is combined with the input signal. This summing point may be also
indicated with a large plus (+) symbol inside the circle. The positive (+) sign below the summing
point implies positive feedback which means that the output, or portion of it, is added to the input.
On the other hand, the negative ( ) sign implies negative feedback which means that the output, or
portion of it, is subtracted from the input. Practically, all amplifiers use used with negative feedback
since positive feedback causes circuit instability.

7.3  Octave and Decade

Let us consider two frequencies  and  defining the frequency interval , and let

(7.4)

If these frequencies are such that , we say that these frequencies are separated by one
octave and if , they are separated by one decade.

Let us now consider a transfer function  whose magnitude is evaluated at , that is,

(7.5)

Taking the log of both sides of (7.5) and multiplying by 20, we get 

or

(7.6)

Relation (7.6) is an equation of a straight line in a semilog plot with abscissa  where

and  shown in Figure 7.6.

GAIN AMPLIFIER
INPUT OUTPUT

FEEDBACK PATH

+

u1 u2 u2 u1–

u2 u1– log10 2 log10 1– log10
2

1
------= =

2 2 1=

2 10 1=

G s s j=

G s C
sk
----=

s j=

G C
k

------= =

20log10 G 20log10C 20log10
k– 20klog10– 20log10C+= =

G dB 20klog10– 20log10C+=

log10

slope 20k dB
decade
------------------–=

intercept C dB=
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Bode Plot Scales and Asymptotic Approximations

Figure 7.6. Straight line with slope 

With these concepts in mind, we can now proceed to discuss Bode Plots and Asymptotic Approxi-
mations.

7.4  Bode Plot Scales and Asymptotic Approximations

Bode plots are magnitude and phase plots where the abscissa (frequency axis) is a logarithmic (base
10) scale, and the radian frequency  is equally spaced between powers of  such as , ,

,  and so on. 

The ordinate (  axis) of the magnitude plot has a scale in  units, and the ordinate of the phase
plot has a scale in degrees as shown in Figure 7.7.

Figure 7.7. Magnitude and phase plots
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It is convenient to express the magnitude in  so that a transfer function , composed of prod-
ucts of terms can be computed by the sum of the  magnitudes of the individual terms. For exam-
ple,

and the Bode plots then can be approximated by straight lines called asymptotes.

7.5  Construction of Bode Plots when the Zeros and Poles are Real

Let us consider the transfer function 

(7.7)

where  is a real constant, and the zeros  and poles  are real numbers. We will consider complex
zeros and poles in the next section. Letting  in (7.7) we get

(7.8)

Next, we multiply and divide each numerator factor  by  and each denominator factor
 by  and we get:

(7.9)

Letting

(7.10)

we can express (7.9) in  magnitude and phase form,

dB G s
dB

20 1 j
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---------+
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---------------------------------- 20 dB 1 j
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---------+ dB 1
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--------------- dB+ +=

G s
A s z1+ s z2+ s zm+

s s p1+ s p2+ s p3+ s pn+
------------------------------------------------------------------------------------------------=
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Construction of Bode Plots when the Zeros and Poles are Real

(7.11)

(7.12)

The constant  can be positive or negative. Its magnitude is  and its phase angle is  if ,
and  if . The magnitude and phase plots for the constant  are shown in Figure 7.8.

Figure 7.8. Magnitude and phase plots for the constant K

For a zero of order , that is,  at the origin, the Bode plots for the magnitude and phase are as
shown in Figures 7.9 and 7.10 respectively.

For a pole of order , that is,  at the origin, the Bode plots are as shown in Figures
7.11 and 7.12 respectively.

Next, we consider the term .

The magnitude of this term is

(7.13)

and taking the log of both sides and multiplying by  we get

(7.14)

It is convenient to normalize (7.14) by letting

(7.15)
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Figure 7.9. Magnitude for zeros of Order n at the origin

Figure 7.10. Phase for zeros of Order n at the origin

Then, (7.14) becomes

(7.16)
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Construction of Bode Plots when the Zeros and Poles are Real

Figure 7.11. Magnitude for poles of Order n at the origin

Figure 7.12. Phase for poles of Order n at the origin

For  the first term of (7.16) becomes . For , this term becomes approxi-

mately  and this has the same form as  which is shown in Fig-
ure 7.9 for , , and .

The frequency at which two aymptotes intersect each other forming a corner is referred to as the
corner frequency. Thus, the two lines defined by the first term of (7.16), one for  and the other
for  intersect at the corner frequency .

The second term of (7.16) represents the ordinate axis intercept defined by this straight line.
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The phase response for the term  is found as follows:

We let 

(7.17)

and

(7.18)

Then,

(7.19)

Figure 7.13 shows plots of the magnitude of (7.16) for , , , and .

Figure 7.13. Magnitude for zeros of Order n for 

As shown in Figure 7.13, a quick sketch can be obtained by drawing the straight line asymptotes given
by  and  for  and  respectively. 

The phase angle of (7.19) is . Then, with (7.18) and letting 

(7.20)
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Construction of Bode Plots when the Zeros and Poles are Real

we get

(7.21)

and

(7.22)

At the corner frequency  we get  and with (7.20)

(7.23)

Figure 7.14 shows the phase angle plot for (7.19).

Figure 7.14. Phase for zeros of Order n for 

The magnitude and phase plots for  are similar to those of 
except for a minus sign. In this case (7.16) becomes

(7.24)

and (7.20) becomes

(7.25)

The plots for (7.24) and (7.25) are shown in Figures 7.15 and 7.16 respectively.
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Figure 7.15. Magnitude for poles of Order n for 

Figure 7.16. Phase for poles of Order n for 

7.6  Construction of Bode Plots when the Zeros and Poles are Complex

The final type of terms appearing in the transfer function  are quadratic term of the form

 whose roots are complex conjugates. In this case, we express the complex conjugate
roots as
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Construction of Bode Plots when the Zeros and Poles are Complex

(7.26)

and letting

(7.27)

and

(7.28)

by substitution into (7.26) we get

(7.29)

Next, we let

(7.30)

Then,

(7.31)

The magnitude of (7.31) is

(7.32)

and taking the log of both sides and multiplying by  we get

(7.33)

As in the previous section, it is convenient to normalize (7.33) by dividing by  to yield a function
of the normalized frequency variable  such that

(7.34)

Then, (7.33) is expressed as

or
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(7.35)

The first term in (7.35) is a constant which represents the ordinate axis intercept defined by this
straight line. For the second term, if , this term reduces to approximately  and

if , this term reduces to approximately  and this can be plotted as a straight line
increasing at . Using these two straight lines as asymptotes for the magnitude curve
we see that the asymptotes intersect at the corner frequency . The exact shape of the curve
depends on the value of  which is called the damping coefficient.

A plot of (7.35) for , , and  is shown in Figure 7.17.

The phase shift associated with  is also simplified by the substitution 
and thus

(7.36)

The two asymptotic relations of (7.36) are

(7.37)

and

(7.38)

At the corner frequency ,  and

(7.39)

A plot of the phase for , , and  is shown in Figure 7.18.
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 7.17. Magnitude for zeros of 

Figure 7.18. Phase for zeros of 
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are similar to those of

except for a minus sign. In this case, (7.35) becomes

(7.40)

and (7.36) becomes

(7.41)

A plot of (7.40) for , , and  is shown in Figure 7.19.

Figure 7.19. Magnitude for poles of 

A plot of the phase for , , and  is shown in Figure 7.20.
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Construction of Bode Plots when the Zeros and Poles are Complex

Figure 7.20. Phase for poles of 

Example 7.3  

For the circuit shown in Figure 7.21

a. Compute the transfer function .

b. Construct a straight line approximation for the magnitude of the Bode plot.

c. From the Bode plot obtain the values of  at  and . Com-

pare these values with the actual values.

d. If , use the Bode plot to compute the output .

Figure 7.21. Circuit for Example 7.3.

Solution:

a. We transform the given circuit to its equivalent in the  shown in Figure 7.22.

Phase for Poles of ( n
2- 2)+j2 n

u = / n, n = 1
(u) = (arctan(2 u/(1-u2))*180/
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Figure 7.22. Circuit for Example 7.3 in 

and by the voltage division expression,

Therefore, the transfer function is

(7.42)

b. Letting  we get

or in standard form

(7.43)

Letting the magnitude of (7.43) be denoted as , and expressing it in decibels we get

(7.44)

We observe that the first term on the right side of (7.44) is a constant whose value is
. The second term is a straight line with slope equal to . For

 the third term is approximately zero and for  it decreases with slope equal to
Likewise, for the fourth term is approximately zero and for

 it also decreases with slope equal to 

For Bode plots we use semilog paper. Instructions to construct semilog paper with Microsoft
Excel are provided in Appendix D.

+

Vin s

R

C L

110

104 s 0.1s
+

Vout s

s domain–

Vout s 110
104 s 0.1s 110+ +
---------------------------------------------- Vin s=

G s
Vout s
Vin s
----------------- 110s

0.1s2 110s 104+ +
--------------------------------------------- 1100s

s2 1100s 105+ +
---------------------------------------- 1100s

s 100+ s 1000+
------------------------------------------------= = = =

s j=

G j 1100j
j 100+ j 1000+

--------------------------------------------------------=

G j 0.011j
1 j 100+ 1 j 1000+

----------------------------------------------------------------------=

A

AdB 20 G jlog 20 0.011 20 j 20 1 j
10
------+ 20 1 j

100
---------+log–log–log+log= =

20 0.011log 39.17–= 20 dB decade
100 r s 100
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In the Bode plot of Figure 7.23 the individual terms are shown with dotted lines and the sum of
these with a solid line. 

Figure 7.23. Magnitude plot of (7.44)

c. The plot of Figure 7.23 shows that the magnitude of (7.43) at  is approximately
 and at  is approximately . The actual values are found as follows:

At , (7.43) becomes

and using MATLAB we get

g30=0.011*30j/((1+0.3j)*(1+0.03j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g30));...
fprintf('magdB = %6.2f dB',20*log10(abs(g30))); fprintf(' \n'); fprintf(' \n')

 mag = 0.32   magdB = -10.01 dB 

Therefore,

and
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Likewise, at , (7.43) becomes

and using MATLAB we get

g4000=0.011*4000j/((1+40j)*(1+4j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g4000));...
fprintf('magdB = %6.2f dB',20*log10(abs(g4000))); fprintf(' \n'); fprintf(' \n')

mag = 0.27    magdB = -11.48 dB 

Therefore, 

and

d. From the Bode plot of Figure7.23, we see that the value of  at  is approxi-

mately . Then, since in general , and that  implies , we
have

and therefore

If we wish to obtain a more accurate value, we substitute  into (7.43) and we get

g5000=0.011*5000j/((1+50j)*(1+5j));...
fprintf(' \n'); fprintf('mag = %6.2f \t',abs(g5000));...
fprintf('phase = %6.2f deg.',angle(g5000)*180/pi); fprintf(' \n'); fprintf(' \n')

mag = 0.22     phase = -77.54 deg. 

Then,

and in the 

4000 r s=

G j1000 0.11 j4000
1 j40+ 1 j4+

-----------------------------------------=

G j4000 0.27=

20 G j4000log 20 0.27log 11.48 dB–= =

AdB 5000 r s=

12 dB– adB 20 blog= y xlog= x 10 y=

A 10
12
20
------–

0.25= =

Vout max A VS 0.25 10 2.5 V= = =

5000=

G j5000 0.011 j5000
1 j50+ 1 j5+

----------------------------------------- 0.22 77.54–= =

Vout max A 10 0.22 10 2.2 V= = =

t domain–

vout t 2.2 5000t 77.54–cos=
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We can use the MATLAB function bode(sys) to draw the Bode plot of a Linear Time Invariant
(LTI) System where sys = tf(num,den) creates a continuous-time transfer function sys with
numerator num and denominator den, and tf creates a transfer function. With this function, the fre-
quency  r ang e  and  nu mbe r  o f  po in t s  a r e  chosen  au toma t i c a l l y.  T he  f unc t i on
bode(sys,{wmin,wmax}) draws the Bode plot for frequencies between wmin and wmax (in radi-
ans/second) and the function bode(sys,w) uses the user-supplied vector w of frequencies, in radi-
ans/second, at which the Bode response is to be evaluated. To generate logarithmically spaced fre-
quency vectors,  we use the command logspace(f irst_exponent, last_exponent,
number_of_values). For example, to generate plots for 100 logarithmically evenly spaced points
for the frequency interval , we use the statement logspace( 1,2,100).

The bode(sys,w) function displays both magnitude and phase. If we want to display the magnitude
only, we can use the bodemag(sys,w) function.

MATLAB requires that we express the numerator and denominator of  as polynomials of  in
descending powers. 

Let us plot the transfer function of Example 7.3 using MATLAB.

From (7.42),

and the MATLAB code to generate the magnitude and phase plots is

num=[0 1100 0]; den=[1 1100 10^5]; w=logspace(0,5,100); bode(num,den,w)

However, since for this example we are interested in the magnitude only, we will use the code

num=[0 1100 0]; den=[1 1100 10^5]; sys=tf(num,den);...
w=logspace(0,5,100); bodemag(sys,w); grid

and upon execution, MATLAB displays the plot shown in Figure 7.24.

Example 7.4  

For the circuit of Example 7.3

a. Draw a Bode phase plot.

b. Using the Bode phase plot estimate the frequency where the phase is zero degrees.

c. Compute the actual frequency where the phase is zero degrees.

d. Find  if  and  is the value found in part (c).

10 1– 102 r s

G s s

G s 1100s
s2 1100s 105+ +
----------------------------------------=

vout t vin t 10 t 60+cos=
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Figure 7.24. Bode plot for Example 7.3.

Solution:

a. From (7.43) of Example 7.3

(7.45)

and in magnitude-phase form

where

For 

For 

The straight-line phase angle approximations are shown in Figure 7.25.

G j 0.011j
1 j 100+ 1 j 1000+

----------------------------------------------------------------------=

G j 0.011 j
1 j 100+ 1 j 1000+

---------------------------------------------------------------------------- – –=

90= – 1001–tan–= – 10001–tan–=

100=

– 11–tan– 45–= =

1000=

– 11–tan– 45–= =
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Figure 7.25.  Bode plot for Example 7.4.

Figure 7.26 shows the magnitude and phase plots generated with the following MATLAB code:

num=[0 1100 0]; den=[1 1100 10^5]; w=logspace(0,5,100); bode(num,den,w)

b. From the Bode plot of Figure 7.25 we find that the phase is zero degrees at approximately

c. From (7.45)

and in magnitude-phase form

The phase will be zero when

-180
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-90

-45

0

45

90

135

180

90=

101
100 102 105104103

– –=

– 10001–tan–=

– 1001–tan–=

310 r s=
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1 j 100+ 1 j 1000+

----------------------------------------------------------------------=

G j 0.011 90
1 j 100+ 1001–tan 1 j 1000+ 10001–tan

---------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Figure 7.26. Bode plots for Example 7.4 generated with MATLAB

This is a trigonometric equation and we will solve it for  with the solve(equ) MATLAB func-
tion as follows:

syms w; x=solve(atan(w/100)+atan(w/1000) pi/2); combine(x)

ans =
  316.2278

Therefore, 

d. Evaluating (7.45) at  we get:

(7.46)

and with MATLAB

Gj316=0.011*316.23j/((1+316.23j/100)*(1+316.23j/1000)); fprintf(' \n');...
fprintf('magGj316 = %5.2f \t', abs(Gj316));...
fprintf('phaseGj316 = %5.2f deg.', angle(Gj316)*180/pi)

magGj316 = 1.00  phaseGj316 = -0.00 deg.

We are given that  and with  we get

316.23 r s=

316.23 r s=

G j316.23 0.011 j316.23
1 j316.23 100+ 1 j316.23 1000+

-----------------------------------------------------------------------------------------------=

Vin 10 V= G j316.23 1=
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The phase angle of the input voltage is given as  and with  we find that

the phase angle of the output voltage is

and thus

or

7.7 Corrected Amplitude Plots

The amplitude plots we have considered thus far are approximate. We can make the straight line
more accurate by drawing smooth curves connecting the points at one-half the corner frequency

, the corner frequency  and twice the corner frequency  as shown in Figure 7.27.

At the corner frequency , the value of the amplitude  in  is

(7.47)

where the plus (+) sign applies to a first order zero, and the minus ( ) to a first order pole.

Similarly,

(7.48)

and

(7.49)

As we can seen from Figure 7.27, the straight line approximations, shown by dotted lines, yield 
at half the corner frequency and at the corner frequency. At twice the corner frequency, the straight
line approximations yield  because  and  are separated by one octave which is equiva-
lent to  per decade. Therefore, the corrections to be made are  at half the corner fre-
quency ,  at the corner frequency , and  at twice the corner frequency .

The corrected amplitude plots for a first order zero and first order pole are shown by solid lines in
Figure 7.27.

Vout G j316.23 Vin 1 10= 10 V= =

in 60= j316.23 0=

out in j316.23+ 60 0+ 60= ==

Vout 10 60=

vout t 10 316.23t 60+cos=

n 2 n 2 n

n A dB

AdB
n=

20 1 j+log 20 2log 3 dB= = =

AdB
n 2=

20 1 j 2+log 20 5
4
---log 0.97 dB 1 dB= = =

AdB 2 n=
20 1 j2+log 20 5log 6.99 dB 7 dB= = =

0 dB
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The corrections for straight-line amplitude plots when we have complex poles and zeros require dif-
ferent type of correction because they depend on the damping coefficient . Let us refer to the plot
of Figure 7.28. 

Figure 7.27. Corrections for magnitude Bode plots

We observe that as the damping coefficient  becomes smaller and smaller, larger and larger peaks in
the amplitude occur in the vicinity of the corner frequency . We also observe that when

, the amplitude at the corner frequency  lies below the straight line approximation.

We can obtain a fairly accurate amplitude plot by computing the amplitude at four points near the

corner frequency  as shown in Figure 7.28.
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The amplitude plot of Figure 7.28 is for complex poles. In analogy with (7.30), i.e., 

Figure 7.28. Magnitude Bode plots with complex poles

which was derived earlier for complex zeros, the transfer function for complex poles is

(7.50)

where C is a constant.

Dividing each term of the denominator of (7.50) by  we get

and letting  and , we get

(7.51)

As before, we let . Then (7.51) becomes

Magnitude for Poles of 1/(( n
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(7.52)

and in polar form,

(7.53)

The magnitude of (7.53) in  is

(7.54)

and the phase is

(7.55)

In (7.54) the term  is constant and thus the amplitude , as a function of frequency, is
dependent only the second term on the right side. Also, from this expression, we observe that as

,

(7.56)

and as ,

(7.57)

We are now ready to compute the values of  at points , , , and  of the plot of Figure 7.29.
At point 1, the corner frequency  corresponds to . Then, from (7.54)

(7.58)

and for 

G ju K
1 u2– j2 u+
--------------------------------=

G ju K
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-------------------------------------------=

dB
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Figure 7.29. Corrections for magnitude Bode plots with complex poles when 

To find the amplitude at point 2, in (7.54) we let  and we form the magnitude in . Then,

(7.59)

We now recall that the logarithmic function is a monotonically increasing function and therefore
(7.59 has a maximum when the absolute magnitude of this expression is maximum. Also, the square
of the absolute magnitude is maximum when the absolute magnitude is maximum. 

The square of the absolute magnitude is

(7.60)
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or

(7.61)

To find the maximum, we take the derivative with respect to  and we set it equal to zero, that is,

(7.62)

The expression of (7.62) will be zero when the numerator is set to zero, that is,

(7.63)

Of course, we require that the value of  must be a nonzero value. Then,

or

from which

(7.64)

provided that  or  or . 

The  value of the amplitude at point  is found by substitution of (7.64) into (7.54), that is,

(7.65)

and for 

The  value of the amplitude at point  is found by substitution of  into (7.54).
Then,

1

1 2 2
n
2– 4

n
4+ 4 2 2

n
2+

-------------------------------------------------------------------------------------

4 n
2 4 3

n
4– 8 2

n
2–

1 n
2–

2
4 n

2+

2
--------------------------------------------------------------------------------------- 0=

n
2 4 4 2

n
2– 8 2– 0=

4 4 2
n
2– 8 2– 0=

4 2
n
2 4 8 2–=

max n 1 2 2–= =

1 2 2– 0 1 2 0.707

dB 2

AdB max 10– u4 2u2 2 2 1– 1+ +log
u 1 2–=

=

10 1 2 2–
2

2 1 2 2– 2 2 1– 1+ +log–=

10 4 2 1 2–log–=

0.4=

AdB max 10 4 0.42 1 0.42–log– 2.69 dB= =

dB 3 n u 1= = =



Circuit Analysis II with MATLAB Applications 7-31
Orchard Publications

Corrected Amplitude Plots

(7.66)

and for 

Finally, at point , the  value of the amplitude crosses the  axis. Therefore, at this point we
are interested not in  but in the location of  in relation to the corner frequency .
at this point we must have from (7.57)

and since , it follows that 

or

Solving for  and making use of  we get

From (7.67),

therefore, if we already know the frequency at which the  amplitude is maximum, we can compute
the frequency at point  from

(7.67)

Example 7.5  

For the circuit of Figure 7.30

AdB n 10– u4 2u2 2 2 1– 1+ +log u 1=
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Figure 7.30. Circuit for Example 7.5.

a. Compute the transfer function 

b. Find the corner frequency  from .

c. Compute the damping coefficient .

d. Construct a straight line approximation for the magnitude of the Bode plot.

e. Compute the amplitude in  at one-half the corner frequency , at the frequency  at
which the amplitude reaches its maximum value, at the corner frequency , and at the frequency

 where the  amplitude is zero. Then, draw a smooth curve to connect these four points.

Solution:

a. We transform the given circuit to its equivalent in the  shown in Figure 7.31 where
, , and .

Figure 7.31. Circuit for Example 7.5 in 

and by the voltage division expression,

Therefore, the transfer function is
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(7.68)

b. From (7.50)

(7.69)

and from (7.68) and (7.69)  or

(7.70)

c. From (7.68) and (7.69) . Then, the damping coefficient  is

(7.71)

d. For , the straight line approximation lies along the  axis, whereas for , the
straight line approximation has a slope of . The corner frequency  was found in part (b)
to be  The  amplitude plot is shown in Figure 7.31.

e. From (7.61),

where from (7.74)  and thus . Then,

and this value is indicated as Point 1 on the plot of Figure 7.32.

Next, from (7.64)

Then,

Therefore, from (7.65)

and this value is indicated as Point 2 on the plot of Figure 7.32.

The  amplitude at the corner frequency is found from (7.66), that is,
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Then,

and this value is indicated as Point 3 on the plot of Figure 7.32.

Finally, the frequency at which the amplitude plot crosses the  axis is found from (7.67), that
is,

or

This frequency is indicated as Point 4 on the plot of Figure 7.32.

Figure 7.32. Amplitude plot for Example 7.5

The amplitude plot of Figure 7.32 reveals that the given circuit behaves as a low pass filter. 
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Using the transfer function of (7.68) with MATLAB, we get the Bode magnitude plot shown in Fig-
ure 7.33.

num=[0 0 2500]; den=[1 20 2500]; sys=tf(num,den); w=logspace(0,5,100); bodemag(sys,w)

Figure 7.33. Bode plot for Example 7.5 using MATLAB
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7.8 Summary

The decibel, denoted as dB, is a unit used to express the ratio between two amounts of power, gen-
erally . By definition, the number of  is obtained from . It
can also be used to express voltage and current ratios provided that the voltages and currents have
identical impedances. Then, for voltages we use the expression , and for

currents we use the expression 

The bandwidth, denoted as , is a term generally used with electronic amplifiers and filters. For
low-pass filters the bandwidth is the band of frequencies from zero frequency to the cutoff fre-
quency where the amplitude fall to  of its maximum value. For high-pass filters the band-
width is the band of frequencies from  of maximum amplitude to infinite frequency. For
amplifiers, band-pass, and band-elimination filters the bandwidth is the range of frequencies where
the maximum amplitude falls to  of its maximum value on either side of the frequency
response curve. 
If two frequencies  and  are such that , we say that these frequencies are separated
by one octave and if , they are separated by one decade.

Frequency response is a term used to express the response of an amplifier or filter to input sinuso-
ids of different frequencies. The response of an amplifier or filter to a sinusoid of frequency  is
completely described by the magnitude  and phase  of the transfer function.

Bode plots are frequency response diagrams of magnitude and phase versus frequency .

In Bode plots the -  frequencies, denoted as , are referred to as the corner frequencies.

In Bode plots, the transfer function is expressed in linear factors of the form  for the zero
(numerator) linear factors and  for the pole linear factors. When quadratic factors with
complex roots occur in addition to the linear factors, these quadratic factors are expressed in the
form .

In magnitude Bode plots with quadratic factors the difference between the asymptotic plot and the
actual curves depends on the value of the damping factor . But regardless of the value of , the
actual curve approaches the asymptotes at both low and high frequencies.

In Bode plots the corner frequencies  are easily identified by expressing the linear terms as
 and  for the zeros and poles respectively. For quadratic factor the cor-

ner frequency  appears in the expression  or 
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Summary

In both the magnitude and phase Bode plots the frequency (abscissa) scale is logarithmic. The
ordinate in the magnitude plot is expressed in  and in the phase plot is expressed in degrees.

In magnitude Bode plots, the asymptotes corresponding to the linear terms of the form
 and  have a slope  where the positive slope applies to

zero (numerator) linear factors, and the negative slope applies to pole (denominator) linear factors.

In magnitude Bode plots, the asymptotes corresponding to the quadratic terms of the form
 have a slope  where the positive slope applies to zero

(numerator) quadratic factors, and the negative slope applies to pole (denominator) quadratic fac-
tors.

In phase Bode plots with linear factors, for frequencies less than one tenth the corner frequency
we assume that the phase angle is zero. At the corner frequency the phase angle is . For fre-
quencies ten times or greater than the corner frequency, the phase angle is approximately 
where the positive angle applies to zero (numerator) linear factors, and the negative angle applies
to pole (denominator) linear factors.

In phase Bode plots with quadratic factors, the phase angle is zero for frequencies less than one
tenth the corner frequency. At the corner frequency the phase angle is . For frequencies ten
times or greater than the corner frequency, the phase angle is approximately  where the pos-
itive angle applies to zero (numerator) quadratic factors, and the negative angle applies to pole
(denominator) quadratic factors.

Bode plots can be easily constructed and verified with the MATLAB function bode(sys) func-
tion. With this function, the frequency range and number of points are chosen automatically. The
function bode(sys),{wmin,wmax}) draws the Bode plot for frequencies between wmin and
wmax (in radian/second) and the function bode(sys,w) uses the user-supplied vector w of fre-
quencies, in radian/second, at which the Bode response is to be evaluated. To generate logarithmi-
cally spaced frequency vectors, we use the command logspace(first_exponent,last_exponent,
number_of_values).

dB

j zi 1+ j pi 1+ 20 dB decade

j n
2 j2 n 1+ + 40 dB decade

45
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7.9 Exercises

1. For the transfer function

a. Draw the magnitude Bode plot and find the approximate maximum value of  in .

b. Find the value of  where  for 

c. Check your plot with the plot generated with MATLAB.

2. For the transfer function of Exercise 1

a. Draw a Bode plot for the phase angle and find the approximate phase angle at ,
, , and 

b. Compute the actual values of the phase angle at the frequencies specified in (a).

c. Check your magnitude plot of Exercise 1 and the phase plot of this exercise with the plots gen-
erated with MATLAB.

3. For the circuit of Figure 7.34

a. Compute the transfer function.

b. Draw the Bode amplitude plot for 

c. From the plot of part (b) determine the type of filter represented by this circuit and estimate the
cutoff frequency.

d. Compute the actual cutoff frequency of this filter.

e. Draw a straight line phase angle plot of .

f. Determine the value of  at the cutoff frequency from the plot of part (c).

g. Compute the actual value of  at the cutoff frequency.

Figure 7.34. Circuit for Exercise 3
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Answers to Exercises

7.10  Answers to Exercises

1. a.

The corner frequencies are at , , and . The asymptotes
are shown as solid lines. 

From this plot we observe that  for the interval 
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b. By inspection,  at 

2. From the solution of Exercise 1

and in magnitude-phase form

that is,  where , , and 

The corner frequencies are at , , and  where at those fre-
quencies , , and  respectively. The asymptotes are shown as solid
lines.

From the phase plot we observe that , , , and
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b. We use MATLAB for the computations.

theta_g30=(1+30j/5)/((1+30j/100)*(1+30j/5000));...
theta_g50=(1+50j/5)/((1+50j/100)*(1+50j/5000));...
theta_g100=(1+100j/5)/((1+100j/100)*(1+100j/5000));...
theta_g5000=(1+5000j/5)/((1+5000j/100)*(1+5000j/5000));...
printf(' \n');...
fprintf('theta30r = %5.2f deg. \t', angle(theta_g30)*180/pi);...
fprintf('theta50r = %5.2f deg. ', angle(theta_g50)*180/pi);...
fprintf(' \n');...
fprintf('theta100r = %5.2f deg. \t', angle(theta_g100)*180/pi);...
fprintf('theta5000r = %5.2f deg. ', angle(theta_g5000)*180/pi);...
fprintf(' \n')

theta30r = 63.49 deg. theta50r = 57.15 deg.
theta100r = 40.99 deg. theta5000r = -43.91 deg.

Thus, the actual values are

c. The Bode plot generated with MATLAB is shown below.

syms s; expand((s+100)*(s+5000))

ans =
s^2+5100*s+500000

num=[0 10^5 5*10^5]; den=[1 5.1*10^3 5*10^5]; w=logspace(0,5,10^4);...
bode(num,den,w)

G j30 1 j30 5+
1 j30 100+ 1 j30 5000+

------------------------------------------------------------------------------ 63.49= =

G j50 1 j50 5+
1 j50 100+ 1 j50 5000+

------------------------------------------------------------------------------ 57.15= =

G j100 1 j100 5+
1 j100 100+ 1 j100 5000+

------------------------------------------------------------------------------------ 40.99= =

G j5000 1 j5000 5+
1 j5000 100+ 1 j5000 5000+

------------------------------------------------------------------------------------------ 43.91–= =
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3. a. The equivalent  circuit is shown below. 

By the voltage division expression

and

  (1)

b. From (1) with 

  (2)

From (7.53)

s domain–

+

Vin s

1

25 s

0.25s +

Vout s

Vout s 1 25 s+
0.25s 1 25 s+ +
----------------------------------------- Vin s=
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----------------- s 25+

0.25s2 s 25+ +
------------------------------------ 4 s 25+

s2 4s 100+ +
--------------------------------= = =

s j=

G j 4 j 25+
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  (3)

and from (1) and (3) , , and , 

Following the procedure of page 7-26 we let . The numerator of (2) is a lin-
ear factor and thus we express it as . Then (2) is written as

or

  (4)

The amplitude of  in  is

  (5)

The asymptote of the first term on the right side of (5) has a corner frequency of  and
rises with slope of . The second term has a corner frequency of  and rises
with slope of . The amplitude plot is shown below.

c. The plot above indicates that the circuit is a low-pass filter and the  cutoff frequency 
occurs at approximately .
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d. The actual cutoff frequency occurs where

At this frequency (2) is written as

and considering its magnitude we get

We will use MATLAB to find the four roots of this equation.

syms w; solve(w^4 216*w^2 10000)

ans =

[  2*(27+1354^(1/2))^(1/2)]  [ -2*(27+1354^(1/2))^(1/2)]
[  2*(27-1354^(1/2))^(1/2)]  [ -2*(27-1354^(1/2))^(1/2)]

w1=2*(27+1354^(1/2))^(1/2)

w1 =
   15.9746

w2= 2*(27+1354^(1/2))^(1/2)

w2 =
  -15.9746

w3=2*(27 1354^(1/2))^(1/2)

w3 =
   0.0000 + 6.2599i

w4= 2*(27 1354^(1/2))^(1/2)

w4 =
  -0.0000 - 6.2599i

G j c G j max 2 1 2 0.70= = =

G j c
100 4j c+

100 c– 2 4j+
-----------------------------------------=
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2+

100 c– 2 2
4 c
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------------------------------------------------------- 1
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-------=
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2+=
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4 16 c
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From these four roots we accept only the first, that is, 

e. From (4)

and

For a first order zero or pole not at the origin, the straight line phase angle plot approximations
are as follows:

I. For frequencies less than one tenth the corner frequency we assume that the phase angle is
zero. For this exercise the corner frequency of  is  and thus for

 the phase angle is zero as shown on the Bode plot below.

II For frequencies ten times or greater than the corner frequency, the phase angle is approxi-
mately . The numerator phase angle  is zero at one tenth the corner frequency,
it is  at the corner frequency, and  for frequencies ten times or greater the corner
frequency. For this exercise, in the interval  the phase angle is zero at

 and rises to  at .
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III As shown in Figure 7.20, for complex poles the phase angle is zero at zero frequency,
 at the corner frequency and approaches  as the frequency becomes large. The

phase angle asymptotes are shown on the plot of the previous page.

f. From the plot of the previous page we observe that the phase angle at the cutoff frequency is
approximately 

g. The exact phase angle at the cutoff frequency  is found from (1) with .

We need not simplify this expression since we can use MATLAB.

g16=(64j+100)/((16j)^2+64j+100); angle(g16)*180/pi

ans =
 -125.0746

This value is about twice as that we observed from the asymptotic plot of the previous page.
Errors such as this occur because of the high non-linearity between frequency intervals. There-
fore, we should use the straight line asymptotes only to observe the shape of the phase angle. It
is best to use MATLAB as shown below.

num=[0  4  100]; den=[1  4 100]; w=logspace(0,2,1000);bode(num,den,w)

90– 180–

63–

c 16 r s= s j16=

G j16 4 j16 25+

j16 2 4 j16 100+ +
-----------------------------------------------------=
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Chapter 8

Self and Mutual Inductances - Transformers

his chapter begins with the interactions between electric circuits and changing magnetic fields.
It defines self and mutual inductances, flux linkages, induced voltages, the dot convention,
Lenz’s law, and magnetic coupling. It concludes with a detailed discussion on transformers.

8.1 Self-Inductance

About 1830, Joseph Henry, while working at the university which is now known as Princeton, found
that electric current flowing in a circuit has a property analogous to mechanical momentum which is
a measure of the motion of a body and it is equal to the product of its mass and velocity, i.e., . In
electric circuits this property is sometimes referred to as the electrokinetic momentum and it is equal to
the product of  where is the current analogous to velocity and the self-inductance  is analogous
to the mass . About the same time, Michael Faraday visualized this property in a magnetic field in
space around a current carrying conductor. This electrokinetic momentum is denoted by the symbol

 that is,

(8.1)

Newton’s second law states that the force necessary to change the velocity of a body with mass  is
equal to the rate of change of the momentum, i.e.,

 (8.2)

where  is the acceleration. The analogous electrical relation says that the voltage  necessary to pro-
duce a change of current in an inductive circuit is equal to the rate of change of electrokinetic
momentum, i.e,

(8.3)

8.2 The Nature of Inductance

Inductance is associated with the magnetic field which is always present when there is an electric cur-
rent. Thus when current flows in an electric circuit, the conductors (wires) connecting the devices in
the circuit are surrounded by a magnetic field. Figure 8.1 shows a simple loop of wire and its magnetic
field which is represented by the small loops. The direction of the magnetic field (not shown) can be
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determined by the left-hand rule if conventional current flow is assumed, or by the right-hand rule if
electron current flow is assumed. The magnetic field loops are circular in form and are called lines of
magnetic flux. The unit of magnetic flux is the weber (Wb). 

Figure 8.1. Magnetic field around a current carrying wire 

In a loosely wound coil of wire such as the one shown in Figure 8.2, the current through the wound
coil produces a denser magnetic field and many of the magnetic lines link the coil several times. 

Figure 8.2. Magnetic field around a current carrying wound coil 

The magnetic flux is denoted as  and, if there are  turns and we assume that the flux  passes
through each turn, the total flux denoted as  is called flux linkage. Then,

(8.4)

By definition, a linear inductor one in which the flux linkage is proportional to the current through it,
that is,

(8.5)

where the constant of proportionality  is called inductance in webers per ampere.

We now recall Faraday’s law of electromagnetic induction which states that

(8.6)

and from (8.3) and (8.5),

(8.7)
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v d
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------=
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Lenz’s Law

8.3 Lenz’s Law

Heinrich F. E. Lenz was a German scientist who, without knowledge of the work of Faraday and
Henry, duplicated many of their discoveries nearly simultaneously. The law which goes by his name, is
a useful rule for predicting the direction of an induced current. Lenz’s law states that:

Whenever there is a change in the amount of magnetic flux linking an electric circuit, an induced voltage
of value directly proportional to the time rate of change of flux linkages is set up tending to produce a cur-
rent in such a direction as to oppose the change in flux.

To understand Lenz’s law, let us consider the transformer shown in Figure 8.3.

Figure 8.3. Basic transformer construction

Here, we assume that the current in the primary winding has the direction shown and it produces the
flux  in the direction shown in Figure 8.3 by the arrow below the dotted line. Suppose that this flux
is decreasing. Then in the secondary winding there will be a voltage induced whose current will be in
a direction to increase the flux. In other words, the current produced by the induced voltage will tend
to prevent any decrease in flux. Conversely, if the flux produced by the primary winding in increasing,
the induced voltage in the secondary will produce a current in a direction which will oppose an
increase in flux.

8.4 Mutually Coupled Coils

Consider the inductor (coil) shown in Figure 8.4. There are many magnetic lines of flux linking the
coil  with  turns but for simplicity, only two are shown in Figure 8.4. The current  produces a

magnetic flux . Then by (8.4) and (8.5)

(8.8)

and by Faraday’s law of (8.6), in terms of the self-inductance ,

(8.9)
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-------= = =
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Figure 8.4. Magnetic lines linking a coil 

Next, suppose another coil  with  turns is brought near the vicinity of coil  and some lines

of flux are also linking coil  as shown in Figure 8.5.

Figure 8.5. Lines of flux linking two coils

It is convenient to express the flux  as the sum of two fluxes  and , that is,

 (8.10)

where the linkage flux  is the flux which links coil  only and not coil , and the mutual flux

 is the flux which links both coils  and . We have assumed that the linkage and mutual
fluxes  and  link all turns of coil  and the mutual flux  links all turns of coil .

The arrangement above forms an elementary transformer where coil  is called the primary winding

and coil  the secondary winding.
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Mutually Coupled Coils

In a linear transformer the mutual flux  is proportional to the primary winding current  and
since there is no current in the secondary winding, the flux linkage in the secondary winding is by
(8.8),

(8.11)

where  is the mutual inductance (in Henries) and thus the open-circuit secondary winding voltage
 is

(8.12)

In summary, when there is no current in the secondary winding the voltages are

 (8.13)

Next, we will consider the case where there is a voltage in the secondary winding producing current
 which in turn produces flux  as shown in Figure 8.6.

Figure 8.6. Flux in secondary winding

Then in analogy with (8.8) and (8.9)

 (8.14)

and by Faraday’s law in terms of the self-inductance

(8.15)

21 i1

2 N2 21 M21i1= =

M21

v2

v2
d 2
dt

--------- N2
d 21

dt
------------ M21

di1
dt
-------= = =
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If another coil  with  turns is brought near the vicinity of coil , some lines of flux are also

linking coil  as shown in Figure 8.7. 

Figure 8.7. Lines of flux linking open primary coil 

Following the same procedure as above we express the flux  as the sum of two fluxes  and
 that is,

(8.16)

where the linkage flux  is the flux which links coil  only and not coil , and the mutual flux

 is the flux which links both coils  and . As before, we have assumed that the linkage and

mutual fluxes link all turns of coil  and the mutual flux links all turns of coil .

Since there is no current in the primary winding, the flux linkage in the primary winding is

(8.17)

where  is the mutual inductance (in Henries) and thus the open-circuit primary winding voltage

 is

(8.18)

In summary, when there is no current in the primary winding, the voltages are

 (8.19)
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Mutually Coupled Coils

We will see later that

(8.20)

The last possible arrangement is shown in Figure 8.8 where  and also .

Figure 8.8. Flux linkages when both primary and secondary currents are present

The total flux  linking coil  is

(8.21)

and the total flux  linking coil  is

 (8.22)

and since , we express (8.21) and (8.22) as

(8.23)

and

(8.24)

Differentiating (8.23) and (8.24) and using (8.13), (8.14), (8.19) and (8.20) we get:

(8.25)
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In (8.25) the voltage terms

are referred to as self-induced voltages and the terms

are referred to as mutual voltages.

In our previous studies we used the passive sign convention as a basis to denote the polarity (+) and
( ) of voltages and powers. While this convention can be used with the self-induced voltages, it can-
not be used with mutual voltages because there are four terminals involved. Instead, the polarity of
the mutual voltages is denoted by the dot convention. To understand this convention, we first consider
the transformer circuit designations shown in Figures 8.9(a) and 8.9(b) where the dots are placed on
the upper terminals and the lower terminals respectively. 

Figure 8.9. Arrangements where the mutual voltage has a positive sign

These designations indicate the condition that a current  entering the dotted (undotted) terminal of
one coil induce a voltage across the other coil with positive polarity at the dotted (undotted) terminal
of the other coil. Thus, the mutual voltage term has a positive sign. Following the same rule we see
that in the circuits of Figure 8.10 (a) and 8.10(b) the mutual voltage has a negative sign.

Example 8.1  

For the circuit of Figure 8.11 find  and  if

a. and

b. and

c. and

L1
di1
dt
------- and L2
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dt
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dt
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dt
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v2L1 L2

M
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i2i1

(a)

v2L1 L2

M

v1

i2i1

(b)

v2 M
di1
dt
-------=

for both
circuits

i

v1 v2

i1 50 mA= i2 25 mA=

i1 0= i2 20 377tsin mA=

i1 15 377tcos mA= i2 40 377t 60+sin mA=
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Mutually Coupled Coils

Figure 8.10. Arrangements where the mutual voltage has a negative sign

Figure 8.11. Circuit for Example 8.1

Solution:

a. Since both currents  and are constants, their derivatives are zero, i.e., 

and thus

b. The dot convention in the circuit of Figure 8.11 shows that the mutual voltage terms are positive
and thus
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v2L1 L2

M = 20 mH

v1

i2i1

50 mH50 mH

i1 i2

di1
dt
-------

di2
dt
------- 0= =

v1 v2 0= =

v1 L1
di1
dt
------- M

di2
dt
-------+ 0.05 0 20 10 3–

+ 20 377 377tcos= =

150.8 377t mVcos=

v2 M
di1
dt
------- L2

di2
dt
-------+ 20 10 3– 0 0.05+ 20 377 377tcos= =

377 377t mVcos=
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c.

Example 8.2  

For the circuit of Figure 8.12 find the open-circuit voltage  for  given that .

Figure 8.12. Circuit for Example 8.2
Solution:

For 

Now,

where  is the forced response component of  and it is obtained from

v1 L1
di1
dt
------- M

di2
dt
-------+ 0.05 15 377 377tsin– 0.02 40 377 377t 60+cos+= =

282.75 377tsin– 301.6 377t 60+ mVcos+=

v2 M
di1
dt
------- L2

di2
dt
-------+ 0.02 15 377 377tsin– 0.05 40 377 377t 60+cos+= =

113.1 377tsin 754 377t 60+ mVcos+–=

v2 t 0 i1 0 0=

+

t 0= 5

50 mH

L2

R

L1v1
v2

i1 i2

M 20 mH=

50 mH24 V

t 0

L
di1
dt
------- Ri1+ 24=

0.05
di1
dt
------- 5i1+ 24=

di1
dt
------- 100i1+ 480=

i1 if in+=

if i1

if
24
5
------ 4.8 A= =
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Establishing Polarity Markings

and  is the natural response component of  and it is obtained from

Then,

and with the initial condition

we get 

Therefore, 

and in accordance with the dot convention,

8.5 Establishing Polarity Markings

In our previous discussion and in Examples 8.1 and 8.2, the polarity markings (dots) were given.
There are cases, however, when these are not known. The following method is generally used to
establish the polarity marking in accordance with the dot convention.

Consider the transformer and its circuit symbol shown in Figure 8.13.

Figure 8.13. Establishing polarity markings

We recall that the direction of the flux  can be found by the right-hand rule which states that if the
fingers of the right hand encircle a winding in the direction of the current, the thumb indicates the
direction of the flux. Let us place a dot at the upper end of  and assume that the current  enters
the top end thereby producing a flux in the clockwise direction shown. Next, we want the current in

in i1

in Ae Rt L– Ae 100t–
= =

i1 if in+ 4.8 Ae 100t–
+= =

i1 0+ i1 0 0 4.8 Ae0
+= = =

A 4.8–=

i1 if in+ 4.8 4.8– e 100t–
= =

v2 M–
di1
dt
------- 0.02 480e 100t–

– 9.6e 100t–
–= = =

L1 L2

M

L1 L2

i1

i2

L1 i1
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 to enter the end which will produce a flux in the same direction, in this case, clockwise. This will

be accomplished if the current  in  enters the lower end as shown and thus we place a dot at that
end.

Example 8.3  

For the transformer shown in Figure 8.14, find  and .

Figure 8.14. Circuit for Example 8.3

Solution:

Let us first establish the dot positions as discussed above. The dotted circuit now is as shown in Fig-
ure 8.15.

Figure 8.15.  Figure for Example 8.3 with dotted markings

Since  enters the dot on the left side and  leaves the dot on the right side, the fluxes oppose each
other. Therefore,

L2

i2 L2

v1 v2

++

i1 2 377t Asin= i2 5– 377cos t A=

v1 v2

M 2 H=

L2L1

3 H 4 H

++

i1 2 377t Asin= i2 5– 377cos t A=

v1 v2

M 2 H=

L2L1

3 H 4 H

i1 i2

v1 L1
di1
dt
------- M

di2
dt
-------– 2262 377tcos 3770 377t Vsin–= =

v2 M
di1
dt
-------– L2

di2
dt
-------+ 1508 377tcos– 7540 377t Vsin+= =
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Example 8.4

For the circuit below, find the voltage ratio .*

Figure 8.16. Circuit for Example 8.4

Solution:

The dots are given to us as shown. Now, we arbitrarily assign currents and  as shown in Figure
8.17 and we write mesh equations for each mesh.

Figure 8.17. Mesh currents for the circuit of Example 8.4

With this current assignments  leaves the dotted terminal of the right mesh and therefore the
mutual voltage has a negative sign. Then,

Mesh 1:

or

(8.26)

* Henceforth we will be using bolded capital letters to denote phasor quantities.

V2 V1

+

Vin 120 0=

R1

0.5

500

RLOADV2

M 50 mH=

50 mH 100 mH

377 r s=

L1 L2V1

I1 I2

+

Vin 120 0=

R1

0.5

500

RLOADV2

M 50 mH=

50 mH 100 mH

377 r s=

L1 L2

I1
I2

V1

I2

R1I1 j L1I1 j MI2–+ Vin=

0.5 j18.85+ I1 j18.85I2– 120 0=
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Mesh 2:

or

(8.27)

We will find the ratio  using the MATLAB code below where  and

Z=[0.5+18.85j  18.85j; 18.85j  500+37.7j]; V=[120 0]'; I=Z\V;...
fprintf(' \n'); fprintf('V1 = %7.3f V \t', abs(18.85j*I(1))); fprintf('V2 = %7.3f V \t', abs(500*I(2)));...
fprintf('Ratio V2/V1 = %7.3f \t',abs((500*I(2))/(18.85j*I(1))))

V1 = 120.093 V   V2 = 119.753 V   Ratio V2/V1 =   0.997

That is,

(8.28)

and thus the magnitude of  is practically the same as the magnitude of . However, we
suspect that  will be out of phase with . We can find the phase of  by adding the fol-
lowing statement to the MATLAB code above.

fprintf('Phase V2= %6.2f deg', angle(500*I(2))*180/pi)

Phase V2=  -0.64 deg

This is a very small phase difference from the phase of  and thus we see that both the magnitude
and phase of  are essentially the same as that of .

If we increase the load resistance  to  we will find that again the magnitude and phase of
 are essentially the same as that of . Therefore, the transformer of this example is an isola-

tion transformer, that is, it isolates the load from the source and the value of  appears across the
load even though the load changes. An isolation transformer is also referred to as a 1:1 transformer.

If in a transformer the secondary winding voltage is considerably higher than the input voltage, the
transformer is referred to as a step-up transformer. Conversely, if the secondary winding voltage is
considerably lower than the input voltage, the transformer is referred to as a step-down transformer.

8.6  Energy Stored in a Pair of Mutually Coupled Inductors

We know that the energy stored in an inductor is

(8.29)

j MI1 j L2I2 RLOAD I2+ +– 0=

j18.85I1– 1000 j37.7+ I2+ 0=

V2 V1 V1 j L1I1 j18.85I1= =

V2
V1
------ 119.75

120.09
---------------- 0.997= =

VLOAD V2= Vin

VLOAD Vin VLOAD

Vin

VLOAD Vin

RLOAD 1 K
VLOAD Vin

Vin

W t 1
2
---Li2 t=
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Energy Stored in a Pair of Mutually Coupled Inductors

In the transformer circuits shown in Figure 8.18, the stored energy is the sum of the energies sup-
plied to the primary and secondary terminals. From (8.25),

Figure 8.18. Transformer circuits for computation of the energy

(8.30)

and after replacing M with  and  in the appropriate terms, the instantaneous power delivered
to these terminals are:

(8.31)

Now, let us suppose that at some reference time , both currents  and  are zero, that is,

(8.32)

In this case, there is no energy stored, and thus

(8.33)

Next, let us assume that at time , the current  is increased to some finite value, while  is still
zero. In other words, we let

(8.34)

and

(8.35)

v2L1 L2v1

i2i1

(a)

v2L1 L2v1

i2i1

(b)

M M

v2 M
di1
dt
-------=

for both
circuits

v1 L1
di1
dt
------- M

di2
dt
-------+=

v2 M
di1
dt
------- L2

di2
dt
-------+=

M12 M21

p1 v1i1= L1
di1
dt
------- M12

di2
dt
-------+ i1=

p2 v2i2= M21
di1
dt
------- L2

di2
dt
-------+ i2=

t0 i1 i2

i1 t0 i2 t0 0= =

W t0 0=

t1 i1 i2

i1 t1 I1=

i2 t1 0=
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Then, the energy accumulated at this time is

(8.36)

and since , then  and also . Therefore, from (8.31) and (8.36) we
get

(8.37)

Finally, let us at some later time , maintain  at its previous value, and increase  to a finite value,
that is, we let

(8.38)

and

(8.39)

During this time interval,  and using (8.31) the energy accumulated is

(8.40)

Therefore, the energy stored in the transformer from  to  is from (8.37) and (8.40),

(8.41)

Now, let us reverse the order in which we increase  and . That is, in the time interval ,
we increase  so that  while keeping . Then, at , we keep  while we
increase  so that . Using the same steps in equations (8.33) through (8.40), we get

(8.42)

Since relations (8.41) and (8.42) represent the same energy, we must have

(8.43)

W1 p1 p2+ td
t0

t1
=

i2 t1 0= p2 t1 0= di2 dt 0=

W1 L1i1
i1d

dt
------- td

t0

t1
L1 i1 i1d

t0

t1 1
2
---L1I1

2
= = =

t2 i1 i2

i1 t2 I1=

i2 t2 I2=

di1 dt 0=

W2 p1 p2+ td
t1

t2
= M12I1

di2
dt
------- L2i2

di2
dt
-------+ td

t1

t2
=

M12I1 L2i2+ di2
t1

t2
M12I1I2

1
2
---L

2
I2
2

+==

t0 t2

W t0

t2 1
2
---L1I1

2 M12I1I2
1
2
---L

2
I2
2

+ +=

i1 i2 t0 t t1
i2 i2 t1 I2= i1 0= t t2= i2 I2=

i1 i1 t2 I1=

W t0

t2 1
2
---L1I1

2 M21I1I2
1
2
---L

2
I2
2

+ +=

M12 M21 M= =
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and thus we can express (8.41) and (8.42) as 

(8.44)

Relation (8.44) was derived with the dot markings of Figure 8.18 which is repeated below as Figure
8.19 for convenience.

Figure 8.19. Transformer circuits of Figure 8.18

However, if we repeat the above procedure for dot markings of the circuit of Figure 8.20 we will find
that

Figure 8.20. Transformer circuits with different dot arrangement from Figure 8.19

(8.45)

and relations (8.44) and (8.45) can be combined to a single relation as

(8.46)

where the sign of  is positive if both currents enter the dotted (or undotted) terminals, and it is
negative if one current enters the dotted (or undotted) terminal while the other enters the undotted
(or dotted) terminal.

W t0

t2 1
2
---L1I1

2 MI1I2
1
2
---L

2
I2
2

+ +=

v2L1 L2v1

i2i1

(a)

v2L1 L2v1

i2i1

(b)

M M

v2 M
di1
dt
-------=

for both
circuits

v2L1 L2v1

i2i1

(a)

v2L1 L2v1

i2i1

(b)

M M

v2 M–
di1
dt
-------=

for both
circuits

W t0

t2 1
2
---L1I1

2 M– I1I2
1
2
---L

2
I2
2

+=

W t0

t2 1
2
---L1I1

2 MI1I2
1
2
---L

2
I2
2

+=

M
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The currents  and  are assume constants and represent the final values of the instantaneous val-

ues of the currents  and  respectively. We may express (8.46) in terms of the instantaneous cur-
rents as

(8.47)

Obviously, the energy on the left side of (8.47) cannot be negative for any values of , , , , or
. Let us assume first that  and  are either both positive or both negative in which case their

product is positive. Then, from (8.47) we see that the energy would be negative if

(8.48)

and the magnitude of the  is greater than the sum of the other two terms on the right side of

that expression. To derive an expression relating the mutual inductance M to the self-inductances 

and , we add and subtract the term  on the right side of (8.47), and we complete the
square. This expression then becomes

(8.49)

We now observe that the first term on the right side of (8.49) could be very small and could approach
zero, but it can never be negative. Therefore, for the energy to be positive, the second and third terms
on the right side of (8.48) must be such that  or

(8.50)

Expression (8.50) indicates that the mutual inductance can never be larger than the geometric mean
of the inductances of the two coils between which the mutual inductance exists.

Note: The inequality in (8.49) was derived with the assumption that  and  have the same alge-
braic sign. If their signs are opposite, we select the positive sign of (8.47) and we find that (8.50) holds
also for this case.

The ratio  is known as the coefficient of coupling and it is denoted with the letter , that is, 

(8.51)

I1 I2

i1 i2

W t0

t2 1
2
---L1i1

2 Mi1i2
1
2
---L

2
i2
2

+=

i1 i2 L1 L2

M i1 i2

W t0

t2 1
2
---L1i1

2 1
2
---L

2
i2
2 Mi1i2–+=

Mi1i2
L1

L2 L1L2i1i2

W t0

t2 1
2
--- L1i1 L2i2–

2
L1L2i1i2 Mi1i2–+=

L1L2 M

M L1L2

i1 i2

M L1L2 k

k M
L1L2

----------------=
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Obviously  must have a value between zero and unity, that is, . Physically,  provides a
measure of the proximity of the primary and secondary coils. If the coils are far apart, we say that
they are loose-coupled and has a small value, typically between  and . For close-coupled cir-
cuits,  has a value of about . Power transformers have a  between  and . The value of

 is exactly unity only when the two coils are coalesced into a single coil.

Example 8.5

For the transformer of Figure 8.21 compute the energy stored at  if:

a. and

b. and

c. and

Figure 8.21. Transformer for Example 8.5

Solution:

Since the currents enter the dotted terminals, we use (8.45) with the plus (+) sign for the mutual
inductance term, that is,

(8.52)

Then,

a.

b.
Since  and , it follows that

k 0 k 1 k

k 0.01 0.1
k 0.5 k 0.90 0.95

k

t 0=

i1 50 mA= i2 25 mA=

i1 0= i2 20 377tsin mA=

i1 15 377tcos mA= i2 40 377t 60+sin mA=

v2L1 L2

M = 20 mH

v1

i2i1

50 mH50 mH

W t 1
2
---L1i1

2 Mi1i2
1
2
---L

2
i2
2

+ +=

W t 0=
0.5 50 10 3– 50 10 3– 2

20 10 3– 50 10 3– 25 10 3–
+=

                              + 0.5 50 10 3– 25 10 3– 2
103 10 6– J 103 J= =

i1 0= i2 20 377tsin t 0=
0= =
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c.

8.7 Circuits with Linear Transformers

A linear transformer is a four-terminal device in which the voltages and currents in the primary coils
are linearly related.

The transformer shown in figure 8.22 a linear transformer. This transformer contains a voltage
source in the primary, a load resistor in the secondary, and the resistors  and  represent the
resistances of the primary and secondary coils respectively. Moreover, the primary is referenced to
directly to ground, but the secondary is referenced to a DC voltage source  and thus it is said that
the secondary of the transformer has a DC isolation.

Figure 8.22. Transformer with DC isolation

Application of KVL around the primary and secondary circuits yields the loop equations

(8.53)

and we see that the instantaneous values of the voltages and the currents are not affected by the pres-
ence of the DC voltage source  since we would have obtained the same equations had we let

.

W t 0=
0=

W t 0=
0.5 50 10 3– 15 10 3– 2

20 10 3– 15 10 3– 40 10 3– 60sin+=

                              + 0.5 50 10 3– 40 10 3– 60sin
2

46 10 6– J 46 J= =

R1 R2

V0

v2

L1 L2

M

v1

i2
i1

R1

vin

R2

RLOAD

vout

V0 (DC)

vin R1i1 L1
di1
dt
------- M

di2
dt
-------–+=

0 M
di1
dt
-------– L2

di1
dt
------- R2 RLOAD++ +=

V0

V0 0=
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Example 8.6

For the transformer shown in Figure 8.23, find the total response of  for  given that

 and. . Use MATLAB to sketch  for .

Figure 8.23. Transformer for Example 8.6

Solution:

The total response consists of the summation of the forced and natural responses, that is,

(8.54)

and since the applied voltage is constant (DC), no steady-state (forced) voltage is produced in the sec-
ondary and thus .

For  the -domain circuit is shown in Figure 8.24.

Figure 8.24. The -domain circuit for the transformer of Example 8.6

The loop equations for this transformer are

(8.55)

Since we are interested only in , we will use Cramer’s rule.

i2 t 0

M 100 mH= i1 0 i2 0 0= = i2 0 t 5 s

L1 L2

R1

vin

R2

RLOAD

vout

t=0

24 V DC

100  200  

1 K
3 H 5 H

I1 I2

M 2 H=

i2T i2f i2n+=

i2f 0=

t 0 s

2s
100 200

24 s

vout s3s 5s
I1 s I2 s

1000

vin s

s

3s 100+ I1 s 2sI2 s– 24 s=

2sI1 s 5s 1200+ I2 s+– 0=

I2 s
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or

and by partial fraction expansion,

(8.56)

from which

(8.57)

(8.58)

By substitution into (8.56), we get

(8.59)

and taking the Inverse Laplace of (8.59) we get

(8.60)

Using the following MATLAB code we get the plot shown on Figure 8.25.

t=0: 0.001: 0.2; i2n=0.01.*(exp( 32.02*t) exp( 340.71.*t)); plot(t,i2n); grid

Example 8.7  

For the transformer of Figure 8.26, find the steady-state (forced) response of .
Solution:

The -domain equivalent circuit is shown in Figure 8.27.

We could use the same procedure as in the previous example, but it is easier to work with the transfer
function .

I2 s

3s 100+ 24 s
2s– 0

3s 100+ 2s–

2s– 5s 1200+

---------------------------------------------------- 48

11s2 4100s 120000+ +
-------------------------------------------------------- 4.36

s2 372.73s 10909.01+ +
-----------------------------------------------------------= = =

I2 s 4.36
s 340.71+ s 32.02+

---------------------------------------------------------=

I2 s 4.36
s 340.71+ s 32.02+

---------------------------------------------------------=
r1

s 340.71+
-------------------------

r2
s 32.02+
----------------------+=

r1
4.36

s 32.02+
----------------------

s 340.71–=

0.01–= =

r2
4.36

s 340.71+
-------------------------

s 32.02–=

0.01= =

I2 s 0.01
s 32.02+
---------------------- 0.01–

s 340.71+
-------------------------+=

i2n 0.01 e 32.02t– e 340.71t–
–=

vout

s

G s
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Figure 8.25. Plot for the secondary current of the transformer of Example 8.6

Figure 8.26. Circuit for Example 8.7

Figure 8.27. The s-domain equivalent circuit of Example 8.7

The loop equations for the transformer of Figure 8.27 are:

10

170 377t Vcos

vout

vin
100

2 H

3 H 5 H

0.1 F

10

100

2s

3s 5s

1 0.1s

Vout s
Vin s

I1 s I2 s

170 0 V
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(8.61)

and by Cramer’s rule,

or

From Figure 8.27 we see that

(8.62)

and

(8.63)

The input is a sinusoid, that is,

and since we are interested in the steady-state response, we let

and thus

From (8.63) we get:

or

3s 10 1 0.1s+ + I1 s 2s 1 0.1s+ I2 s– Vin s=

2s 1 0.1s+ I1 s– 5s 100 1 0.1s+ + I2 s+ 0=

I2 s

3s 10 1 0.1s+ + Vin s

2s 1 0.1s+– 0

3s 10 1 0.1s+ + 2s 1 0.1s+–

2s 1 0.1s+– 5s 100 1 0.1s+ +

---------------------------------------------------------------------------------------------------------=

I2 s
2s 10 s+ Vin s

11s2 350s 1040 1100 s+ + +
------------------------------------------------------------------------

2s2 10+ Vin s

11s3 350s2 1040s 1100+ + +
-----------------------------------------------------------------------= =

0.18s2 0.91+ Vin s

s3 31.82s2 94.55s 100+ + +
--------------------------------------------------------------------=

Vout s 100 I2 s 100
0.18s2 0.91+ Vin s

s3 31.82s2 94.55s 100+ + +
--------------------------------------------------------------------

18s2 91+ Vin s

s3 31.82s2 94.55s 100+ + +
--------------------------------------------------------------------= = =

G s
Vout s
Vin s
------------------ 18s2 91+

s3 31.82s2 94.55s 100+ + +
--------------------------------------------------------------------= =

vin 170 377t Vcos=

s j j377= =

Vin s Vin j= 170 0=

Vout j 2.56 106
– 91+

j– 5.36 107 4.52 106
– j3.56 104

+ 100+
--------------------------------------------------------------------------------------------------------------170 0 4.35 108

– 0

4.52– 106 j5.36 107
–

--------------------------------------------------------------= =
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(8.64)

and in the -domain,

(8.65)

The expression of (8.65) indicates that the transformer of this example is a step-down transformer.

8.8 Reflected Impedance in Transformers

In this section, we will see how the load impedance of the secondary can be reflected into the pri-
mary.

Let us consider the transformer phasor circuit of Figure 8.28. We assume that the resistance of the
primary and secondary coils is negligible.

Figure 8.28. Circuit for the derivation of reflected impedance

By KVL the loops equations in phasor notation are:

(8.66)

or

(8.67)

and

(8.68)

or

(8.69)

Vout j 4.35 108 180

5.38 107 94.82–
------------------------------------------------- 43.5 180

5.38 94.82–
---------------------------------- 8.09 274.82 8.09 85.18–= = = =

t

vout t 8.09 377t 85.18–cos=

M

VS

V2V1
I2I1

L1 L2

VLOAD

ZLOAD

j L1I1 j MI2– VS=

I2
j L1I1 VS–

j M
------------------------------=

j MI1– j L2 ZLOAD+ I2+ 0=

I2
j MI1

j L2 ZLOAD+
--------------------------------------=
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Equating the right sides of (8.67) and (8.69) we get:

(8.70)

Solving for  we get:

(8.71)

and dividing  by  we obtain the input impedance  as

(8.72)

The first term on the right side of (8.72) represents the reactance of the primary. The second term is
a result of the mutual coupling and it is referred to as the reflected impedance. It is denoted as , i.e., 

(8.73)

From (8.73), we make two important observations:

1. The reflected impedance  does not depend on the dot locations on the transformer. For
instance, if either dot in the transformer of the previous page is placed on the opposite terminal,
the sign of the mutual term changes from  to . But since  varies as , its sign remains
unchanged.

2. Let . Then, we can rewrite (8.73) as

(8.74)

To express (8.74) as the sum of a real and an imaginary component, we multiply both numerator
and denominator by the complex conjugate of the denominator. Then,

(8.75)

The imaginary part of (8.75) represents the reflected reactance and we see that it is negative. That
is, the reflected reactance is opposite to that of the net reactance  of the secondary.
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Reflected Impedance in Transformers

Therefore, if  is a capacitive reactance whose magnitude is less than , or if it is an induc-
tive reactance, then the reflected reactance is capacitive. However, if  is a capacitive reac-
tance whose magnitude is greater than , the reflected reactance is inductive. In the case where

the magnitude of  is capacitive and equal to , the reflected reactance is zero and the
transformer operates at resonant frequency. In this case, the reflected impedance is purely real
since (8.75) reduces to

(8.76)

Example 8.8

In the transformer circuit of Figure 8.29,  represents the internal impedance of the voltage source

.

Find:

a.

b.

c.

d.

e.

Figure 8.29. Transformer for Example 8.8
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Solution:

a. From (8.72)

and we must add  to it. Therefore, for the transformer of this example,

b.

c.  By KVL

or

d.

e.

8.9 The Ideal Transformer

An ideal transformer is one in which the coefficient of coupling is almost unity, and both the primary
and secondary inductive reactances are very large in comparison with the load impedances. The pri-
mary and secondary coils have many turns wound around a laminated iron-core and are arranged so
that the entire flux links all the turns of both coils.

An important parameter of an ideal transformer is the turns ratio  which is defined as the ratio of
the number of turns on the secondary, , to the number of turns of the primary , that is,
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(8.77)

The flux produced in a winding of a transformer due to a current in that winding is proportional to
the product of the current and the number of turns on the winding. Therefore, letting  be a con-
stant of proportionality which depends on the physical properties of the transformer, for the primary
and secondary windings we have:

(8.78)

The constant  is the same for the primary and secondary windings because we have assumed that
the same flux links both coils and thus both flux paths are identical. We recall from (8.8) and (8.14)
that

(8.79)

Then, from (8.78) and (8.79) we get:

(8.80)

or

(8.81)

Therefore,

(8.82)

From (8.69),

(8.83)

or

(8.84)

a
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and since , (8.84) reduces to

(8.85)

For the case of unity coupling,

(8.86)

or

(8.87)

and by substitution of (8.87) into (8.85) we get:

(8.88)

From (8.82) and (8.88), we obtain the important relation

(8.89)

Also, from (8.77) and (8.89),

(8.90)

and this relation indicates that if , the current  is larger than .

The primary and secondary voltages are also related to the turns ratio . To find this relation, we
define the secondary or load voltage  as

(8.91)

and the primary voltage  across  as

(8.92)

From (8.72),

(8.93)
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The Ideal Transformer

and for 

Then, (8.93) becomes

(8.94)

Next, from (8.82)

(8.95)

Substitution of (8.95) into (8.94) yields

(8.96)

and if we let , both terms on the right side of (8.96) become infinite and we get an indeter-
minate result. To work around this problem, we combine these terms and we get:

and as , 

(8.97)

Finally, substitution of (8.97) into (8.92) yields

(8.98)

and by division of (8.91) by (8.98) we get:

(8.99)

or

(8.100)
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also, from the current and voltage relations of (8.88) and (8.99),

(8.101)

that is, the volt-amperes of the secondary and the primary are equal.

An ideal transformer is represented by the network of Figure 8.30.

Figure 8.30. Ideal transformer representation

8.10  Impedance Matching

An ideal (iron-core) transformer can be used as an impedance level changing device. We recall from
basic circuit theory that to achieve maximum power transfer, we must adjust the resistance of the
load to make it equal to the resistance of the voltage source. But this is not always possible. A power
amplifier for example, has an internal resistance of several thousand ohms. On the other hand, a
speaker which is to be connected to the output of a power amplifier has a fixed resistance of just a
few ohms. In this case, we can achieve maximum power transfer by inserting an iron-core trans-
former between the output of the power amplifier and the input of the speaker as shown in Figure
8.31 where 

Figure 8.31. Transformer used as impedance matching device
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A Simplified Transformer Equivalent Circuit

Let us suppose that in Figure 8.31 the amplifier internal impedance is  and the impedance of
the speaker is only . We can find the appropriate turns ratio  using (8.97), that is,

(8.102)

or

or

(8.103)

that is, the number of turns in the primary must be 100 times the number of the turns in the second-
ary.

8.11  A Simplified Transformer Equivalent Circuit

In analyzing networks containing ideal transformers, it is very convenient to replace the transformer
by an equivalent circuit before the analysis. Consider the transformer circuit of Figure 8.32.

Figure 8.32. Circuit to be simplified

From (8.97)

The input impedance seen by the voltage source  in the circuit of Figure 8.32 is

(8.104)

and thus the circuit of Figure 8.32 can be replaced with the simplified circuit shown in Figure 8.33.
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Figure 8.33. Simplified circuit for the transformer of Figure 8.32

The voltages and currents can now be found from the simple series circuit if Figure 8.33.

8.12 Thevenin Equivalent Circuit

Let us consider again the circuit of Figure 8.32. This time we want to find the Thevenin equivalent to
the left of the secondary terminals and replace the primary by its Thevenin equivalent at points  and

 as shown in Figure 8.34. 

Figure 8.34. Circuit for the derivation of Thevenin’s equivalent

If we open the circuit at points  and  as shown in Figure 8.34, we find the Thevenin voltage as
. Since the secondary is now an open circuit, we have , and also 

because . Since no voltage appears across ,  and . Then,

(8.105)

We will find the Thevenin impedance  from the relation

(8.106)
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Thevenin Equivalent Circuit

* (8.107)

and by substitution into (8.106),

The Thevenin equivalent circuit with the load connected to it is shown in Figure 8.35.

Figure 8.35. The Thevenin equivalent of the transformer circuit in Figure 8.34

The circuit of Figure 8.35 was derived with the assumption that the dots are placed as shown in Fig-
ure 8.34. If either dot is reversed, we simply replace  by .

Example 8.9

For the circuit of Figure 8.36, find .
Solution:

We will replace the given circuit with its Thevenin equivalent. First, we observe that the dot in the
secondary has been reversed, and therefore we will replace  by . The Thevenin equivalent is

Figure 8.36. Circuit for Example 8.9

* Since  and  or  it follows that  also.
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obtained by multiplying  and the dependent source by  and the  resistor by

. With these modifications we obtain the circuit of Figure 8.37.

Figure 8.37. The Thevenin equivalent of the circuit of Example 8.9

Now, by application of KCL

or

Other equivalent circuits can be developed from the equations of the primary and secondary voltages
and currents.

Consider, for example the linear transformer circuit of Figure 8.38.

From (8.30), the primary and secondary voltages and currents are:

(8.108)
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Thevenin Equivalent Circuit

Figure 8.38. Linear transformer

and these equations are satisfied by the equivalent circuit shown in Figure 8.39.

Figure 8.39. Network satisfying the expressions of (8.108)

If we rearrange the equations of (8.108) as

(8.109)

these equations are satisfied by the circuit of Figure 8.40.

Figure 8.40. Network satisfying the expressions of (8.109)
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8.13 Summary

Inductance is associated with the magnetic field which is always present when there is an electric
current. 

The magnetic field loops are circular in form and are called lines of magnetic flux.

The magnetic flux is denoted as  and the unit of magnetic flux is the weber (Wb).

If there are  turns and we assume that the flux  passes through each turn, the total flux
denoted as  is called flux linkage. Then,

A linear inductor one in which the flux linkage is proportional to the current through it, that is,

where the constant of proportionality  is called inductance in webers per ampere.

Faraday’s law of electromagnetic induction states that

Lenz’s law states that whenever there is a change in the amount of magnetic flux linking an electric
circuit, an induced voltage of value directly proportional to the time rate of change of flux linkages
is set up tending to produce a current in such a direction as to oppose the change in flux.

A linear transformer is a four-terminal device in which the voltages and currents in the primary
coils are linearly related.

In a linear transformer, when there is no current in the secondary winding the voltages are

In a linear transformer, when there is no current in the primary winding, the voltages are

In a linear transformer, when there is a current in both the primary and secondary windings, the
voltages are

N
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L

v d
dt
------=
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di1
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-------= and v2 M21
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Summary

The voltage terms

are referred to as self-induced voltages.

The voltage terms

are referred to as mutual voltages.

The polarity of the mutual voltages is denoted by the dot convention. If a current  entering the
dotted (undotted) terminal of one coil induces a voltage across the other coil with positive polarity
at the dotted (undotted) terminal of the other coil, the mutual voltage term has a positive sign. If a
current  entering the undotted (dotted) terminal of one coil induces a voltage across the other coil
with positive polarity at the dotted (undotted) terminal of the other coil, the mutual voltage term
has a negative sign.

If the polarity (dot) markings are not given, they can be established by using the right-hand rule
which states that if the fingers of the right hand encircle a winding in the direction of the current,
the thumb indicates the direction of the flux. Thus, in an ideal transformer with primary and sec-
ondary windings  and  and currents  and  respectively, we place a dot at the upper end of

 and assume that the current  enters the top end thereby producing a flux in the clockwise
direction. Next, we want the current in  to enter the end which will produce a flux in the same
direction, in this case, clockwise.

The energy stored in a pair of mutually coupled inductors is given by

where the sign of  is positive if both currents enter the dotted (or undotted) terminals, and it is
negative if one current enters the dotted (or undotted) terminal while the other enters the undotted
(or dotted) terminal.

The ratio 
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is known as the coefficient of coupling and  provides a measure of the proximity of the primary
and secondary coils. If the coils are far apart, we say that they are loose-coupled, and has a small
value, typically between  and . For close-coupled circuits,  has a value of about .
Power transformers have a  between  and . The value of  is exactly unity only when
the two coils are coalesced into a single coil.

If the secondary of a linear transformer is referenced to a DC voltage source , it is said that the
secondary has DC isolation.

In a linear transformer, the load impedance of the secondary can be reflected into the primary can
be reflected into the primary using the relation

where  is referred to as the reflected impedance.

An ideal transformer is one in which the coefficient of coupling is almost unity, and both the pri-
mary and secondary inductive reactances are very large in comparison with the load impedances.
The primary and secondary coils have many turns wound around a laminated iron-core and are
arranged so that the entire flux links all the turns of both coils.

In an ideal transformer number of turns on the primary  and the number of turns on the sec-
ondary  are related to the primary and secondary currents  and  respectively as

An important parameter of an ideal transformer is the turns ratio  which is defined as the ratio of
the number of turns on the secondary, , to the number of turns of the primary , that is,

In an ideal transformer the turns ratio  relates the primary and secondary currents as

In an ideal transformer the turns ratio  relates the primary and secondary voltages as

k
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Summary

In an ideal transformer the volt-amperes of the primary and the secondary are equal, that is,

An ideal transformer can be used as an impedance matching device by specifying the appropriate
turns ratio . Then,

In analyzing networks containing ideal transformers, it is very convenient to replace the trans-
former by an equivalent circuit before the analysis. One method is presented in Section 8.11.

An ideal transformer can be replaced by a Thevenin equivalent as discussed in Section 8.12. 
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8.14  Exercises

1. For the transformer of Figure 8.41, find  for .

Figure 8.41. Circuit for Exercise 1

2. For the transformer circuit of Figure 8.42, find the phasor currents  and .

Figure 8.42. Circuit for Exercise 2

3. For the network of Figure 8.43, find the transfer function .

Figure 8.43. Circuit for Exercise 3
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Exercises

4. For the transformer of Figure 8.44, find the average power delivered to the  resistor.

Figure 8.44. Circuit for Exercise 4

5. Replace the transformer of Figure 8.45 by a Thevenin equivalent and then compute 

and

Figure 8.45. Circuit for Exercise 5

6. For the circuit of Figure 8.46, compute the turns ratio  so that maximum power will be delivered
to the  resistor.

Figure 8.46. Circuit for Exercise 6
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8.15 Solutions to Exercises

1.

Application of KVL in the primary yields

  (1)

The total solution of  is the sum of the forced component  and the natural response , i.e.,

From (1) we find that  and  is found from the characteristic equation 

from which  and thus . Then,

  (2)

Since we are not told otherwise, we will assume that  and from (2)  or
 and by substitution into (2)

The voltage  is found from

and since ,
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Solutions to Exercises

2.

The mesh equations for primary and secondary are:

By Cramer’s rule,

where

Thus,

Check with MATLAB:

Z=[1+j j; j 2 2j]; V=[10 0]'; I=Z\V;
fprintf('magI1 = %5.2f A \t', abs(I(1))); fprintf('phaseI1 = %5.2f deg ',angle(I(1))*180/pi);...
fprintf(' \n');...
fprintf('magI2 = %5.2f A \t', abs(I(2))); fprintf('phaseI2 = %5.2f deg ',angle(I(2))*180/pi);...
fprintf(' \n')

magI1 =  5.66 A   phaseI1 = -45.00 deg
magI2 =  2.00 A   phaseI2 = 90.00 deg
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3.

We will find  from . The three mesh equations in matrix form are:

We will use MATLAB to find the determinant  of the  matrix.

syms s
delta=[s+1  0.5*s  0.5*s; 0.5*s  s+1  0.5*s;  0.5*s  0.5*s  s+1]; det_delta=det(delta)

det_delta =
9/4*s^2+3*s+1

d3=[s+1  0.5*s  0.5*s;  0.5*s  s+1  0.5*s;  1  0  0]; det_d3=det(d3)

det_d3 =
3/4*s^2+1/2*s

I3=det_d3/det_delta

I3 =
(3/4*s^2+1/2*s)/(9/4*s^2+3*s+1)

simplify(I3)

ans =
s/(3*s+2)

Therefore,

and

+

VOUT s

VIN s

1
1

1

0.5s

s

s

s

0.5s

0.5s

I1

I2

I3

VOUT s VOUT s 1 I3=

s 1+ 0.5s– 0.5s–

0.5s– s 1+ 0.5s–

0.5s– 0.5s– s 1+

1
0
0

VIN s=

3 3

VOUT s 1 I3 VIN s s 3s 2+ VIN s= =

G s VOUT s VIN s s 3s 2+= =
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Solutions to Exercises

4.

For this exercise,  and thus we need to find .

At Node ,

  (1)

From the primary circuit,
  (2)

Since , , and , it follows that  and . By substi-
tution into (2) we get

  (3)

Addition of (1) and (3) yields

from which . Then,

and

2
8

4

1:2

4 0

A

I4

I1 I2

V1 V2

a 2=

Pave 4
1
2
--- I4

24= I4

A
V2
4

------
V2 4 0–

8
-------------------------- I2–+ 0=

3V2
8

--------- I2– 1
2
---=

2I1 V1+ 4=

I2 I1 1 a= V2 V1 a= a 2= I1 2I2= V1 V2 2=

4I2
V2
2

------+ 4=

I2
V2
8

------+ 1=

3V2
8

---------
V2
8

------+ 1
2
--- 1+=

V2 3=

I4
V2
4

------ 3
4
---= =

Pave 4
1
2
--- 3

4
---

2
4 9

8
--- w= =
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5.

Because the dot on the secondary is at the lower end, . Then,

and

6.

From (8.102)

Then, 

or

2 j3+

12 0

V1

1:5I1
I2

V2 100 j75– ZLOAD

x

y

aVS

a2ZS

V2 aV1=

I2 I1 a=

x

y

VS

a 5–=

aVS 5 12 0– 60 0– 60 180= = =

a2ZS 25 2 j3+ 50 j75+ 90.14 56.31= = =

ZLOAD 100 j75– 125 36.87–= =

I2
aVS

a2ZS ZLOAD+
-------------------------------- 60 180

50 j75 100 j75–+ +
----------------------------------------------- 60 180

150
---------------------- 2

5
--- 180= = = =

V2 ZLOAD I2 125 36.87–
2
5
--- 180 50 143.13 V= = =

12 0 V

1:a
4

10 K

Zin
ZLOAD

a 2
--------------=

a 2 ZLOAD

Zin
-------------- 10000

4
--------------- 2500= = =

a 50=
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Chapter 9

One- and Two-port Networks

his chapter begins with the general principles of one and two-port networks. The , , , and
 parameters are defined. Several examples are presented to illustrate their use. It concludes

with a discussion on reciprocal and symmetrical networks.

9.1  Introduction and Definitions

Generally, a network has two pairs of terminals; one pair is denoted as the input terminals, and the
other as the output terminals. Such networks are very useful in the design of electronic systems, trans-
mission and distribution systems, automatic control systems, communications systems, and others
where electric energy or a signal enters the input terminals, it is modified by the network, and it exits
through the output terminals.

A port is a pair of terminals in a network at which electric energy or a signal may enter or leave the
network. A network that has only one pair a terminals is called a one-port network. In an one-port
network, the current that enters one terminal must exit the network through the other terminal.
Thus, in Figure 9.1, 

Figure 9.1. One-port network

Figures 9.2 and 9.3 show two examples of practical one-port networks.

Figure 9.2. An example of an one-port network

T z y h
g

iin iout=

iin

iout

+

+

VL

12 V

++

3 3

5

6
10

7

8

RL

I L+

Ix

20Ix

4

iin

iout
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Figure 9.3. Another example of an one-port network

A two-port network has two pairs of terminals, that is, four terminals as shown in Figure 9.4 where
 and 

Figure 9.4. Two-port network

9.2 One-port Driving-point and Transfer Admittances

Let us consider an  network and write the mesh equations for this network in terms of the
impedances . We assume that the subscript of each current corresponds to the loop number and
KVL is applied so that the sign of each  is positive. The sign of any  for  can be positive or
negative depending on the reference directions of  and .

(9.1)

In (9.1) each current can be found by Cramer’s rule. For instance, the current  is found by

(9.2)

where

120 V

8

++

2

20 

4 6

10 16

iin

iout

i1 i3= i2 i4=

i1 i2+ +

i4i3

n port–

Z
Zii Zij i j

ii ij

Z11i1 Z12i2 Z13i3 Z1nin+ + + + v1=

Z21i1 Z22i2 Z23i3 Z2nin+ + + + v2=

Zn1i1 Zn2i2 Zn3i3 Znnin+ + + + vn=

i1

i1
D1------=
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One-port Driving-point and Transfer Admittances

(9.3)

(9.4)

Next, we recall that the value of the determinant of a matrix  is the sum of the products obtained by
multiplying each element of any row or column by its cofactor*. The cofactor, with the proper sign, is
the matrix that remains when both the row and the column containing the element are eliminated.
The sign is plus (+) when the sum of the subscripts is even, and it is minus ( ) when it is odd. Mathe-
matically, if the cofactor of the element  is denoted as , then

(9.5)

where  is the minor of the element . We recall also that the minor is the cofactor without a
sign.

Example 9.1

Compute the determinant of  from the elements of the first row and their cofactors given that

Solution:

* A detailed discussion on cofactors is included in Appendix C.

Z11 Z12 Z13 Z1n

Z21 Z22 Z23 Z2n

Z31 Z32 Z33 Z3n

Zn1 Zn2 Zn3 Znn

=

D1

V1 Z12 Z13 Z1n

V2 Z22 Z23 Z2n

V3 Z32 Z33 Z3n

Vn Zn2 Zn3 Znn

=

A

aqr Aqr

Aqr 1– q r+ Mqr=

Mqr aqr

A

A
1 2 3–

2 4– 2
1– 2 6–

=

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–

1– 2
–– 1 20 2 10– 3 0–– 40= =
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Using the cofactor concept, and denoting the cofactor of the element  as , we find that the
cofactors of , , and  of (9.1) are respectively,

(9.6)

(9.7)

(9.8)

Therefore, we can express (9.2) as

(9.9)

Also,

(9.10)

and the other currents , , and so on can be written in similar forms.
In network theory the  parameters are defined as

(9.11)

Likewise,

(9.12)

and so on. By substitution of the  parameters into (9.9) and (9.10) we get:

aij Cij

Z11 Z12 Z21

C11

Z22 Z23 Z2n

Z32 Z33 Z3n

Zn2 Zn3 Znn

=

C12

Z21 Z23 Z2n

Z31 Z33 Z3n

Zn1 Zn3 Znn

–=

C21

Z12 Z13 Z1n

Z32 Z33 Z3n

Zn2 Zn3 Znn

–=

i1
D1------

C11v1--------------
C21v2--------------

C31v3--------------
Cn1vn--------------+ + + += =

i2
D2------

C12v1--------------
C22v2--------------

C32v3--------------
Cn2vn--------------+ + + += =

i3 i4

yij

y11
C11--------= y12

C21--------= y13
C31--------=

y21
C12--------= y22

C22--------= y23
C32--------=

y
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(9.13)

(9.14)

If the subscripts of the -parameters are alike, such as ,  and so on, they are referred to as driv-

ing-point admittances. If they are unlike, such as ,  and so on, they are referred to as transfer
admittances.

If a network consists of only two loops such as in Figure 9.5, 

Figure 9.5. Two loop network 

the equations of (9.13) and (9.14) will have only two terms each, that is, 

(9.15)

(9.16)

From Figure 9.5 we observe that there is only one voltage source, ; there is no voltage source in
Loop 2 and thus . Then, (9.15) and (9.16) reduce to

(9.17)

(9.18)

Relation (9.17) reveals that the driving-point admittance  is the ratio . That is, the driving-
point admittance, as defined by (9.17), is the admittance seen by a voltage source that is present in the
respective loop, in this case, Loop 1. Stated in other words, the driving-point admittance is the ratio of
the current in a given loop to the voltage source in that loop when there are no voltage sources in any other
loops of the network.

Transfer admittance is the ratio of the current in some other loop to the driving voltage source, in this
case . As indicated in (9.18), the transfer admittance  is the ratio of the current in Loop 2 to the
voltage source in Loop 1.

i1 y11v1 y12v2 y13v3 y1nvn+ + + +=

i2 y21v1 y22v2 y23v3 y2nvn+ + + +=

y y11 y22

y12 y21

++

R1

R2

R3

i1 i2

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

v1

v2 0=

i1 y11v1=

i2 y21v1=

y11 i1 v1

v1 y21
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Example 9.2  

For the circuit of Figure 9.6, find the driving-point and transfer admittances and the current through
each resistor. 

Figure 9.6.  Circuit for Example 9.2

Solution:

We assign currents as shown in Figure 9.7.

Figure 9.7. Loop equations for the circuit of Example 9.2

The loop equations are 

(9.19)

The driving-point admittance is found from (9.11), that is,

(9.20)

and the transfer admittance from (9.12), that is,

 (9.21)

For this example,

4
v1

++

R1

R2

R3

24 V

12

6

4
v1

++

R1

R2

R3

24 V

12

6

i1 i2

10i1 6i2– 24=

6i1– 18i2+ 0=

y11
C11--------=

y21
C12--------=
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One-port Driving-point and Transfer Impedances

(9.22)

The cofactor  is obtained by inspection from the matrix of (9.22), that is, eliminating the first row
and first column we are left with 18 and thus . Similarly, the cofactor  is found by elim-
inating the first row and second column and changing the sign of . Then, . By substitution
into (9.20) and (9.21), we obtain 

(9.23)

and

(9.24)

Then, by substitution into (9.17) and (9.18) we get 

(9.25)

(9.26)

Finally, the we observe that the current through the  resistor is , through the  is 
and through the  is 

Of course, there are other simpler methods of computing these currents. However, the intent here
was to illustrate how the driving-point and transfer admittances are applied. These allow easy compu-
tation for complicated network problems.

9.3 One-port Driving-point and Transfer Impedances

Now, let us consider an  network and write the nodal equations for this network in terms of
the admittances . We assume that the subscript of each current corresponds to the loop number
and KVL is applied so that the sign of each  is positive. The sign of any  for  can be posi-
tive or negative depending on the reference polarities of  and .

(9.27)

10 6–

6– 18
180 36– 144= = =

C11

C11 18= C12

6– C12 6=

y11
C11-------- 18

144
--------- 1

8
---= = =

y21
C12-------- 6

144
--------- 1

24
------= = =

i1 y11v1
1
8
--- 24 3 A= = =

i2 y21v1
1

24
------ 24 1 A= = =

4 3 A 12 1 A
6 i1 i2– 3 1– 2A= =

n port–

Y
Yii Yij i j

vi vj

Y11v1 Y12v2 Y13v3 Y1nvn+ + + + i1=

Y21v1 Y22v2 Y23v3 Y2nvn+ + + + i2=

Yn1v1 Yn2v2 Yn3v3 Ynnvn+ + + + in=
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In (9.27), each voltage can be found by Cramer’s rule. For instance, the voltage  is found by

(9.28)

where

(9.29)

(9.30)

As in the previous section, we find that the nodal equations of (9.27) can be expressed as

(9.31)

(9.32)

(9.33)

and so on, where

(9.34)

(9.35)

(9.36)

and so on. The matrices  represent the cofactors as in the previous section.

v1

v1
D1------=

Y11 Y12 Y13 Y1n

Y21 Y22 Y23 Y2n

Y31 Y32 Y33 Y3n

Yn1 Yn2 Yn3 Ynn

=

D1

V1 Y12 Y13 Y1n

V2 Y22 Y23 Y2n

V3 Y32 Y33 Y3n

Vn Yn2 Yn3 Ynn

=

v1 z11i1 z12i2 z13i3 z1nin+ + + +=

v2 z21i1 z22i2 z23i3 z2nin+ + + +=

v3 z31i1 z32i2 z33i3 z3nin+ + + +=

z11
C11--------= z12

C21--------= z13
C31--------=

z21
C12--------= z22

C22--------= z23
C32--------=

z31
C13--------= z32

C23--------= z33
C33--------=

Cij
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One-port Driving-point and Transfer Impedances

The coefficients of (9.31), (9.32), and (9.33) with like subscripts are referred to as driving-point imped-
ances. Thus, ,  and so on, are driving-point impedances. The remaining coefficients with unlike
subscripts, such as ,  and so on, are called transfer impedances.

To understand the meaning of the driving-point and transfer impedances, we examine the network of
Figure 9.8 where  is the reference node and nodes  and  are independent nodes. The driving
point impedance is the ratio of the voltage across the nodes  and  to the current that flows
through the branch between these nodes. In other words,

(9.37)

Figure 9.8. Circuit to illustrate the definitions of driving-point and transfer impedances.

The transfer impedance between nodes  and  is the ratio of the voltage  to the current at node
when there are no other current (or voltage) sources in the network. That is,

(9.38)

Example 9.3

For the network of Figure 9.9, compute the driving-point and transfer impedances and the voltages
across each conductance in terms of the current source.

Figure 9.9. Network for Example 9.3.

z11 z22

z12 z21

0 1 2
1 0

z11
v1
i1
-----=

G1

G2

G3

i1

v1
v2

v0

2

0

1

vS

2 1 v2

1

z21
v2
i1
-----=

10 1–

2 1– 1 1–

+

i1

1 1–

1 1–

1 1–
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Solution:

We assign nodes , , , and  as shown in Figure 9.10.

Figure 9.10. Node assignment for network of Example 9.3

The nodal equations are 

(9.39)

Simplifying and rearranging we get:

(9.40)

The driving-point impedance  is found from (9.34), that is,

 (9.41)

and the transfer impedances  and  from (9.35) and (9.36), that is,

 (9.42)

(9.43)

For this example,

0 1 2 3

+ 10

2i1

v0

v1

v2

1

2 3

0

1

1
1 1

v3

10v1 2 v1 v2– 1 v1 v3–+ + i1=

2 v2 v1– 1 v2 v3– 1v2+ + 0=

1 v3 v1– 1 v3 v2– 1v3+ + 0=

13v1 2v2– v3– i1=

2v1– 4v2 v3–+ 0=

v1– v2– 3v3+ 0=

z11

z11
C11--------=

z21 z31

z21
C12--------=

z31
C13--------=
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One-port Driving-point and Transfer Impedances

(9.44)

The cofactor  is

(9.45)

Similarly, the cofactors  and  are

(9.46)

and

(9.47)

By substitution into (9.41), (9.42), and (9.43), we obtain 

(9.48)

(9.49)

(9.50)

Then, by substitution into (9.31), (9.32), and (9.33) we get: 

(9.51)

(9.52)

(9.53)

Of course, there are other simpler methods of computing these voltages. However, the intent here
was to illustrate how the driving-point and transfer impedances are applied. These allow easy compu-
tation for complicated network problems.

13 2– 1–

2– 4 1–

1– 1– 3
156 2– 2– 4– 13– 12– 123= = =

C11

C11
4 1–

1– 3
12 1– 11= = =

C12 C13

C12
2– 1–

1– 3
– 6– 1–– 7= = =

C13
2– 4
1– 1–

2 4+ 6= ==

z11
C11-------- 11

123
---------= =

z21
C12-------- 7

123
---------= =

z31
C13-------- 6

123
---------= =

v1 z11i1 z12i2 z13i3+ +
11

123
---------i1= =

v2 z21i1 z22i2 z23i3+ +
7

123
---------i1= =

v3 z31i1 z32i2 z33i3+ +
6

123
---------i1= =
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9.4 Two-Port Networks

Figure 9.11 shows a two-port network with external voltages and currents specified.

Figure 9.11. Two-port network

Here, we assume that  and . We also assume that  and  are obtained by the super-
position of the currents produced by both  and . 

Now, we will define the , , , and  parameters.

9.4.1 The y Parameters

The two-port network of Figure 9.11 can be described by the following set of equations.

(9.54)

(9.55)

In two-port network theory, the  coefficients are referred to as the  parameters.

Let us assume that  is shorted, that is, . Then, (9.54) reduces to

(9.56)

or

(9.57)

and  is referred to as the short circuit input admittance at the left port when the right port of Fig-
ure 9.11 is short-circuited.

Let us again consider (9.54), that is,

(9.58)

This time we assume that  is shorted, i.e., . Then, (9.58) reduces to

 (9.59)

i1 i2+ +

i4
i3

v1 v2

Linear network
(Consists of linear 

passive devices and
possibly dependent
sources but no
independent sources

i1 i3= i2 i4= i1 i2

v1 v2

y z h g

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

y y

v2 v2 0=

i1 y11v1=

y11
i1
v1
-----=

y11

i1 y11v1 y12v2+=

v1 v1 0=

i1 y12v2=
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Two-Port Networks

or

(9.60)

and  is referred to as the short circuit transfer admittance when the left port of Figure 9.11 is short-
circuited. It represents the transmission from the right to the left port. For instance, in amplifiers
where the left port is considered to be the input port and the right to be the output, the parameter

 represents the internal feedback inside the network. 

Similar expressions are obtained when we consider the equation for , that is,

(9.61)

In an amplifier, the parameter  is also referred to as the short circuit transfer admittance and rep-
resents transmission from the left (input) port to the right (output) port. It is a measure of the so-
called forward gain. 

The parameter  is called the short circuit output admittance.

The  parameters and the conditions under which they are computed are shown in Figures 9.12

through 9.16.

Figure 9.12. The y parameters for  and 

Figure 9.13. Network for the definition of the  parameter

y12
i1
v2
-----=

y12

y12

i2

i2 y21v1 y22v2+=

y21

y22

y

i1 i2
+

i4
i3

v1

v2

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

+ +

v1 0 v2 0

i1 i2
i4i3v1

v2=0

y11
i1
v1
-----

v2 0=

=

+

y11
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Figure 9.14. Network for the definition of the  parameter

Figure 9.15. Network for the definition of the  parameter

Figure 9.16. Network for the definition of the  parameter

Example 9.4  

For the network of Figure 9.17, find the  parameters.

Solution:

a. The short circuit input admittance  is found from the network of Figure 9.18 where we have
assumed that  and the resistances, for convenience, have been replaced with conduc-
tances in mhos.

Figure 9.17. Network for Example 9.4

i1 i2

i4i3 v2

v1=0

y12
i1
v2
-----

v1 0=

=

+

y12

i1 i2
i4i3v1

v2=0

y21
i2
v1
-----

v2 0=

=

+

y21

i1 i2

i4i3 v2

v1=0

y22
i2
v2
-----

v1 0=

=

+

y22

y

y11

v1 1 V=

5 20 

10 
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Two-Port Networks

Figure 9.18. Network for computing 

We observe that the  conductance is shorted out and thus the current  is the sum of

the currents through the  and  conductances. Then,

and thus the short circuit input admittance is

(9.62)

b. The short circuit transfer admittance  when the left port is short-circuited, is found from the
network of Figure 9.19.

Figure 9.19. Network for computing 

We observe that the  conductance is shorted out and thus the  conductance is in

parallel with the  conductance. The current , with a minus ( ) sign, now flows through

the  conductance. Then,

and

(9.63)

+

v1 = 1 V

v2 = 0

i1 0.1 1–

0.2 1–

0.05 1–

y11

0.05 1– i1

0.2 1– 0.1 1–

i1 0.2v1 0.1v1+ 0.2 1 0.1 1+ 0.3 A= = =

y11 i1 v1 0.3 1 0.3 1–= = =

y12

+

v2 = 1 V

v1 = 0

i1 0.1 1–

0.2 1–

0.05 1–

y12

0.2 1– 0.1 1–

0.05 1– i1

0.1 1–

i1 0.1v2 0.1– 1=– 0.1– A= =

y12 i1 v2 0.1– 1 0.1 1––= = =
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c. The short circuit transfer admittance  when the right port is short-circuited, is found from the
network of Figure 9.20.

Figure 9.20. Network for computing 

We observe that the  conductance is shorted out and thus the  conductance is in

parallel with the  conductance. The current , with a minus ( ) sign, now flows through

the  conductance. Then,

and

(9.64)

d. The short circuit output admittance  at the right port when the left port is short-circuited, is
found from the network of 9.21.

Figure 9.21. Network for computing 

We observe that the  conductance is shorted out and thus the current  is the is the sum

of the currents through the  and  conductances. Then,

y21

+

v1 = 1 V

v2 = 0

i20.1 1–

0.2 1–

0.05 1–

y21

0.05 1– 0.1 1–

0.2 1– i2

0.1 1–

i2 0.1v1 0.1– 1=– 0.1– A= =

y21 i2 v1 0.1– 1 0.1 1––= = =

y22

+

v2 = 1 V

v1 = 0

i20.1 1–

0.2 1–

0.05 1–

y22

0.2 1– i2

0.05 1– 0.1 1–

i2 0.05v2 0.1v2+ 0.05 1 0.1 1+ 0.15 A= = =
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and

(9.65)

Therefore, the two-port network of Figure 9.10 can be described by the following set of equations.

(9.66)

Note:

In Example 9.4, we found that the short circuit transfer admittances are equal, that is,

(9.67)

This is not just a coincidence; this is true whenever a two-port network is reciprocal (or bilateral). A
network is reciprocal if the reciprocity theorem is satisfied. This theorem states that:

If a voltage applied in one branch of a linear, two-port passive network produces a certain current in any
other branch of this network, the same voltage applied in the second branch will produce the same current
in the first branch.

The reverse is also true, that is, if current applied at one node produces a certain voltage at another,
the same current at the second node will produce the same voltage at the first. An example is given at
the end of this chapter.

Obviously, if we know that the two-port network is reciprocal, only three computations are required
to find the  parameters.

If in a reciprocal two-port network its ports can be interchanged without affecting the terminal volt-
ages and currents, the network is said to be also symmetric. In a symmetric two-port network, 

(9.68)

The network of Figure 9.17 is not symmetric since 

We will present examples of reciprocal and symmetric two-port networks at the last section of this
chapter.

The following example illustrates the applicability of two-port network analysis in more complicated
networks.

Example 9.5

For the network of Figure 9.22, compute , , , and .

y22 i2 v2 0.15 1 0.15 1–= = =

i1 y11v1 y12v2+ 0.3v1 0.1v2–= =

i2 y21v1 y22v2+ 0.1– v1 0.3v2+= =

y21 y12 0.1–= =

y

y22 y11=

y21 y12=

y22 y11

v1 v2 i1 i2
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Figure 9.22. Network for Example 9.5

Solution:

We recognize the portion of the network enclosed in the dotted square, shown in Figure 9.23, as that
of the previous example.

Figure 9.23. Portion of the network for which the  parameters are known.

For the network of Figure 9.23, at Node 1,

(9.69)

and at Node 2,

(9.70)

By substitution of (9.69) and (9.70) into (9.66), we get:

(9.71)

or

(9.72)

We will use MATLAB to solve the equations of (9.72) to become more familiar with it.

v1 v2

i2

15 A

10

5

10 

20 

4

++
i1

v1 v2

i2

15 A

10 

5

10 

20 

4

++
i1

1 2

y

i1 15 v1 10–=

i2 v2 4–=

i1 y11v1 y12v2+ 0.3v1 0.1v2– 15 v1 10–= = =

i2 y21v1 y22v2+ 0.1– v1 0.3v2+ v2 4–= = =

0.4v1 0.1v2– 15=

0.1– v1 0.4v2+ 0=
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syms v1 v2; [v1 v2]=solve(0.4*v1 0.1*v2 15, 0.1*v1+0.4*v2)

v1 = 40

v2 = 10

and thus

(9.73)

The currents  and  are found from (9.69) and (9.70).

(9.74)

9.4.2 The z parameters

A two-port network such as that of Figure 9.24 can also be described by the following set of equa-
tions.

Figure 9.24. The z parameters for  and 

(9.75)

(9.76)

In two-port network theory, the  coefficients are referred to as the  parameters or as open circuit
impedance parameters.

Let us assume that  is open, that is,  as shown in Figure 9.25.

Figure 9.25. Network for the definition of the  parameter

v1 40 V=

v2 10 V=

i1 i2

i1 15 40 10– 11 A= =

i2 10 4– 2.5 A–= =

i1 i2

v1 z11i1 z12i2+=
v2 z21i1 z22i2+=

v1
+ +

v2

i1 0 i2 0

v1 z11i1 z12i2+=

v2 z21i1 z22i2+=

zij z

v2 i2 0=

i1

i2=0

z11
v1
i1
-----

i2 0=

=

v1
+ +

v2

z11



Chapter 9  One- and Two-port Networks

9-20 Circuit Analysis II with MATLAB Applications
Orchard Publications

Then, (9.75) reduces to

 (9.77)

or

(9.78)

and this is the open circuit input impedance when the right port of Figure 9.25 is open.

Let us again consider (9.75), that is,

(9.79)

This time we assume that the terminal at  is open, i.e.,  as shown in Figure 9.26.

Figure 9.26. Network for the definition of the  parameter

Then, (9.75) reduces to

 (9.80)

or

(9.81)

and this is the open circuit transfer impedance  when the left port is open as shown in Figure 9.26.

Similar expressions are obtained when we consider the equation for , that is,

(9.82)

Let us assume that  is open, that is,  as shown in Figure 9.27.

Then, (9.82) reduces to

 (9.83)

v1 z11i1=

z11
v1
i1
-----=

v1 z11i1 z12i2+=

v1 i1 0=

i2

i1=0

z12
v1
i2
-----

i1 0=

=

v1
+ +

v2

z12

v1 z12i2=

z12
v1
i2
-----=

v2

v2 z21i1 z22i2+=

v2 i2 0=

v2 z21i1=
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Figure 9.27. Network for the definition of the  parameter

or

(9.84)

The parameter  is referred to as open circuit transfer impedance when the right port is open as
shown in Figure 9.27.

Finally, let us assume that the terminal at  is open, i.e.,  as shown in Figure 9.28.

Figure 9.28. Network for the definition of the  parameter

Then, (9.82) reduces to

 (9.85)

or

(9.86)

The parameter  is called the open circuit output impedance.

We observe that the  parameters definitions are similar to those of the  parameters if we substitute
voltages for currents and currents for voltages. 

Example 9.6

For the network of Figure 9.29, find the  parameters.

i1
i2=0

z21
v2
i1
-----

i2 0=

=

v1
+ +

v2

z21

z21
v2
i1
-----=

z21

v1 i1 0=

i2

i1=0

z22
v2
i2
-----

i1 0=

=

v1
+ +

v2

z22

v2 z22i2=

z22
v2
i2
-----=

z22

z y

z
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Figure 9.29. Network for Example 9.6

Solution:

a. The open circuit input impedance  is found from the network of Figure 9.30 where we have
assumed that .

Figure 9.30. Network for computing for the network of Figure 9.29

We observe that the  resistor is in parallel with the series combination of the  and 
resistors. Then, by the current division expression, the current through the  resistor is 
and the voltage across that resistor is

Therefore, the open circuit input impedance  is

(9.87)

b. The open circuit transfer impedance  is found from the network of Figure 9.31.

We observe that the  resistance is in parallel with the series combination of the  and
 resistances. Then, the current through the  resistance is

20 15 

5

z11

i1 1 A=

+

i1 = 1 A

i2 = 0v1 20 15 

5 +

v2

z11

20 5 15
20 0.5 A

v1 20 0.5 10 V= =

z11

z11 v1 i1 10 1 10= = =

z12

15 5
20 20

i20
15

15 5 20+ +
--------------------------- i2

15
40
------ 1 3 8= A= =
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Figure 9.31. Network for computing  for the network of Figure 9.29

and the voltage across this resistor is

Therefore, the open circuit transfer impedance  is 

(9.88)

c. The open circuit transfer impedance  is found from the network of Figure 9.32.

In Figure 9.32 the current that flows through the  resistor is

Figure 9.32. Network for computing  for the network of Figure 9.29

and the voltage across this resistor is

Therefore, the open circuit transfer impedance  is 

(9.89)

+

i2 = 1 A

i1 = 0

+

v1 v220 

5

15 

z12

3
8
--- 20 60

8
------ 15 2= = V

z12

z12
v1
i2
----- 15 2

1
------------- 7.5= = =

z21

15

i15
20

20 5 15+ +
---------------------------i1

20
40
------ 1 1 2= A= =

+

i1 = 1 A

i2 = 0v1 20 15 

5 +

v2

z21

v2
1
2
--- 15 15 2= = V

z21

z21
v2
i1
----- 15 2

1
------------- 7.5= = =
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We observe that 

(9.90)

d. The open circuit output impedance  is found from the network of Figure 9.33.

Figure 9.33. Network for computing  for the network of Figure 9.29

We observe that the  resistance is in parallel with the series combination of the  and
 resistances. Then, the current through the  resistance is

and the voltage across that resistor is

Therefore, the open circuit output impedance  is 

(9.91)

9.4.3 The h Parameters

A two-port network can also be described by the set of equations

(9.92)

(9.93)

as shown in Figure 9.34.

The  parameters represent an impedance, a voltage gain, a current gain, and an admittance. For this
reason they are called hybrid (different) parameters.

Let us assume that  as shown in Figure 9.35.

z21 z12=

z22

+

i2 = 1 A

i1 = 0

+

v1 v220 

5

15 

z22

15 5
20 15

i15
20 5+

20 5 15+ +
--------------------------- i2

25
40
------ 1 5 8= A= =

5
8
--- 15 75 8= V

z22

z22
v1
i2
----- 75 8

1
------------- 75 8= = =

v1 h11i1 h12v2+=

i2 h21i1 h22v2+=

h

v2 0=
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Figure 9.34. The h parameters for  and 

Figure 9.35. Network for the definition of the  parameter

Then, (9.92) reduces to

 (9.94)

or

(9.95)

Therefore, the parameter  represents the input impedance of a two-port network.

Let us assume that  as shown in Figure 9.36.

Figure 9.36. Network for computing  for the network of Figure 9.34

Then, (9.92) reduces to

 (9.96)

or

(9.97)

i1

i2

v1 h11i1 h12v2+=
i2 h21i1 h22v2+=

v1
+ +

v2

i1 0 v2 0

i1

v2=0

h11
v1
i1
-----

v2 0=

=

v1
+ i2

h11

v1 h11 i1=

h11
v1
i1
-----=

h11

i1 0=

v2

i1=0

h12
v1
v2
-----

i1 0=

=

v1
+ +i2

h12

v1 h12 v2=

h12
v1
v2
-----=
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Therefore, in a two-port network the parameter  represents a voltage gain (or loss).

Let us assume that  as shown in Figure 9.37.

Figure 9.37. Network for computing  for the network of Figure 9.34

Then, (9.93) reduces to

or

Therefore, in a two-port network the parameter  represents a current gain (or loss).

Finally, let us assume that the terminal at  is open, i.e.,  as shown in Figure 9.38.

Figure 9.38. Network for computing  for the network of Figure 9.34

Then, (9.93) reduces to

or

Therefore, in a two-port network the parameter  represents an output admittance.

Example 9.7  

For the network of Figure 9.39, find the  parameters.

h12

v2 0=

i1
v2=0

h21
i2
i1
----

v2 0=

=

v1
+ i2

h21

i2 h21i1=

h21
i2
i1
----=

h21

v1 i1 0=

i2i1=0

h22
i2
v2
-----

i1 0=

=

v1
+

+
v2

h22

i2 h22v2=

h22
i2
v2
-----=

h22

h
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Figure 9.39. Network for Example 9.7

Solution:

a. The short circuit input impedance  is found from the network of Figure 9.40 where we have
assumed that .

Figure 9.40. Network for computing  for the network of Figure 9.39

From the network of Figure 9.40 we observe that the  and  resistors are in parallel yield-
ing an equivalent resistance of  in series with the  resistor. Then, the voltage across the
current source is

Therefore, the short circuit input impedance  is

(9.98)

b. The voltage gain  is found from the network of Figure 9.41.

Since no current flows through the  resistor, the voltage  is the voltage across the  resis-
tor. Then, by the voltage division expression,

1 6

4

h11

i1 1 A=

1 6

4

+

v1

i1 = 1 A

v2 = 0

i2

h11

4 6
2.4 1

v1 1 1 2.4+ 3.4 V= =

h11

h11
v1
i1
----- 3.4

1
------- 3.4= = =

h12

1 v1 4

v1
4

6 4+
------------v2

4
10
------ 1 0.4 V= = =
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Figure 9.41. Network for computing  for the network of Figure 9.39.

Therefore, the voltage gain  is the dimensionless number

(9.99)

c. The current gain  is found from the network of Figure 9.42. 

We observe that the  and  resistors are in parallel yielding an equivalent resistance of
. Then, the voltage across the  parallel combination is

Figure 9.42. Network for computing  for the network of Figure 9.39.

The current  is the current through the  resistor. Thus,

Therefore, the current gain  is the dimensionless number

We observe that 

1 6

4

+

v1

v2 = 1 V

i1 = 0 +

h12

h12

h12
v1
v2
----- 0.4

1
------- 0.4= = =

h21

4 6
2.4 2.4

1 6

4

+

v1

i1 = 1 A

v2 = 0

i2

h21

v2.4 2.4 1 2.4 V= =

i2 6

i2
2.4
6

-------– 0.4– A= =

h21

h21
i2
i1
---- 0.4–

1
---------- 0.4–= = =
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(9.100)

and this is a consequence of the fact that the given network is reciprocal.

d. The open circuit admittance  is found from the network of Figure 9.43.

Figure 9.43. Network for computing  for the network of Figure 9.39.

Since no current flows through the  resistor, the current  is found by Ohm’s law as

Therefore, the open circuit admittance  is

(9.101)

Note:

The  parameters and the  parameters (to be discussed next), are used extensively in networks con-
sisting of transistors*, and feedback networks. The  parameters are best suited with series-parallel
feedback networks, whereas the  parameters are preferred in parallel-series amplifiers.

9.4.4 The g Parameters

A two-port network can also be described by the set of equations

(9.102)

(9.103)

as shown in Figure 9.44.

* Transistors are three-terminal devices. However, they can be represented as large-signal equivalent two-port net-
works circuits and also as small-signal equivalent two-port networks where linearity can be applied.

h21 h12–=

h22

1 6

4

+

v1

v2 = 1 V

i1 = 0 +

i2

h22

1 i2

i2
v2

6 4+
------------ 1

10
------ 0.1 A= = =

h22

h22
i2
v2
----- 0.1

1
------- 0.1 1–= = =

h g
h

g

i1 g11v1 g12i2+=

v2 g21v1 g22i2+=
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Figure 9.44. The g parameters for  and 

The  parameters, also known as inverse hybrid parameters, represent an admittance, a current gain,
a voltage gain and an impedance.

Let us assume that  as shown in Figure 9.45.

Figure 9.45. Network for computing  for the network of Figure 9.44

Then, (9.102) reduces to

 (9.104)

or

(9.105)

Therefore, the parameter  represents the input admittance of a two-port network.

Let us assume that  as shown in Figure 9.46.

Figure 9.46. Network for computing  for the network of Figure 9.44

Then, (9.102) reduces to

 (9.106)

i1 i2

i1 g11v1 g12i2+=
v2 g21v1 g22i2+=

v2
++

v1

v1 0 i2 0

g

i2 0=

i1
i2 = 0v2

++
v1

g11
i1
v1
-----

i2 0=

=

g11

i1 g11 v1=

g11
i1
v1
-----=

g11

v1 0=

i1 i2v2
+v1 = 0

g12
i1
i2
----

v1 0=

=

g12

i1 g12 i2=
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or

(9.107)

Therefore, in a two-port network the parameter  represents a current gain (or loss).

Let us assume that  as shown in Figure 9.47.

Figure 9.47. Network for computing  for the network of Figure 9.44

Then, (9.103) reduces to

 (9.108)

or

(9.109)

Therefore, in a two-port network the parameter  represents a voltage gain (or loss).

Finally, let us assume that  is shorted, i.e.,  as shown in Figure 9.48.

Figure 9.48. Network for computing  for the network of Figure 9.44

Then, (9.103) reduces to

 (9.110)

or

(9.111)

g12
i1
i2
----=

g12

i2 0=

i1
i2 = 0v2

++
v1

g21
v2
v1
-----

i2 0=

=

g21

v2 g21 v1=

g21
v2
i1
-----=

g21

v1 v1 0=

i1 i2v2
+v1 = 0

g22
v2
i2
-----

v1 0=

=

g22

v2 g22 i2=

g22
v2
i2
-----=
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Thus, in a two-port network the parameter  represents the output impedance of that network.

Example 9.8  

For the network of Figure 9.49, find the  parameters.

Figure 9.49. Network for Example 9.8

Solution:

a. The open circuit input admittance  is found from the network of Figure 9.50 where we have
assumed that .

Figure 9.50. Network for computing  for the network of Figure 9.49.

There is no current through the  resistor and thus by Ohm’s law, 

Therefore, the open circuit input admittance  is

(9.112)

b. The current gain  is found from the network of Figure 9.51.

By the current division expression, the current through the  resistor is

g22

g

1 4

12

g11

v1 1 V=

1 4

12 + v2

v1 = 1 V

i2 = 0

i1 +

g11

4

i1
v1

1 12+
--------------- 1

13
------ A= =

g11

g11
i1
v1
----- 1 13

1
------------- 1

13
------ 1–= = =

g12

1

i1
12

12 1+
---------------i2

12
13
------ 1– 12 13 A–= =–=
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Figure 9.51. Network for computing  for the network of Figure 9.49.

Therefore, the current gain  is the dimensionless number

(9.113)

c. The voltage gain  is found from the network of Figure 9.52.

Figure 9.52. Network for computing  for the network of Figure 9.49.

Since there is no current through the  resistor, the voltage  is the voltage across the 
resistor. Then, by the voltage division expression,

Therefore, the voltage gain  is the dimensionless number

We observe that 

(9.114)

and this is a consequence of the fact that the given network is reciprocal.

d. The short circuit output impedance  is found from the network of Figure 9.53.

1 4

12 

i1

i2 = 1 A

v1 = 0

g12

g12

g12
i1
i2
---- 12 13–

1
------------------- 12 13–= = =

g21

1 4

12 + v2

v1 = 1 V

i2 = 0

i1 +

g21

4 v2 12

v2
12

1 12+
--------------- 1 12 13 V= =

g21

g21
v2
v1
----- 12 13

1
---------------- 12

13
------= = =

g21 g12–=

g22
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Figure 9.53. Network for computing  for the network of Figure 9.49.

The voltage  is the sum of the voltages across the  resistor and the voltage across the 
resistor. By the current division expression, the current through the  resistor is

(9.115)

Then, 

and

Therefore, the short circuit output impedance  is

(9.116)

9.5 Reciprocal Two-Port Networks

If any of the following relationships exist in a a two-port network,

(9.117)

the network is said to be reciprocal.

If, in addition to (9.117), any of the following relationship exists

1 4

12 

i1

i2 = 1 A

v1 = 0 v2

+

g22

v2 4 12

12

i12
1

1 12+
---------------i2

1
13
------ 1 1 13 A= = =

v12
1

13
------ 12 12 13 V= =

v2
12
13
------ 4+ 64 13 V= =

g22

g22
v2
i2
----- 64 13

1
---------------- 64 13= = =

z21 z12=

y21 y12=

h21 h– 12=

g21 g– 12=
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(9.118)

the network is said to be symmetric.

Examples of reciprocal two-port networks are the , ,  ( ), and .
These are shown in Figure 9.54.

Examples of symmetric two-port networks are shown in Figure 9.55.

Let us review the reciprocity theorem and its consequences before we present an example. This theo-
rem states that:

If a voltage applied in one branch of a linear, two-port passive network produces a certain current in any
other branch of this network, the same voltage applied in the second branch will produce the same current
in the first branch.

Figure 9.54. Examples of reciprocal two-port networks

The reverse is also true, that is, if current applied at one node produces a certain voltage at another,
the same current at the second node will produce the same voltage at the first.

It was also stated earlier that if we know that the two-port network is reciprocal, only three computa-
tions are required to find the , , , and  parameters as shown in (9.117). Furthermore, if we know
that the two-port network is symmetric, we only need to make only two computations as shown in
(9.118).

z22 z11=

y22 y11=

h11h22 h12h21– 1=

g11g22 g12g21– 1=

tee bridged lattice bridged tee

Z1

Z
3 Z 4

Z3

Z2 Z3

Z2

Z1

Z1 Z3

Z2

Z4
Z1

Z2

Tee

Bridged Tee

Bridged

y z h g
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.

Figure 9.55. Examples of symmetric two-port networks.

Example 9.9  

In the two-port network of Figure 9.56, the voltage source  connected at the left end of the net-
work is set for , and all impedances are resistive with the values indicated. On the right side of
the network is connected a DC ammeter denoted as . Assume that the ammeter is ideal, that is, has
no internal resistance.

a. Compute the ammeter reading.

b. Interchange the positions of the voltage source and recompute the ammeter reading.

Figure 9.56. Network for Example 9.9.

Solution:

a. Perhaps the easiest method of solution is by nodal analysis since we only need to solve one equa-
tion.

Z1

Z
2 Z 2

Z1

Z2 Z1

Z2

Z1

Z1 Z1

Z2

Z3
Z1

Z1

Tee

Bridged Tee

Bridged

vS

15 V
A

Z1 Z3

Z2

Z4

A

vS 15 V=

Z1 30=

Z2 60=

Z3 20=
Z4 10=

vS
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The given network is redrawn as shown in Figure 9.57.

Figure 9.57. Network for solution of Example 9.9 by nodal analysis

By KCL at node ,

or

or

The current through the ammeter is the sum of the currents  and . Thus, denoting the cur-
rent through the ammeter as  we get:

(9.119)

b. With the voltage source and ammeter positions interchanged, the network is as shown in Figure
9.58.

Figure 9.58. Network of Figure 9.57 with the voltage source and ammeter interchanged.

Z1 Z3

Z2

Z4

A

vS 15 V=

Z1 30=

Z2 60=

Z3 20=
Z4 10=

a

b

IZ3
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a
Vab 15–

30
--------------------

Vab
60
--------

Vab
20
--------+ + 0=

6
60
------Vab

15
30
------=

Vab 5 V=

IZ3 IZ4

IA

IA IZ3 IZ4+
Vab
Z3
-------- V

Z4
-----+ 5

20
------ 15

10
------+ 0.25 1.50+ 1.75 A= = = = =

Z1 Z3

Z2

Z4

A

vS 15 V=

Z1 30=

Z2 60=

Z3 20=
Z4 10=

a

b

IZ1

IZ4

vS
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Applying KCL for the network of Figure 9.58, we get:

or

or

The current through the ammeter this time is the sum of the currents  and . Thus, denoting
the current through the ammeter as  we get:

(9.120)

We observe that (9.119) and (9.120 give the same value and thus we can say that the given net-
work is reciprocal.

9.6 Summary

A port is a pair of terminals in a network at which electric energy or a signal may enter or leave the
network.

A network that has only one pair a terminals is called a one-port network. In an one-port network,
the current that enters one terminal must exit the network through the other terminal.

A two-port network has two pairs of terminals, that is, four terminals. 

For an  network the  parameters are defined as

and so on.

If the subscripts of the -parameters are alike, such as ,  and so on, they are referred to as
driving-point admittances. If they are unlike, such as ,  and so on, they are referred to as
transfer admittances.

For a  network the  parameters are defined as

Vab
30
--------

Vab
60
--------

Vab 15–

20
--------------------+ + 0=

6
60
------Vab

15
20
------=

Vab 7.5 V=

IZ1 IZ4

IA

IA IZ1 IZ4+
Vab
Z1
-------- V

Z4
-----+ 7.5

30
------- 15

10
------+ 0.25 1.50+ 1.75 A= = = = =

n port– y

i1 y11v1 y12v2 y13v3 y1nvn+ + + +=

i2 y21v1 y22v2 y23v3 y2nvn+ + + +=

i3 y31v1 y32v2 y33v3 y2nvn+ + + +=

y y11 y22

y12 y21

2 port– y



Circuit Analysis II with MATLAB Applications                                                                                              9-39
Orchard Publications

Summary

In a  network where the right port is short-circuited, that is, when , the  param-
eter is referred to as the short circuit input admittance. In other words,

In a  network where the left port is short-circuited, that is, when , the  parame-
ter is referred to as the short circuit transfer admittance. In other words,

In a  network where the right port is short-circuited, that is, when , the  param-
eter is referred to as the short circuit transfer admittance. In other words,

In a  network where the left port is short-circuited, that is, when , the  parame-
ter is referred to as the short circuit output admittance. In other words,

For a  network the  parameters are defined as

and so on.

If the subscripts of the -parameters are alike, such as ,  and so on, they are referred to as
driving-point impedances. If they are unlike, such as ,  and so on, they are referred to as
transfer impedances.

i1 y11v1 y12v2+=

i2 y21v1 y22v2+=

2 port– v2 0= y11

y11
i1
v1
-----

v2 0=

=

2 port– v1 0= y12

y12
i1
v2
-----

v1 0=

=

2 port– v2 0= y21

y21
i2
v1
-----

v2 0=

=

2 port– v1 0= y22

y22
i2
v1
-----

v1 0=

=

n port– z

v1 z11i1 z12i2 z13i3 z1nin+ + + +=

v2 z21i1 z22i2 z23i3 z2nin+ + + +=

v3 z31i1 z32i2 z33i3 z3nin+ + + +=

z z11 z22

z12 z21
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For a  network the  parameters are defined as

In a  network where the right port is open, that is, when , the  parameter is
referred to as the open circuit input impedance. In other words,

In a  network where the left port is open, that is, when , the  parameter is
referred to as the open circuit transfer impedance. In other words,

In a  network where the right port is open, that is, when , the  parameter is
referred to as the open circuit transfer impedance. In other words, 

In a  network where the left port is open, that is, when , the  parameter is
referred to as the open circuit output impedance. In other words,

A two-port network can also be described in terms of the  parameters with the equations

The  parameters represent an impedance, a voltage gain, a current gain, and an admittance. For
this reason they are called hybrid (different) parameters.

In a  network where the right port is shorted, that is, when , the  parameter
represents the input impedance of the two-port network. In other words,

2 port– z

v1 z11i1 z12i2+=

v2 z21i1 z22i2+=

2 port– i2 0= z11

z11
v1
i1
-----

i2 0=

=

2 port– i1 0= z12

z12
v1
i2
-----

i1 0=

=

2 port– i2 0= z21

z21
v2
i1
-----

i2 0=

=

2 port– i1 0= z22

z22
v2
i2
-----

i1 0=

=

h

v1 h11i1 h12v2+=

i2 h21i1 h22v2+=

h

2 port– v2 0= h11



Circuit Analysis II with MATLAB Applications                                                                                              9-41
Orchard Publications

Summary

In a  network where the left port is open, that is, when , the  parameter repre-
sents a voltage gain (or loss) in the two-port network. In other words,

In a  network where the right port is shorted, that is, when , the  parameter
represents a current gain (or loss). In other words, 

In a  network where the left port is open, that is, when , the  parameter repre-
sents an output admittance. In other words,

A two-port network can also be described in terms of the  parameters with the equations

The  parameters, also known as inverse hybrid parameters, represent an admittance, a current
gain, a voltage gain and an impedance. 

In a  network where the right port is open, that is, when , the  parameter repre-
sents the input admittance of the two-port network. In other words,

In a  network where the left port is shorted, that is, when , the  parameter rep-
resents a current gain (or loss) in the two-port network. In other words,

h11
v1
i1
-----

v2 0=

=

2 port– i1 0= h12

h12
v1
v2
-----

i1 0=

=

2 port– v2 0= h21

h21
i2
i1
----

v2 0=

=

2 port– i1 0= h22

h22
i2
v2
-----

i1 0=

=

g

i1 g11v1 g12i2+=

v2 g21v1 g22i2+=

g

2 port– i2 0= g11

g11
i1
v1
-----

i2 0=

=

2 port– v1 0= g12

g12
i1
i2
----

v1 0=

=
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In a  network where the right port is open, that is, when , the  parameter rep-
resents a voltage gain (or loss). In other words, 

In a  network where the left port is shorted, that is, when , the  parameter rep-
resents an output impedance. In other words,

The reciprocity theorem states that if a voltage applied in one branch of a linear, two-port passive
network produces a certain current in any other branch of this network, the same voltage applied
in the second branch will produce the same current in the first branch. The reverse is also true,
that is, if current applied at one node produces a certain voltage at another, the same current at
the second node will produce the same voltage at the first. 

A two-port network is said to be reciprocal if any of the following relationships exists.

A two-port network is said to be symmetrical if any of the following relationships exist.

2 port– i2 0= g21

g21
v2
v1
-----

i2 0=

=

2 port– v1 0= g22

g22
v2
i2
-----

v1 0=

=

z21 z12=

y21 y12=

h21 h– 12=

g21 g– 12=

z21 z12= and z22 z11=

y21 y12= and y22 y11=

h21 h– 12= and h11h22 h12h21– 1=

g21 g– 12= and g11g22 g12g21– 1=
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Exercises

9.7 Exercises

1. For the network of Figure 9.59, find the  parameters.

Figure 9.59. Network for Exercise 1.

2. For the network of Figure 9.60, find the  parameters.

Figure 9.60. Network for Exercise 2.

3. For the network of Figure 9.61, find the  parameters.

Figure 9.61. Network for Exercise 3.

4.For the network of Figure 9.62, find the  parameters.

Figure 9.62. Network for Exercise 4.

z
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y
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h
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5. The equations describing the  parameters can be used to represent the network of Figure 9.63.
This network is a transistor equivalent circuit for the common-emitter configuration and the 
parameters given are typical values for such a circuit. Compute the voltage gain and current gain
for this network if a voltage source of  in series with  is connected at the
input (left side), and a  load is connected at the output (right side).

Figure 9.63. Network for Exercise 5.

h
h

v1 tcos mV= 800

5 K

v2

(

i2

+

i1

h11

h12 v2v1
h21 i1

+ +

h11 1.2 K=

h12 2 10 4–=

h21 50=

h22 50 10 6– 1–=

h22
1–
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Solutions to Exercises

9.8 Solutions to Exercises

1.

+

i1 = 1 A

i2 = 0v1

5

20 

10 +

v2

z11
v1
i1
-----

i2 0=

=

i5

i5
10 20+

5 10 20+ +
-------------------------------- i1

30
35
------ 1 6 7 A= = =

v1 5i5 5 6 7 30 7 V= = =

z11
v1
i1
----- 30 7

1
------------- 30 7= = =

+

i2 = 1 A

i1 = 0

+

v1 v2

5

10 

20 

z12
v1
i2
-----

i1 0=

=

i5

i5
20

20 5 10+ +
-------------------------------- i2

20
35
------ 1 4 7= A= =

v1 5 4
7
--- 20 7= = V

z12
v1
i2
----- 20 7

1
------------- 20 7= = =

+

i1 = 1 A

i2 = 0v1 5 20 

10 +

v2

z21
v2
i1
-----

i2 0=

=
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We observe that 

2.

i20
5

5 10 20+ +
-------------------------------- i1

5
35
------ 1 1 7= A= =

v2 20 1
7
--- 20 7= = V

z21
v2
i1
----- 20 7

1
------------- 20 7= = =

z21 z12=

+

i2 = 1 A

i1 = 0

+

v1 v25

10 

20 

z22
v2
i2
-----

i1 0=

=

i20
10 5+

20 10 5+ +
-------------------------------- i2

15
35
------ 1 3 7= A= =

v2 20 3
7
--- 60 7= = V

z22
v1
i2
----- 60 7

1
------------- 60 7= = =

+

v1 = 1 V

v2 = 0

i1 5

20 15

y11
i1
v1
-----

v2 0=

=

short

Req 5 20 4= =

i1 v1 Req 1 4 A= =

y11 i1 v1
1 4

1
---------- 1 4 1–= = =
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Answers to Exercises

We observe that 

+

v2 = 1 V

v1 = 0

i1 5

20

15
short

y12
i1
v2
-----

v1 0=

=

v5 v2 1 V= =

i1 v5 5– 1 5– A= =

y12 i1 v2 1 5– 1 1 5 1––= = =

+

v1 = 1 V

v2 = 0

i25

20

15

y21
i2
v1
-----

v2 0=

=

short

v5 v1 1 V= =

i2 v5 5– 1 5– A= =

y21 i2 v1 1 5– 1 1 5 1––= = =

y21 y12=

+

v2 = 1 V

v1 = 0

i1 5

20

15
short

y22
i2
v2
-----

v1 0=

= i2

i2 v2 Req 1 5 15 1 75 20 4 15 A= = = =

y22 i2 v2 4 15 1 4 15 1–= = =
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3.

6

4

 1 

+

v1

i1 = 1 A

v2 = 0

i1h11
v1
i1
-----

v2 0=

=
i1

short

i1
4

1 4+
-----------------i1

4
5
--- 1 4 5 A= = =

v1 1 i1 4 5 V= =

h11
v1
i1
----- 4 5
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---------- 4 5= = =

6

4

 1 

+

v1

h12
v1
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= i1 0=

+

v2 = 1 V

+

v2

i2
i1

i2
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------------------------- 1

30 11
---------------- 11 30 A= = = =
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------ 11
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v1
v2
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1
---------- 1 5 dimensionless= = =

6

4

 1 

i1 = 1 A

v2 = 0

i1h21
i2
i1
----

v2 0=

= i2

short

i2
1

1 4+
----------------- i1–

1
5
--- 1– 1 5– A= = =
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Answers to Exercises

We observe that 

4.

h21
i2
i1
---- 1 5–

1
------------- 1 5–= = =

h21 h12–=

6

4

 1 

+

v1

h22
i2
v2
-----

i1 0=

= i1 0=

+

v2 = 1 V

+

v2

i2

i2
v2

Req
-------- 1

6 4 1+
------------------------- 1

30 11
---------------- 11 30 A= = = =

h22
i2
v2
----- 11 30

1
---------------- 11 30 1–= = =

6

4
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+

v1

i2 = 0
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i1
v1
-----

i2 0=

=

+

v1 = 1 V
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1 4 6+
---------------------------- 1
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---------------- 11 10= = A= =
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4
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----
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=

v1 0=
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We observe that 

i1
6

6 4+
------------ i2– 6

10
------ 3 5 A–=–= =

g12
i1
i2
---- 3 5–

1
------------- 3 5 dimensionless–= = =

6

4

 1 

+

v1

i2 = 0
i1g21

v2
v1
-----

i2 0=

=

+

v1 = 1 V

+
v2

i6

i1
v1

Req
-------- 1

1 4 6+
------------------------- 1

10 11
---------------- 11 10 A= == =

v2 6 i6 6 1
1 4 6+ +
--------------------- 11

10
------ 3 5 V= = =

g21
v2
v1
----- 3 5

1
---------- 3 5= = =

g21 g12–=

6

4

 1 

g22
v2
i2
-----

v1 0=

=

v1 0=

i2 = 1 A

+

v2

i2i1

short

i6

v2 6 i6 6 4
6 4+
------------ i2

24
10
------ 1 12 5 V= = = =

g22
v2
i2
----- 12 5

1
------------- 12 5= = =
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Answers to Exercises

5.
We recall that

  (1)

  (2)

With the voltage source  in series with  connected at the input and a 
load connected at the output the network is as shown below.

The network above is described by the equations

or

We write the two equations above in matrix form and use MATLAB for the solution.

A=[2*10^3  2*10^( 4); 50  250*10^(-6)]; B=[10^( 3) 0]'; X=A\B;...
fprintf(' \n'); fprintf('i1 = %5.2e A \t',X(1)); fprintf('v2 = %5.2e V',X(2))

i1 = 5.10e-007 A    v2 = -1.02e-001 V

Therefore,
  (3)

  (4)

Next, we use (1) and (2) to find the new values of  and 

v1 h11i1 h12v2+=

i2 h21i1 h22v2+=

v1 tcos mV= 800 5 K

v2

i2

+

i1 +

+
1 0 mV

800 1200

2 10 4– v2 50i1 50 10 6– 1– 5000

800 1200+ i1 2 10 4– v2+ 10 3–=

50i1 50 10 6– v2+ i2
v2–

5000
------------= =

2 103i1 2 10 4– v2+ 10 3–=

50i1 250 10 6– v2+ 0=

i1 0.51 A=

v2 102 mV–=

v1 i2

v1 1.2 103 0.51 10 6– 2 10 4– 102 10 3––+ 0.592 mV= =
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The voltage gain is

and the minus ( ) sign indicates that the output voltage in  out-of-phase with the input.

The current gain is

and the output current is in phase with the input.

i2 50 0.51 10 6– 50 10 6– 102 10 3–– 20.4 A= =

GV
v2
v1
----- 102 mV–

0.592 mV
------------------------ 172.3–= = =

180

GI
i2
i1
---- 20.4 A

0.51 A
-------------------- 40= = =
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Chapter 10
Three-Phase Systems

his chapter is an introduction to three-phase power systems. The advantages of three-phase
system operation are listed and computations of three phase systems are illustrated by several
examples.

10.1 Advantages of Three-Phase Systems

The circuits and networks we have discussed thus far are known as single-phase systems and can be
either DC or AC. We recall that AC is preferable to DC because voltage levels can be changed by
transformers. This allows more economical transmission and distribution. The flow of power in a
three-phase system is constant rather than pulsating. Three-phase motors and generators start and
run more smoothly since they have constant torque. They are also more economical.

10.2 Three-Phase Connections

Figure 10.1 shows three single AC series circuits where, for simplicity, we have assumed that the
internal impedance of the voltage sources have been combined with the load impedance. We also
have assumed that the voltage sources are  out-of-phase, the load impedances are the same, and
thus the currents  and  have the same magnitude but are  out-of-phase with each other
as shown in Figure 10.2.

Figure 10.1. Three circuits with out-of-phase voltage sources

Figure 10.2. Waveforms for three  out-phase currents

T

120
Ia Ib, Ic 120

+

+ + +

++

Va Vb VcIa Ib
Ic

Za Zb Zc

120

Ia Ib Ic

120
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Let us use a single wire for the return current of all three circuits as shown below. This arrangement
is known as four-wire, three-phase system.

Figure 10.3. Four-wire, three-phase system

This arrangement shown in Figure 10.3 uses only  wires instead of the  wires shown in Figure
10.1. But now we must find the relative size of the common return wire that it would be sufficient to
carry all three currents 

We have assumed that the voltage sources are equal in magnitude and  apart, and the loads are
equal. Therefore, the currents will be balanced (equal in magnitude and  out-of phase). These
currents are shown in the phasor diagram of Figure 10.4.

Figure 10.4. Phasor diagram for three-phase balanced system

+

+

+

+

+

+
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Vb

Vc

Ia

Ib

Ic

Za

Zb

Zc

Ia Ib Ic+ +

4 6

Ia Ib Ic+ +

120
120

Ia

Ic

Ib
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Three-Phase Connections

From figure 10.4 we observe that the sum of these currents, added vectorially, is zero. Therefore,
under ideal (perfect balance) conditions, the common return wire carries no current at all. In a prac-
tical situation, however, is not balanced exactly and the sum is not zero. But still it is quite small and
in a four-wire three-phase system the return wire is much smaller than the other three. Figure 10.5
shows a four-wire, three-phase  where , the three loads are identical,
and  is the current in the neutral (fourth) wire. 

Figure 10.5. Four-wire, three-phase 

A three-wire three-phase  is shown in Figure10.6 where , and the three
loads are identical.

Figure 10.6. Three-wire, three-phase 

This arrangement shown in Figure 10.6 could be used only if all the three voltage sources are per-
fectly balanced, and if the three loads are perfectly balanced also. This, of course, is a physical impos-
sibility and therefore it is not used. 

Y system– Va Vb Vc= =

In

ZLOAD

ZLOAD

Ia

Ib

Ic

In

ZLOAD
Va t Vcos

Vb t 120– Vcos

Vc t 240– Vcos

Y system–

Y system– Va Vb Vc= =

ZLOAD

ZLOAD

Ia

Ib

Ic

ZLOAD
Va t Vcos

Vb t 120– Vcos

Vc t 240– Vcos

Y system–
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A three-wire three-phase  system is shown in Figure 10.7 where , and the
three loads are identical. We observe that while the voltage sources are connected as a ,
the loads are connected as a  and hence the name 

Figure 10.7. Three-wire, three-phase  system

This arrangement offers the advantage that the -connected loads need not be accurately balanced.
However, a -connection with only three voltages is not used for safety reasons, that is, it is a safety
requirement to have a connection from the common point to the ground as shown in Figure 10.5. 

10.3  Transformer Connections in Three-Phase Systems

Three-phase power systems use transformers to raise or to lower voltage levels. A typical generator
voltage, typically , is stepped up to hundreds of kilovolts for transmission over long dis-
tances. This voltage is then stepped down; for major distribution may be stepped down at a voltage
level anywhere between  to , and for local distribution anywhere between  to

 Finally, the electric utility companies furnish power to industrial and commercial facilities at
 volts and  and  at residential areas. All voltage levels are in  values.

Figure 10.8 shows a bank of three single phase transformers where the primary is -connected, while
the secondary is -connected. This  connection is typical of transformer installations at gener-
ating stations. 

Figure 10.9 shows a single-phase three-wire system where the middle of the three wires is center-
tapped at the transformer secondary winding. As indicated, voltage between the outer wires is 
while voltage from either of the two wires to the centered (neutral) wire is . This arrangement
is used in residential areas.

load– Va Vb Vc= =

Y system–

system– load–

ZLOAD

ZLOAD

Ia

Ib

Ic

ZLOAD
Va t Vcos

Vb t 120– Vcos

Vc t 240– Vcos

load–

13.2 KV

15 KV 50 KV 2.4 KV
12 KV
480 V 120 V 240 V RMS

Y Y–

240 V
120 V
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Line-to-Line and Line-to-Neutral Voltages and Currents

Figure 10.8. Three single-phase transformers use in three-phase systems

Figure 10.9. 240/120 volt single phase three-wire system

Industrial facilities need three-phase power for three-phase motors. Three-phase motors run
smoother and have higher efficiency than single-phase motors. A  connection is shown in Fig-
ure 10.10 where the secondary provides  three-phase power to the motor, and one of the
transformers of the secondary is center-tapped to provide  to the lighting load.

10.4  Line-to-Line and Line-to-Neutral Voltages and Currents

We assume that the perfectly balanced -connected load of Figure 10.11 is perfectly balanced, that
is, the three loads are identical. We also assume that the applied voltages are  out-of-phase but
they have the same magnitude; therefore there is no current flowing from point  to the ground.
The currents ,  and  are referred to as the line currents and the currents , , and  as
the phase currents. Obviously, in a -connected load, the line and phase currents are the same.

Y

240 V

120 V

120 V

Neutral wire

Y –

240 V
120 V

Y
120

n
Ia Ib Ic Ian Ibn Icn

Y
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Figure 10.10. Typical 3-phase distribution system

Figure 10.11. Perfectly balanced Y-connected load

Now, we consider the phasor diagram of Figure 10.12.

Figure 10.12. Phasor diagram for Y-connected perfectly balanced load

LLL

LLL
M

ZLOAD

ZLOAD

ZLOAD

Ic

Ib
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n

Vab

Vac
Vbc

c

b
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Line-to-Line and Line-to-Neutral Voltages and Currents

If we choose  as our reference, we have

(10.1)

(10.2)

(10.3)

These equations define the balance set of currents of positive phase sequence .

Next, we consider the voltages. Voltages , , and  are referred to as line-to-line voltages and
voltages , , and  as phase voltages. We observe that in a -connected load, the line and
phase voltages are not the same.

We will now derive the relationships between line and phase voltages in a -connected load.

Arbitrarily, we choose  as our reference phase voltage. Then,

(10.4)

(10.5)

(10.6)

These equations define a positive phase sequence . These relationships are shown in Figure
10.13.

Figure 10.13. Phase voltages in a -connected perfectly balanced load

The -connected load is repeated in Figure 10.14 for convenience.

From Figure 10.14

Ia

Ia Ia 0=

Ib Ia 120–=

Ic Ia +120=

a b– c–

Vab Vac Vbc

Van Vbn Vcn Y

Y

Van

Van Van 0=

Vbn Van 120–=

Vcn Van +120=

a b– c–

Van

Vcn

Vbn

Y

Y
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Figure 10.14. Y-connected load

(10.7)

(10.8)

(10.9)

These can also be derived from the phasor diagram of Figure 10.15.

Figure 10.15. Phasor diagram for line-to-line and line-to-neutral voltages in  load

From geometry and the law of sines we find that in a balanced three-phase, positive phase sequence
-connected load, the line and phase voltages are related as

ZLOAD

ZLOAD

ZLOAD

Ic

Ib

Ia

n

Vab

Vac
Vbc

c

b

Vab Van Vnb+ Van Vbn–= =

Vca Vcn Vna+ Vcn Van–= =

Vbc Vbn Vnc+ Vbn Vcn–= =

Van

Vcn

Vbn

Vbn Vab

Van

Vca

Vcn

Vbc

30

Y

Y
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Line-to-Line and Line-to-Neutral Voltages and Currents

(10.10)

The other two line-to-line voltages can be easily obtained from the phasor diagram of the previous
page.

Now, let us consider a -connected load shown in Figure 10.16.

Figure 10.16. Line and phase currents in -connected load

We observe that the line and phase voltages are the same, but the line and phase currents are not the
same. To find the relationship between the line and phase currents, we apply KCL at point  and we
get:

or

(10.11)

The line currents  and  are derived similarly, and the phase-to-line current relationship in a -
connected load is shown in the phasor diagram of Figure 10.17.

From geometry and the law of sines we find that a balanced three-phase, positive phase sequence -
connected load, the line and phase currents are related as

(10.12)

The other two line currents can be easily obtained from the phasor diagram of Figure 10.17. 

Vab 3Van 30=

Y connected load–

ZLOAD

ZLOAD

ZLOAD

Ic

Ib

Ia

Vab

Vca
Vbc

c

b

a

Iab

Ica
Ibc

a

Iab Ia Ica+=

Ia Iab Ica–=

Ib Ic

Ia 3Iab 30–=

connected load–
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Figure 10.17. Phasor diagram for line and phase currents in -connected load

10.5  Equivalent Y and  Loads

In this section, we will establish the equivalence between the  and  combinations shown in Figure
10.18.

Figure 10.18. Equivalence for  and Y-connected loads

In the -connection, the impedance between terminals  and  is

(10.13)

and in the -connection, the impedance between terminals  and  is  in parallel with the sum
, that is,

(10.14)

Ic

IaIb

Iab

Ica

Ibc

30 o
Iab

Ica

Ibc

Y

Za

Zc Zb

A

C B

Z1 Z3

Z2

A

BC

Y B C

ZBC Y Zb Zc+=

B C Z2

Z1 Z3+

ZBC
Z2 Z1 Z3+

Z1 Z2 Z3+ +
------------------------------=
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Equivalent Y and  Loads

Equating (10.13) and (10.14) we get

(10.15)

Similar equations for terminals  and  are derived by rotating the subscripts of (10.15) in a
cyclical manner. Then,

(10.16)

and

(10.17)

Equations (10.15) and (10.17) can be solved for  by adding (10.16) with (10.17), subtracting
(10.15) from this sum, and dividing by two. That is, 

(10.18)

(10.19)

(10.20)

(10.21)

Similar equations for  and  are derived by rotating the subscripts of (10.21) in a cyclical manner.
Thus, the three equations that allow us to change any -connection of impedances into a -connec-
tion are given by (10.22).

(10.22)

Zb Zc+
Z2 Z1 Z3+

Z1 Z2 Z3+ +
------------------------------=

AB CA

Za Zb+
Z3 Z1 Z2+

Z1 Z2 Z3+ +
------------------------------=

Zc Za+
Z1 Z2 Z3+

Z1 Z2 Z3+ +
------------------------------=

Za

2Za Zb Zc+ +
Z1Z3 Z2Z3 Z1Z2 Z1Z3+ + +

Z1 Z2 Z3+ +
------------------------------------------------------------------

2Z1Z3 Z2Z3 Z1Z2+ +

Z1 Z2 Z3+ +
---------------------------------------------------= =

2Za Zb Zc Zb Zc––+ +
2Z1Z3 Z2Z3 Z1Z2 Z1Z2 Z2Z3––+ +

Z1 Z2 Z3+ +
---------------------------------------------------------------------------------------=

2Za
2Z1Z3

Z1 Z2 Z3+ +
------------------------------=

Za
Z1Z3

Z1 Z2 Z3+ +
------------------------------=

Zb Zc

Y

Za
Z1Z3

Z1 Z2 Z3+ +
------------------------------=

Zb
Z2Z3

Z1 Z2 Z3+ +
------------------------------=

Zc
Z1Z2

Z1 Z2 Z3+ +
------------------------------=

Y Conversion
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Often, we wish to make the conversion in the opposite direction, that is, from  to .This conversion
is performed as follows:

Consider the  and  combinations of Figure 10.8 repeated for convenience.

Figure 10.19. Y and  loads

From Figure (a),

(10.23)

(10.24)

(10.25)

If we attempt to solve equations (10.23), (10.24) and (10.25) simultaneously, we will find that the
determinant  of these sets of equations is singular, that is, . This can be verified with Cramer’s
rule as follows:

(10.26)

(10.27)

This result suggests that the equations of (10.26) are not independent and therefore, no solution
exists. However, a solution can be found if, in addition to (10.23) through (10.25), we use the equa-
tion

(10.28)

Y

Y

Za

Zc Zb

A

C B

Z1 Z3

Z2

A

BC

IA

IC IB

IA

IBIC

(a) (b)

VAB ZaIA ZbIB–=

VBC ZbIB ZcIC–=

VCA ZcIC ZaIA–=

0=

ZaIA ZbIB– 0+ VAB=

0 ZbIB ZcIC–+ VBC=

ZaIA 0 ZcIC+ +– VCA=

Za Zb– 0
0 Zb Zc–

Za– 0 Zc

ZaZbZc ZaZbZc– 0 0 0 0+ + + + 0= = =

IA IB IC+ + 0=
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Equivalent Y and  Loads

Solving (10.28) for  we get:

(10.29)

and by substitution into (10.25),

(10.30)

From (10.23) and (10.30),

(10.31)

and by Cramer’s rule,

(10.32)

where

(10.33)

and

(10.34)

Then,

(10.35)

Similarly,

(10.36)

and by substitution of  and  into (10.28),

(10.37)

Therefore, for the -connection which is repeated in Figure 10.20 for convenience, we have:

IC

IC IA IB––=

VCA Z– cIA Z– cIB ZaIA– Za Zc+ IA– Z– cIB= =

ZaIA ZbIB– VAB=

Za Zc+ IA– Z– cIB VCA=

IA
D1------= IB

D2------=

Za Zb–

Za Zc+– Z– c

ZcZa– ZaZb ZbZc––= =

D1
VAB Zb–

VCA Z– c

Z– cVAB ZbVCA+= =

IA
D1------

Z– cVAB ZbVCA+

Z– aZb Zb– Zc Zc– Za
---------------------------------------------

ZcVAB Zb– VCA
ZaZb ZbZc ZcZa+ +
-----------------------------------------------= = =

IB
D2------

ZaVBC Zc– VAB
ZaZb ZbZc ZcZa+ +
-----------------------------------------------= =

IA IB

IC
ZbVCA Za– VBC

ZaZb ZbZc ZcZa+ +
-----------------------------------------------=

Y
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Figure 10.20. Currents in Y-connection

(10.38)

For the -connection, which is also repeated in Figure 10.21 for convenience, the line currents are:

Figure 10.21. Currents in -connection

(10.39)

Now, the sets of equations of (10.38) and (10.39) are equal if 

Za

Zc Zb

A

C B

IA

IC IB

IA
ZcVAB Zb– VCA

ZaZb ZbZc ZcZa+ +
-----------------------------------------------=

IB
ZaVBC Zc– VAB

ZaZb ZbZc ZcZa+ +
-----------------------------------------------=

IC
ZbVCA Za– VBC

ZaZb ZbZc ZcZa+ +
-----------------------------------------------=

Z1 Z3

Z2

A

BC

IA

IBIC

IA
VAB
Z3

---------
VCA
Z1

---------–=

IB
VBC
Z2

---------
VAB
Z3

---------–=

IC
VCA
Z1

---------
VBC
Z2

---------–=
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Equivalent Y and  Loads

(10.40)

(10.41)

(10.42)

From (10.40)

(10.43)

and from (10.41)

(10.44)

Rearranging, we get:

(10.45)

Example 10.1  

For the circuit of Figure 10.22, use the  conversion to find the currents in the various
branches as indicated.

Solution:

Let us indicate the nodes as , , , and , and denote the ,  and  resistances as
, , and  respectively as shown in Figure 10.23.

Next, we replace the  connection formed by , , , and  with the equivalent  connection
shown in Figure 10.24.

ZcVAB Zb– VCA
ZaZb ZbZc ZcZa+ +
-----------------------------------------------

VAB
Z3

---------
VCA
Z1

---------–=

ZaVBC Zc– VAB
ZaZb ZbZc ZcZa+ +
-----------------------------------------------

VBC
Z2

---------
VAB
Z3

---------–=

ZbVCA Za– VBC
ZaZb ZbZc ZcZa+ +
-----------------------------------------------

VCA
Z1

---------
VBC
Z2

---------–=

Zc
ZaZb ZbZc ZcZa+ +
----------------------------------------------- 1

Z3
----- and

Zb
ZaZb ZbZc ZcZa+ +
----------------------------------------------- 1

Z1
-----==

Za
ZaZb ZbZc ZcZa+ +
----------------------------------------------- 1

Z2
-----=

Z1
ZaZb ZbZc ZcZa+ +

Zb
-----------------------------------------------=

Z2
ZaZb ZbZc ZcZa+ +

Za
-----------------------------------------------=

Z3
ZaZb ZbZc ZcZa+ +

Zc
-----------------------------------------------=

Y Conversion

Y

a b c d 90 90 90
Ra Rb Rc

Y a b c d
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Figure 10.22. Circuit (a) for Example 10.1

Figure 10.23. Circuit (b) for Example 10.1

Figure 10.24. Circuit (c) for Example 10.1
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Equivalent Y and  Loads

Now, with reference to the circuits of Figures 10.23 and 10.24, and the relations of (10.45), we get:

Combination of parallel resistances in the circuit of Figure 10.24 yields

and

The circuit of Figure 10.24 reduces to the circuit of Figure 10.25. The circuit of Figure 10.25 can be
further simplified as shown in Figure 10.26.

From the circuit of Figure 10.26,

(10.46)

(10.47)

Figure 10.25. Circuit (d) for Example 10.1

R1
RaRb RbRc RcRa+ +

Rb
------------------------------------------------- 90 80 80 50 50 90++

80
------------------------------------------------------------------- 15700

80
--------------- 196= ==

R2
RaRb RbRc RcRa+ +

Ra
------------------------------------------------- 15700

90
--------------- 174= =

R3
RaRb RbRc RcRa+ +

Rc
------------------------------------------------- 15700

50
--------------- 314= = =

Rbd
196 60
196 60+
--------------------- 46=

Rad
314 70
314 70+
--------------------- 57=

I2
120
174
--------- 0.69 A= =

I3
120
103
--------- 1.17 A= =

120 V

174 +

I1

46 

57 

b

I2 I3

d

a
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Figure 10.26. Circuit (e) for Example 10.1

By addition of (10.46) and (10.47)

(10.48)

To compute the other currents, we return to the circuit of Figure 10.25 which, for convenience, is
repeated as Figure 10.27 and it is denoted as Circuit (f).

For the circuit of Figure 10.27, by the voltage division expression

(10.49)

(10.50)

Figure 10.27. Circuit (f) for Example 10.1

120 V

174 +

I1

103 

b

I2 I3

I1 I2 I3+ 0.69 1.17+ 1.86= = =

Vad
46

46 57+
------------------ 120 53.6 V= =

Vdb
57

46 57+
------------------ 120 66.4 V= =

120 V

174 +

I1

46 

57 

a

I2 I3

d
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Equivalent Y and  Loads

Next, we return to the circuit of Figure 10.24 which, for convenience, is repeated as Figure 10.28 and
denoted as Circuit (g).

Figure 10.28. Circuit (g) for Example 10.1

From the circuit of figure 10.28,

(10.51)

and

(10.52)

Finally, we return to the circuit of Figure 10.23 which, for convenience, is repeated as Figure 10.29
and denoted as Circuit (h).

Figure 10.29. Circuit (h) for Example 10.1
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-------- 66.4
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For the circuit of Figure 10.29, by KCL,

(10.53)

(10.54)

and

(10.55)

Of course, we could have found the branch currents with nodal or mesh analysis.

Quite often, the  and  arrangements appear as shown in Figure 10.30 and they are referred to as
the tee (T) and pi ( ) circuits. Consequently, the formulas we developed for the  and  arrange-
ments can be used with the tee and  arrangements.

Figure 10.30. T and  circuits

In communications theory, the T and  circuits are symmetrical, i.e.,  and .

10.6  Computation by Reduction to Single Phase

When we want to compute the voltages, currents, and power in a balanced three-phase system, it is
very convenient to use the -connection and work with one phase only. The other phases will have
corresponding quantities (voltage, current, and power) exactly the same except for a time difference
of  cycle. Thus, if current is found for phase , the current in phase  will be  out-of- phase
but it will have the same magnitude as phase . Likewise, phase  will be  out-of-phase with
phase .

If the load happens to be -connected, we use the  conversion shown in Figure 10.31 and the
equations (10.57) on the next page.

Since the system is assumed to be balanced, the loads  and . Therefore,
the first equation in (10.57) reduces to:

(10.56)

I7 I1 I4– 1.86 0.89– 0.97 A= = =

I8 I1 I5– 1.86 0.95– 0.91 A= = =

I6 I5 I4– 0.95 0.89– 0.06 A= = =

Y
Y

Z3Zb

Zc

Za

Z1 Z2

A B

C

A B

C

Za Zb= Z1 Z2=

Y

1 3 a b 120
a c 240

a

Y

Z1 Z2 Z3= = Za Zb Zc= =

Za
Z1Z3

Z1 Z2 Z3+ +
------------------------------=

Z1
2

3Z1
---------

Z1
3
-----= =
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Three-Phase Power

Figure 10.31.  conversion

(10.57)

and the same is true for the other phases.

10.7  Three-Phase Power

We can compute the power in a single phase and then multiply by three to find the total power in a
three-phase system. Therefore, if a load is -connected, as in Figure 10.31 (b), the total three-phase
power is given by

(10.58)

where  is the line-to-neutral voltage,  is the line current,  is the power factor of the load,
and  is the angle between  and .

If the load is -connected as in Figure 10.31 (a), the total three-phase power is given by

(10.59)

We observe that relation (10.59) is given in terms of the line-to-neutral voltage and line current, and
relation (10.58) in terms of the line-to-line voltage and phase current.

Za

Zc Zb

A

C B

Z1 Z3

Z2

A

BC

IA

IC IB

IA

IBIC

(b)
(a)

N

Y

Za
Z1Z3

Z1 Z2 Z3+ +
------------------------------=

Zb
Z2Z3

Z1 Z2 Z3+ +
------------------------------=

Zc
Z1Z2

Z1 Z2 Z3+ +
------------------------------=

Y Conversion

Y

PTOTAL 3 VAN IA cos=

Y connected load–

VAN IA cos

VAN IA

PTOTAL 3 VAB IAB cos=

connected load–
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Quite often, the line-to-line voltage and line current of a three-phase systems are given. In this case,
we substitute (10.12), i.e.,  into (10.59) and we get

(10.60)

It is important to remember that the power factor  in (10.60) refers to the load, that is, the
angle  is not the angle between  and .

Example 10.2

The three-phase generator of Figure 10.32 supplies  at  lagging power factor to the three-
phase load. The line-to-line voltage at the load is . The resistance of the line is  per con-
ductor and the inductance and capacitance are negligible. What line-to-line voltage must the genera-
tor supply to the line?

Solution:

The load per phase at  is

Figure 10.32. Circuit for Example 10.2

From (10.10),

(10.61)

Then, the magnitude of the line-to-neutral at the load end is

(10.62)

and the  per phase at the load is

(10.63)

IA 3 IAB=

PTOTAL 3 VAB IA LOADcos=

Y or connected load–

LOADcos

VAB IA

100 kW 0.9
2400 V 4

0.9 pf
1
3
--- 100 33.33 kW=

G

Generator

L

Load
(Y-connected) (Y-connected)

Vab 3Van 30=

Y connected load–

Van load
Vab  load

3
--------------------- 2400

3
------------ 1386 V= = =

KVA

kW phase
pf

--------------------------- 33.33
0.9

------------- 37.0 KVA==
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Instantaneous Power in Three-Phase Systems

The line current in each of the three conductors is

(10.64)

and the angle by which the line (or phase) current lags the phase voltage is

(10.65)

Next, let us assume that the line current in phase  lies on the real axis. Then, the phasor of the line-
to-neutral voltage at the load end is

(10.66)

The voltage drop across a conductor is in phase with the line current since it resistive in nature.
Therefore, 

(10.67)

Now, the phasor line-to-neutral voltage at the generator end is

(10.68)

and its magnitude is 

(10.69)

Finally, the line-to-line voltage at the generator end is

(10.70)

10.8  Instantaneous Power in Three-Phase Systems

A significant advantage of a three-power system is that the total power in a balanced three-phase sys-
tem is constant. This is proved as follows:

We assume that the load is purely resistive. Therefore, the voltage and current are always in-phase
with each other. Now, let  and  be the peak (maximum) voltage and current respectively, and 
and  the magnitude of their  values. Then, the instantaneous voltage and current in phase 
are given by 

(10.71)

(10.72)

ILINE
VA

Van load
---------------------- 37000

1386
--------------- 26.7 A= = =

0.91–cos 25.84= =

a

Van load Van 25.84 1386 25.84 j 25.84sin+cos 1247 j604 V+= ==

VCOND ILINE R 26.7 4 106.8 V= = =

Van gen Van load VCOND+ 1247 j604 106.8+ + 1354 j604+= = =

Van gen 13542 6042+ 1483 V= =

Vline line gen– 3 Van gen 3 1483 2569 V= = =

Vp Ip V

I RMS a

va Vp tcos 2 V tcos= =

ia Ip tcos 2 I tcos= =
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Multiplication of (10.71) and (10.72) yields the instantaneous power, and using the trigonometric
identity

(10.73)

we get

(10.74)

The voltage and current in phase  are equal in magnitude to those in phase a but they are  out-
of-phase. Then,

(10.75)

(10.76)

(10.77)

Similarly, the power in phase  is

(10.78)

and the total instantaneous power is 

(10.79)

Recalling that

(10.80)

we find that the sum of the three cosine terms in (10.79) is zero. Then,

(10.81)

Therefore, the instantaneous total power is constant and it is equal three times the average power.

The proof can be extended to include any power factor; thus, (10.81) can be also expressed as

(10.82)

Example 10.3

Figure 10.33 shows a three-phase feeder with two loads; one consists of a bank of lamps connected
line-to neutral and the rating is given in the diagram; the other load is -connected and has the

t2cos 2 t 1+cos 2=

pa va ia 2 V I 2 tcos V I 2 t 1+cos= = =

b 120

vb 2 V t 120–cos=

ib 2 V t 120–cos=

pb vb ib 2 V I t 120–
2cos V I 2 t 240– 1+cos= = =

c

pc vc ic 2 V I t 240–
2cos V I 2 t 480– 1+cos= = =

ptotal pa pb pc+ +=

V I 2 tcos 2 t 240–cos 2 t 480–cos 3+ + +=

x y–cos x ycoscos x ysinsin+=

ptotal 3 V I=

Three phase Balanced System–

ptotal 3 V I cos=
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Instantaneous Power in Three-Phase Systems

impedance shown. Find the current in the feeder lines and the total power absorbed by the two
loads.

Figure 10.33. Diagram for Example 10.3

Solution:

To facilitate the computations, we will reduce the given circuit to one phase (phase ) taken as refer-
ence, i.e., at zero degrees, as shown in Figure 10.34

Figure 10.34. Single-phase representation of Figure 10.31

We first compute the impedance . Using (10.56),

Next, we compute the lamp impedance 

The line-to-line voltage is given as ; therefore, by (10.10), the line-to-neutral voltage
 is

IA

IB

IC

L L L

220 Volts
(Line-to-Line)

Z 18 j80+=

Lamps - Resistive Load
Rated 500 Watts,
120 Volts each

Z Z

Z

a

IA

L

IZ IL

ZY ZL

+

VL-N
(Line-to-neutral)

VL L– 220 0 V=

ZY

ZY
Z
3

------ 18 j80+
3

-------------------- 82 77.32
3

------------------------ 27.33 77.32= = = =

ZL·

ZL· Rlamp
V 2

rated
Prated

------------------ 1202

500
----------- 28.8= = = =

VL L– 220 V=

VL N–
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For convenience, we indicate these values in Figure 10.34 which now is as shown in Figure 10.35. 

Figure 10.35. Diagram with computed values, Example 10.3

From Figure 10.35,

and

Then,

and the power delivered by phase  is

Finally, the total power delivered to the entire load is three times of , that is,

Check:

Each lamp is rated  and  but operates at . Thus, each lamp absorbs

and the power absorbed by the three lamps is

VL N–
VL L–

3
------------- 220 0

3
------------------- 127 0 V= = =

IA

L

IZ IL

ZY ZL

+

VL N– 127 0 V=

ZL 28.8 0=ZY 27.33 77.32=

IZ
VL N–

ZY
------------- 127 0

27.33 77.32
------------------------------- 4.65 77.32– 1.02 j4.54–= = = =

IL
VL N–

ZL
------------- 127 0

28.8 0
--------------------- 4.41 0 4.41= = = =

IZ IL+ 1.02 j4.54– 4.41+ 5.43 j4.54– 7.08 39.9–= = =

a

PA VL N– IA 127 7.08 39.9–cos 690 watts= = =

PA

Ptotal 3 690 2070 watts 2.07 Kw= = =

120 V 500 w 127 V

Voper
Vrated
--------------

2 Poper
Prated
--------------= Poper

127
120
---------

2
500 560 w= =

Plamps 3= 560 1680 w=
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Measuring Three-Phase Power

The voltage across each impedance  in the connected load is (see Figure 10.33) . Then,
the current in each impedance  is

and the power absorbed by each impedance  is

The total power absorbed by the  load is

and the total power delivered to the two loads is

This value is in close agreement with the value on the previous page.

10.9  Measuring Three-Phase Power

A wattmeter is an instrument which measures power in watts or kilowatts. It is constructed with two
sets of coils, a current coil and a voltage coil where the interacting magnetic fields of these coils pro-
duce a torque which is proportional to the  product. It would appear then that one would need
three wattmeters to measure the total power in a three-phase system. This is true in a four-wire sys-
tem where the current in the neutral (fourth wire) is not zero. However, if the neutral carries no cur-
rent, it can be eliminated thereby reducing the system to a three-wire three-phase system. In this sec-
tion, we will show that the total power in a balanced three-wire, three phase system can be measured
with just two wattmeters.

Figure 10.36 shows three wattmeters connected to a  load* where each wattmeter has its current
coil connected in one line, and its potential coil from that line to neutral. With this arrangement,
Wattmeters , , and  measure power in phase , , and  respectively.

Figure 10.37 shows a three-wire, three-phase system without a neutral. This arrangement occurs in
systems where the load, such as an induction motor, has only three terminals. The lower end of the
voltage coils can be connected to any reference point, say . We will now show that with this
arrangement, the sum of the three wattmeters gives the correct total power even though the refer-
ence point was chosen as any reference point.

* If the load were -connected, each wattmeter would have its current coil in one side of the  and its potential 
coil from line to line.

Z 220 V
Z

IZ
VL L–

18 j80+
-------------------- 220

82 77.32
------------------------ 2.68 77.32– A= = =

Z

P VL L– IZ cos 220 2.68 77.32–cos 129.4 watts= = =

P 3 129.4 388 watts= =

PTOTAL Plamps P+ 2068 watts 2.068 kw= = =

V I

Y

1 2 3 a b c

p
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Figure 10.36. Wattmeter connections in four-wire, three-phase system

Figure 10.37. Wattmeter connections in three-wire, three-phase system

We recall that the average power  is found from

Load

1

2

3

Wattmeter connections

n

a

b

n

c

Load

1

2

3

Wattmeter connections

n

p

a

c

b

Pave
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Measuring Three-Phase Power

(10.83)

Then, the total power absorbed by the load of Figure 10.36 is 

(10.84)

This is the true power absorbed by the load, not power indicated by the wattmeters. 

Now, we will compute the total power indicated by the wattmeters. Each wattmeter measures the
average of the line current times the voltage to point . Then,

(10.85)

But

(10.86)

and by substitution of these into (10.85), we get:

(10.87)

and since

(10.88)

then (10.87) reduces to

(10.89)

This relation is the same as (10.84); therefore, the power indicated by the wattmeters and the true
power absorbed by the load are the same. 

Some thought about the location of the arbitrarily selected point  would reveal a very interesting
result. No matter where this point is located, the power relation (10.87) reduces to (10.89). Suppose
that we locate point  on line . If we do this, the voltage coil of Wattmeter  is zero and thus the
reading of this wattmeter is zero. Accordingly, we can remove this wattmeter and still obtain the true
power with just Wattmeters  and  as shown in Figure 10.38.

Pave
1
T
--- p td

0

T 1
T
--- vi td

0

T
= =

Ptotal
1
T
--- vania vbnib vcnic+ + td

0

T
=

p

Pwattmeters
1
T
--- vapia vbpib vcpic+ + td

0

T
=

vap van vnp+=

vbp vbn vnp+=

vcp vcn vnp+=

Pwattmeters
1
T
--- vania vbnib vcnic+ + vnp ia ib ic+ ++ td

0

T
=

ia ib ic+ + 0=

Pwattmeters
1
T
--- vania vbnib vcnic+ + td

0

T
=

p

p c 3

1 2
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Figure 10.38. Two wattmeter method of reading three-phase power

10.10 Summary

 AC is preferable to DC because voltage levels can be changed by transformers. This allows more
economical transmission and distribution.

 The flow of power in a three-phase system is constant rather than pulsating. Three-phase motors
and generators start and run more smoothly since they have constant torque. They are also more
economical.

 If the voltage sources are equal in magnitude and  apart, and the loads are also equal, the cur-
rents will be balanced (equal in magnitude and  out-of phase). 

 Industrial facilities need three-phase power for three-phase motors. Three-phase motors run
smoother and have higher efficiency than single-phase motors. 

 The equations , , define a balanced set of currents of
positive phase sequence .

 The equations , , and  also define a balanced
set of voltages of positive phase sequence .

 In a -connected system

 In a -connected load, the line and phase currents are the same.

 In a -connected system

Load

1

2

Wattmeter connections

n

a

c

b

120
120

Ia Ia 0= Ib Ia 120–= Ic Ia +120=

a b– c–

Van Van 0= Vbn Van 120–= Vcn Van +120=

a b– c–

Y

Vab 3Van 30=

Y

Ia 3Iab 30–=
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Summary

 In a -connected load, the line and phase voltages are the same.

 For  we use the relations

 For  we use the relations

When we want to compute the voltages, currents, and power in a balanced three-phase system, it is
very convenient to use the -connection and work with one phase only. 

 If a load is -connected, the total three-phase power is given by

 If the load is -connected the total three-phase power is given by

(10.90)

 For any load ( ) the total three-phase power can be computed from

and it is important to remember that the power factor  refers to the load, that is, the
angle  is not the angle between  and .

Y Conversion

Za
Z1Z3

Z1 Z2 Z3+ +
------------------------------=

Zb
Z2Z3

Z1 Z2 Z3+ +
------------------------------=

Zc
Z1Z2

Z1 Z2 Z3+ +
------------------------------=

Y Conversion

Z1
ZaZb ZbZc ZcZa+ +

Zb
-----------------------------------------------=

Z2
ZaZb ZbZc ZcZa+ +

Za
-----------------------------------------------=

Z3
ZaZb ZbZc ZcZa+ +

Zc
-----------------------------------------------=

Y

Y

PTOTAL 3 VAN IA cos=

Y connected load–

PTOTAL 3 VAB IAB cos=

connected load–

Y or connected–

PTOTAL 3 VAB IA LOADcos=

Y or connected load–

LOADcos

VAB IA
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10.11 Exercises

1. In the circuit of Figure 10.39, the line-to-line voltage is , the phase sequence is , and
each . Compute:

a. the total power absorbed by the three-phase load.

b. the wattmeter reading.

Figure 10.39. Circuit for Exercise 1

2. In the circuit of Figure 10.40 the lighting load is balanced. Each lamp is rated  at .
Assume constant resistance, that is, each lamp will draw rated current. The three-phase motor
draws  at a power factor of  lagging. The secondary of the transformer provides bal-
anced  line-to-line. The load is located  feet from the three-phase transformer. The
resistance and inductive reactance of the distribution line is  and  respectively per

 ft of the wire line. Compute line-to-line and line-to-neutral voltages at the load.

Figure 10.40. Circuit for Exercise 2

100 V a b– c–

Z 10 30=

Z
Z

Z

Wattmeter Load

a

b

c

500 w 120 V

5.0 Kw 0.8
208 V 1500

0.403 0.143
1000

L

LL

L

LL

M
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Solutions to Exercises

10.12 Solutions to Exercises

1. a

From the circuit above

and with MATLAB

x=5*sqrt(3) 15j; fprintf(' \n');...
fprintf('mag = %5.2f A \t', abs(x)); fprintf('phase = %5.2f deg', angle(x)*180/pi)

mag = 17.32 A    phase = -60.00 deg

Thus, 

The phase sequence  implies the phase diagram below.

From (10.59)

b.
The wattmeter reads the product  where  is  behind  as shown on the phasor
diagram. Then, the wattmeter reading is

and, as expected, this value is on-third of the total power.

Z
Z

Z

Wattmeter Load

a

b

c

Vab

Ica

Ic

Ia

Ibc

Iab

Iab
Vab
Z

-------- 100 0
10 30
------------------- 10 30– 10 3

2
------- j10 1

2
---– 5 3 j5–= = = = =

Ica
Vca
Z

-------- 100 240–
10 30

---------------------------- 10 270– 10 90 j10= = = = =

Ia Iab Ica– 5 3 j5– j10– 5 3 j15–= = =

Ia 17.32 A=

a b– c–

Ptotal 3 Vab Ia load pf=

3 100 17.32 30cos 2 598 w==

Vab Ic Ic 240 Ia

Pwattmeter Vab Ic 100 0 10 3 60– 240–cos= =

100 17.32 300–cos 866 w==
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2. The single-phase equivalent circuit is shown below where 

and thus

Also,

We recall that for a single phase system the real power is given by

Vab 100 0=

Vca 100 240–=

Vab 100 120–=

Iab

Ica

30

Ibc

I– bc

Ic

Ica–

Ia

R 0.403 1000 ft 1500 ft 0.605= =

XL 0.143 1000 ft 1500 ft 0.215= =

ZLINE 0.605 j0.215+=

Ilamp1 Ilamp2
Prated
Vrated
-------------- 500

120
--------- 4.17 A= = = =

R jXL

MVan 208 3 0 V=

120 0 V=

1500 ft

j0.2150.605

Ilamp2
Ilamp1

4.17 A4.17 A

IM

5 3 Kw
0.8 pf

VM Vload=

Zline

Itotal
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Answers to Exercises

where

Then, we find the motor current  in terms of the motor voltage  as

and since , the motor current  is expressed as

The total current is

and the voltage drop across the  line is

Next,

or

or

We solve this quadratic equation with the following MATLAB code:

p=[1  114.95 1.79j  1277 398.7j]; roots(p)

ans =
  1.0e+002 *

  1.0260 + 0.0238i

  0.1235 - 0.0417i

Preal VRMS IRMS cos=

cos pf=

IM VM

IM
5000 3
0.8 VM
------------------- 2083

VM
------------= =

0.81–cos 36.9 lagging pf–= IM

IM
2083
VM

------------ 36.9–
1

VM
------- 1666 j1251–= =

Itotal Ilamp1 Ilamp2 IM+ + 2 4.17 1
VM
------- 1666 j1251–+

1
VM
------- 8.34VM 1666 j1251–+= = =

1500 ft

Vline Itotal Zline
1

VM
------- 8.34VM 1666 j1251–+ 0.605 j0.215+= =

1
VM
------- 5.05VM j1.79VM 1008 j358.2 j756.9– 269.0+ + + +=

1
VM
------- 5.05VM 1277+ j 1.79VM 398.7–+=

Van 120 0 Vline VM+
1

VM
------- 5.05VM 1277+ j 1.79VM 398.7–+ VM+= = =

120VM 5.05VM 1277+ j 1.79VM 398.7–+ VM
2+=

VM
2 114.95 j1.79– VM– 1277 j398.7–+ 0=



Chapter 10  Three-Phase Systems

10-36  Circuit Analysis II with MATLAB Applications
Orchard Publications

Then,  and . Of these,
the value of  is unrealistic and thus it is rejected.

The positive phase angle in  is a result of the fact that a motor is an inductive load. But since
an inductive load has a lagging power factor, we denote this line-to neutral of line-to-ground volt-
age with a negative angle, that is, 

The magnitude of the line-to-line voltage is 

VM1 102.6 j2.39+ 102.63 1.33= = VM2 12.35 j– 4.17 13.4 18.66–= =

VM2

VM1

VM Vload 102.63 1.33 V–= =

Vl l– 3 VM 3 102.63 177.76 V= = =
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Appendix A
Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions, proce-
dures for naming and saving the user generated files, comment lines, access to MATLAB’s Edi-
tor/Debugger, finding the roots of a polynomial, and making plots. Several examples are pro-

vided with detailed explanations.

A.1 MATLAB® and Simulink®

MATLAB ® and Simulink ® are products of The MathWorks, Inc . These are two outstanding
software packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and envi-
ronmental applications. MATLAB enables us to solve many advanced numerical problems fast and
efficiently. Simulink is a block diagram tool used for modeling and simulating dynamic systems such
as controls, signal processing, and communications. In this appendix we will discuss MATLAB only. 

A.2 Command Window

To distinguish the screen displays from the user commands, important terms, and MATLAB func-
tions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays

Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>*

Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt
EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a new
command from the user. It is highly recommended that we use the Editor/Debugger to write our
program, save it, and return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M-File. This takes us to the Edi-

* EDU>> is the MATLAB prompt in the Student Version

T
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tor Window where we can type our code (list of statements) for a new file, or open a previously
saved file. We must save our program with a file name which starts with a letter. Important! MAT-
LAB is case sensitive, that is, it distinguishes between upper- and lower-case letters. Thus, t and T
are two different letters in MATLAB language. The files that we create are saved with the file name
we use and the extension .m; for example, myfile01.m. It is a good practice to save the code in a
file name that is descriptive of our code content. For instance, if the code performs some matrix
operations, we ought to name and save that file as matrices01.m or any other similar name. We
should also use a floppy disk to backup our files. 

2. Once the code is written and saved as an m-file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command win-
dow.

3. To execute a program, we type the file name without the .m extension at the >> prompt; then, we
press <enter> and observe the execution and the values obtained from it. If we have saved our
file in drive a or any other drive, we must make sure that it is added it to the desired directory in
MATLAB’s search path. The MATLAB User’s Guide provides more information on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example, to
get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide contains
numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu. We can
do this periodically to become familiar with them. Whenever we want to return to the command win-
dow, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all pre-
vious values, variables, and equations without exiting, we should use the command clear. This com-
mand erases everything; it is like exiting MATLAB and starting it again. The command clc clears the
screen but MATLAB still remembers all values, variables and equations that we have already used. In
other words, if we want to clear all previously entered commands, leaving only the >> prompt on the
upper left of the screen, we use the clc command. 

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the function
or command or as a separate line. For instance,

conv(p,q)    % performs multiplication of polynomials p and q.

% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.
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Roots of Polynomials

One of the most powerful features of MATLAB is the ability to do computations involving complex
numbers. We can use either , or  to denote the imaginary part of a complex number, such as 3-4i
or 3-4j. For example, the statement

z=3 4j

displays

z = 3.0000-4.0000i

In the above example, a multiplication (*) sign between 4 and  was not necessary because the com-
plex number consists of numerical constants. However, if the imaginary part is a function, or variable
such as , we must use the multiplication sign, that is, we must type cos(x)*j or j*cos(x) for the
imaginary part of the complex number. 

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . These
are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1

Find the roots of the polynomial

Solution:

The roots are found with the following two statements where we have denoted the polynomial as p1,
and the roots as roots_ p1.

p1=[1  10  35 50  24] %  Specify and display the coefficients of p1(x)

p1 =

     1   -10    35   -50    24

roots_ p1=roots(p1) %  Find the roots of p1(x)

roots_p1 =

   4.0000

   3.0000

   2.0000

i j

j

xcos

an an 1– a2 a1 a0

p1 x x
4

10x
3– 35x

2
50x– 24+ +=
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   1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2

Find the roots of the polynomial

Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the
statements below, where we have defined the polynomial as p2, and the roots of this polynomial as
roots_ p2. The result indicates that this polynomial has three real roots, and two complex roots. Of
course, complex roots always occur in complex conjugate* pairs. 

p2=[1 7   0  16  25  52]

p2 =

     1    -7     0    16    25    52

roots_ p2=roots(p2)

roots_ p2 =

   6.5014         

   2.7428         

  -1.5711         

  -0.3366+ 1.3202i

  -0.3366- 1.3202i

A.4 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) function
where r is a row vector containing the roots. 

Example A.3

It is known that the roots of a polynomial are . Compute the coefficients of this poly-
nomial.

* By definition, the conjugate of a complex number  is 

p2 x x
5

7x
4

– 16x
2

25x+ + 52+=

A a jb+= A a jb–=

1 2 3  and 4
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Polynomial Construction from Known Roots

Solution:

We first define a row vector, say , with the given roots as elements of this vector; then, we find the
coefficients with the poly(r) function as shown below.

r3=[1  2  3  4] %  Specify the roots of the polynomial

r3 =

     1     2     3     4

poly_r3=poly(r3) %  Find the polynomial coefficients

poly_r3 =

     1   -10    35   -50    24

We observe that these are the coefficients of the polynomial  of Example A.1.

Example A.4

It is known that the roots of a polynomial are  Find the coefficients
of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with the
poly(r) function as shown below.

r4=[ 1 2 3 4+5j   4 5j ]

r4 =

  Columns 1 through 4 

  -1.0000   -2.0000   -3.0000   -4.0000+ 5.0000i

  Column 5 

  -4.0000- 5.0000i

poly_r4=poly(r4)

poly_r4 =

     1    14   100   340   499   246

Therefore, the polynomial is

r3

p1 x

1 2 3 4 j5  and  4 j5–+–––

r4

p4 x x
5

14x
4

100x
3

340x
2

499x 246+ + + + +=
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A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial  at some specified value of the independent
variable x.

Example A.5

Evaluate the polynomial

(A.1)

at .

Solution:

p5=[1 3   0   5  4   3   2]; % These are the coefficients

% The semicolon (;) after the right bracket suppresses the display of the row vector

%  that contains the coefficients of p5.

%

val_minus3=polyval(p5, 3) % Evaluate p5 at x= 3; no semicolon is used here

% because we want the answer to be displayed

val_minus3 =

        1280

Other MATLAB functions used with polynomials are the following:

conv(a,b)  multiplies two polynomials a and b

[q,r]=deconv(c,d) divides polynomial c by polynomial d and displays the quotient q and remain-
der r.

polyder(p)  produces the coefficients of the derivative of a polynomial p.

Example A.6

Let 

and

Compute the product  using the conv(a,b) function.

p x

p5 x x6 3x5– 5x3 4x2– 3x 2+ + +=
x 3–=

p1 x5 3x4
– 5x2 7x 9+ + +=

p2 2x6 8x4
– 4x2 10x 12+ + +=

p1 p2
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Evaluation of a Polynomial at Specified Values

Solution:

p1=[1  3   0  5  7  9]; % The coefficients of p1

p2=[2   0  8  0  4  10  12]; % The coefficients of p2

p1p2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2

p1p2 =

2  -6  -8  34  18  -24  -74  -88  78  166  174  108

Therefore, 

Example A.7

Let

and

Compute the quotient  using the [q,r]=deconv(c,d) function.

Solution:

% It is permissible to write two or more statements in one line separated by semicolons

p3=[1   0  3    0   5   7    9];  p4=[2  8   0    0   4  10  12];  [q,r]=deconv(p3,p4)

q =

    0.5000

r =

     0     4    -3     0     3     2     3

Therefore,

p1 p2 2x11 6x10 8x9
–– 34x8 18x7 24x6

–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5
– 5x3 7x 9+ + +=

p4 2x6 8x5
– 4x2 10x 12+ + +=

p3 p4

q 0.5= r 4x5 3x4
– 3x2 2x 3+ + +=
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Example A.8

Let

Compute the derivative  using the polyder(p) function.

Solution:

p5=[2   0   8   0   4   10   12]; % The coefficients of p5

der_p5=polyder(p5) % Compute the coefficients of the derivative of p5

der_p5 =

    12     0   -32     0     8    10

Therefore,

A.6  Rational Polynomials

Rational Polynomials are those which can be expressed in ratio form, that is, as

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if we
separate them by commas or semicolons. Commas will display the results whereas semicolons will
suppress the display.

Example A.9

Let

Express the numerator and denominator in factored form, using the roots(p) function. 

p5 2x6 8x4
– 4x2 10x 12+ + +=

d
dx
------p5

d
dx
------p5 12x5 32x3

– 4x2 8x 10+ + +=

R x Num x
Den x
-------------------

bnxn bn 1– xn 1– bn 2– xn 2– b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2– a1x a0+ + + + +
-----------------------------------------------------------------------------------------------------------------------= =

R x
pnum
pden
------------ x5 3x4

– 5x2 7x 9+ + +

x6 4x4– 2x2 5x 6+ + +
--------------------------------------------------------= =
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Rational Polynomials

Solution:

num=[1  3  0  5  7  9]; den=[1  0  4  0  2  5  6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =

   2.4186+ 1.0712i    2.4186- 1.0712i   -1.1633         

  -0.3370+ 0.9961i   -0.3370- 0.9961i

roots_den =

   1.6760+0.4922i     1.6760-0.4922i  -1.9304         

  -0.2108+0.9870i    -0.2108-0.9870i  -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that, in a quadratic equation of the form 
whose roots are  and , the negative sum of the roots is equal to the coefficient  of the  term,
that is, , while the product of the roots is equal to the constant term , that is,

. Accordingly, we form the coefficient  by addition of the complex conjugate roots and
this is done by inspection; then we multiply the complex conjugate roots to obtain the constant term

 using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 1.0712i)

ans = 6.9971

( 0.3370+ 0.9961i)*( 0.3370 0.9961i)

ans = 1.1058

(1.6760+ 0.4922i)*(1.6760 0.4922i)

ans = 3.0512

pnum x 2.4186– j1.0712– x 2.4186– j1.0712+ x 1.1633+=

x 0.3370 j0.9961–+ x 0.3370 j0.9961+ +

pden x 1.6760– j0.4922– x 1.6760– j0.4922+ x 1.9304+=

x 0.2108 j– 0.9870+ x 0.2108 j0.9870+ + x 1.0000+

x2 bx c+ + 0=

x1 x2 b x

x1 x2+– b= c

x1 x2 c= b

c
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( 0.2108+ 0.9870i)*( 0.2108 0.9870i)

ans = 1.0186

Thus,

We can check this result with MATLAB’s Symbolic Math Toolbox which is a collection of tools
(functions) used in solving symbolic expressions. They are discussed in detail in MATLAB’s Users
Manual. For the present, our interest is in using the collect(s) function that is used to multiply two
or more symbolic expressions to obtain the result in polynomial form. We must remember that the
conv(p,q) function is used with numeric expressions only, that is, polynomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following code:

syms x  % Define a symbolic variable and use collect(s) to express numerator in polynomial
form

collect((x^2 4.8372*x+6.9971)*(x^2+0.6740*x+1.1058)*(x+1.1633))

ans =

x^5-29999/10000*x^4-1323/3125000*x^3+7813277909/
1562500000*x^2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression in
polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x. Here, x is the horizontal axis (abscissa) and y is the vertical
axis (ordinate).

Example A.10

Consider the electric circuit of Figure A.1, where the radian frequency  (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude was
held constant. The ammeter readings were then recorded for each frequency. The magnitude of the
impedance |Z| was computed as  and the data were tabulated on Table A.1.

R x
pnum
pden
------------ x2 4.8372x– 6.9971+ x2 0.6740x 1.1058+ + x 1.1633+

x2 3.3520x– 3.0512+ x2 0.4216x 1.0186+ + x 1.0000+ x 1.9304+
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =

Z V A=
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Figure A.1. Electric circuit for Example A.10

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type  (omega) in the MATLAB command window, so we will use the English letter w
instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by typ-
ing three or more periods, then pressing <enter> to start a new line, and continue to enter data. This
is illustrated below for the data of w and z. Also, as mentioned before, we use the semicolon (;) to
suppress the display of numbers that we do not care to see on the screen. 

The data are entered as follows:

TABLE A.1  Table for Example A.10

 (rads/s) |Z| Ohms  (rads/s) |Z| Ohms
300 39.339 1700 90.603
400 52.589 1800 81.088
500 71.184 1900 73.588
600 97.665 2000 67.513
700 140.437 2100 62.481
800 222.182 2200 58.240
900 436.056 2300 54.611

1000 1014.938 2400 51.428
1100 469.83 2500 48.717
1200 266.032 2600 46.286
1300 187.052 2700 44.122
1400 145.751 2800 42.182
1500 120.353 2900 40.432
1600 103.111 3000 38.845

A

V

R

L

C
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w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];

%

z=[39.339  52.789  71.104  97.665  140.437  222.182  436.056.... 

1014.938  469.830  266.032 187.052 145.751 120.353  103.111.... 

90.603  81.088  73.588  67.513  62.481  58.240  54.611  51.468.... 

48.717  46.286  44.122 42.182  40.432  38.845]; 

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press
<enter>. To plot  (y-axis) versus  (x-axis), we use the plot(x,y) command. For this example, we
use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s graph
screen. This plot is shown in Figure A.2.

Figure A.2. Plot of impedance  versus frequency  for Example A.10

This plot is referred to as the amplitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull-down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull-down
menu, and we select Figure.
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We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the x- and y-axis respectively.

The amplitude frequency response is usually represented with the x-axis in a logarithmic scale. We
can use the semilogx(x,y) command that is similar to the plot(x,y) command, except that the x-axis
is represented as a log scale, and the y-axis as a linear scale. Likewise, the semilogy(x,y) command is
similar to the plot(x,y) command, except that the y-axis is represented as a log scale, and the x-axis as
a linear scale. The loglog(x,y) command uses logarithmic scales for both axes. 

Throughout this text it will be understood that log is the common (base 10) logarithm, and ln is the
natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is the nat-
ural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm to the
base 2 as log2(x).

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid;   % Replaces the plot(w,z) command

title('Magnitude of Impedance vs. Radian Frequency');

xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, our plot is as shown in Figure A.3.

If the y-axis represents power, voltage or current, the x-axis of the frequency response is more often
shown in a logarithmic scale, and the y-axis in dB (decibels). The decibel unit is defined in Chapter 4.

* A default is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.
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Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage  in a dB scale on the y-axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’)*  switches to the current Figure Window, and displays a cross-hair
that can be moved around with the mouse. For instance, we can use the command gtext(‘Impedance
|Z| versus Frequency’), and this will place a cross-hair in the Figure window. Then, using the
mouse, we can move the cross-hair to the position where we want our label to begin, and we press
<enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some spe-
cific location specified by x and y, and string is the label which we want to place at that location. We
will illustrate its use with the following example that plots a 3-phase sinusoidal waveform.

The first line of the code below has the form

* With MATLAB Versions 6 and 7 we can add text, lines and arrows directly into the graph using the tools provided
on the Figure Window.
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linspace(first_value, last_value, number_of_values)

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The code for the 3-phase plot is as follows:

x=linspace(0, 2*pi, 60); %  pi is a built-in function in MATLAB;

%  we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;

y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3); 

plot(x,y,x,u,x,v); %  The x-axis must be specified for each function

grid on, box on, %  turn grid and axes box on

text(0.75, 0.65, 'sin(x)');  text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure A.4.

Figure A.4. Three-phase waveforms 
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In our previous examples, we did not specify line styles, markers, and colors for our plots. However,
MATLAB allows us to specify various line types, plot symbols, and colors. These, or a combination
of these, can be added with the plot(x,y,s) command, where s is a character string containing one or
more characters shown on the three columns of Table A.2. MATLAB has no default color; it starts
with blue and cycles through the first seven colors listed in Table A.2 for each additional line in the
plot. Also, there is no default marker; no markers are drawn unless they are selected. The default line
is the solid line.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs '). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are two-dimensional, that is, they are drawn on two axes. MAT-
LAB has also a three-dimensional (three-axes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3-space through the points whose coordinates are the ele-
ments of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two-dimensional plots.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style
b blue point solid line

g green o circle dotted line

r red x x-mark dash-dot line

c cyan + plus dashed line

m magenta * star
y yellow s square
k black d diamond
w white triangle down

triangle up

triangle left

triangle right

p pentagram
h hexagram
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Example A.11

Plot the function

(A.3)
Solution:

We arbitrarily choose the interval (length) shown on the code below.

x= -10: 0.5: 10; %  Length of vector x 

y= x; % Length of vector y must be same as x

z= 2.*x.^3+x+3.*y.^2 1; %  Vector z is function of both x and y*

plot3(x,y,z); grid

The three-dimensional plot is shown in Figure A.5.

Figure A.5. Three dimensional plot for Example A.11

In a two-dimensional plot, we can set the limits of the x- and y-axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three-dimensional plot we can set the limits of all three axes

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication,
division, and exponential operators are preceded by a dot. These operations will be explained in Section A.8.
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with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot command.
This must be done for each plot. The three-dimensional text(x,y,z,’string’) command will place
string beginning at the co-ordinate (x,y,z) on the plot.

For three-dimensional plots, grid on and box off are the default states.

We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as
 and  where . In this case, the vertices of the mesh

lines are the triples . We observe that x corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say , we must first generate the X
and Y matrices that consist of repeated rows and columns over the range of the variables x and y. We
can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the matrix X
whose rows are copies of the vector x, and the matrix Y whose columns are copies of the vector y.

Example A.12

The volume  of a right circular cone of radius  and height  is given by

(A.4)

Plot the volume of the cone as  and  vary on the intervals  and  meters.

Solution:

The volume of the cone is a function of both the radius r and the height h, that is,

The three-dimensional plot is created with the following MATLAB code where, as in the previous
example, in the second line we have used the dot multiplication, dot division, and dot exponentiation.
This will be explained in Section A.8.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h

V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V)

xlabel('x-axis, radius r (meters)'); ylabel('y-axis, altitude h (meters)');

zlabel('z-axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three-dimensional plot of Figure A.6, shows how the volume of the cone increases as the radius
and height are increased.

length x n= length y m= m n size Z=

x j y i Z i j

z f x y=

V r h

V 1
3
--- r2h=

r h 0 r 4 0 h 6

V f r h=
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Figure A.6. Volume of a right circular cone.

This, and the plot of Figure A.5, are rudimentary; MATLAB can generate very sophisticated three-
dimensional plots. The MATLAB User’s manual contains more examples.

A.8 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m  n matrix of plotting areas and
chooses the pth area to be active. No spaces or commas are required between the three integers m, n
and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

Figure A.7. Possible subplot arrangements in MATLAB
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A.9  Multiplication, Division and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the matrix
multiplication, division, and exponentiation, and the element-by-element multiplication, division,
and exponentiation. They are explained in the following paragraphs.

In Section A.2, the arrays , such a those that contained the coefficients of polynomials,
consisted of one row and multiple columns, and thus are called row vectors. If an array has one col-
umn and multiple rows, it is called a column vector. We recall that the elements of a row vector are
separated by spaces. To distinguish between row and column vectors, the elements of a column vec-
tor must be separated by semicolons. An easier way to construct a column vector, is to write it first as
a row vector, and then transpose it into a column vector. MATLAB uses the single quotation charac-
ter ( ) to transpose a vector. Thus, a column vector can be written either as b=[ 1; 3; 6; 11] or as
b=[ 1  3  6  11]'. MATLAB produces the same display with either format as shown below.

b=[ 1; 3; 6; 11] 

b =

    -1

     3

     6

    11

b=[ 1  3  6  11]' 

b =

    -1

     3

     6

    11

We will now define Matrix Multiplication and Element-by-Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and

be two vectors. We observe that A is defined as a row vector whereas B is defined as a column vector,
as indicated by the transpose operator ( ). Here, multiplication of the row vector A by the column

a b c

A a1 a2 a3      an=

B b1 b2 b3      bn '=
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vector B, is performed with the matrix multiplication operator (*). Then,

(A.5)

For example, if

and

the matrix multiplication  produces the single value 68, that is,

and this is verified with MATLAB as

A=[1   2    3   4   5]; B=[ 2   6 3   8   7]';
A*B

ans =

   68

Now, let us suppose that both A and B are row vectors, and we attempt to perform a row-by-row
multiplication with the following MATLAB statements.

A=[1  2   3  4  5]; B=[ 2  6 3  8  7];
A*B

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects vector
B to be a column vector, not a row vector. It recognizes that B is a row vector, and warns us that we
cannot perform this multiplication using the matrix multiplication operator (*). Accordingly, we must
perform this type of multiplication with a different operator. This operator is defined below.

2.Element-by-Element Multiplication (multiplication of a row vector by another row vector)

Let

and

be two row vectors. Here, multiplication of the row vector C by the row vector D is performed with
the dot multiplication operator (.*). There is no space between the dot and the multiplication sym-

A*B a1b1 a2b2 a3b3 anbn+ + + + gle valuesin= =

A 1 2   3 4   5=

B 2–    6 3– 8   7 '=

A*B

A B 1 2– 2 6 3 3– 4 8 5 7++++ 68= =

C c1 c2   c3 cn=

D d1   d2 d3   dn=
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bol. Thus,

(A.6)

This product is another row vector with the same number of elements, as the elements of C and D.

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1  2   3   4  5]; %  Vectors C and D must have
D=[ 2  6 3   8  7]; %  same number of elements
C.*D % We observe that this is a dot multiplication

ans =
   -2    12    -9    32    35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and exponen-
tiation, whereas dot division (./) and dot exponentiation (.^) are used for element-by-element divi-
sion and exponentiation.

We must remember that no space is allowed between the dot (.) and the multiplication, division,
and exponentiation operators. 

Note: A dot (.) is never required with the plus (+) and minus ( ) operators.

Example A.13

Write the MATLAB code that produces a simple plot for the waveform defined as 

(A.7)

in the  seconds interval.

Solution:

The MATLAB code for this example is as follows:

t=0: 0.01: 5  %  Define t-axis in 0.01 increments
y=3 .* exp( 4 .* t) .* cos(5 .* t) 2 .* exp( 3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);

C. D c1d1    c2d2    c3d3 cndn=

C 1 2   3 4   5=

D 2–    6 3– 8   7=

C. D 1 2–    2 6   3 3– 4 8 5 7 2– 12 9– 32 35= =

y f t 3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-----------+= =

0 t 5
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plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example A.13')

Figure A.8 shows the plot for this example. 

Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less than
, say as  MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero when
. To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by the
arguments xmin, xmax, ymin and ymax. There are no commas between these four arguments. This
command must be placed after the plot command and must be repeated for each plot.

The following example illustrates the use of the dot multiplication, division, and exponentiation, the
eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability of dis-
playing up to four windows of different plots.

Example A.14

Plot the functions
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in the interval using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

Solution:

The MATLAB code to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).^ 2);  z=(cos(x).^ 2);  
w=y.* z;
v=y./ (z+eps); %  add eps to avoid division by zero
subplot(221);% upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]);  
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure A.9. 

Figure A.9. Subplots for the functions of Example A.14
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The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce the
real(z) and imag(z) functions that display the real and imaginary parts of the complex quantity z =
x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magnitude) and
phase angle of the complex quantity z = x + iy = r We will also use the polar(theta,r) function
that produces a plot in polar coordinates, where r is the magnitude, theta is the angle in radians, and
the round(n) function that rounds a number to its nearest integer.

Example A.15

Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance  as a function of
the radian frequency  can be computed from the following expression:

(A.8)

a. Plot  (the real part of the impedance Z) versus frequency .

b. Plot  (the imaginary part of the impedance Z) versus frequency .

c. Plot the impedance Z versus frequency  in polar coordinates.

Solution:

The MATLAB code below computes the real and imaginary parts of  that is, for simplicity,
denoted as z, and plots these as two separate graphs (parts a & b). It also produces a polar plot (part
c).

w=0: 1: 2000;  %  Define interval with one radian interval
z=(10+(10 .^ 4 j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w 10.^5./ (w+eps))));
%
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);  grid;
xlabel('radian frequency w');  ylabel('Real part of Z');
%

a

b
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%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);  grid;
xlabel('radian frequency w');  ylabel('Imaginary part of Z');
%  The last six statements (next six lines) below produce the polar plot of z
mag=abs(z); %  Computes |Z|
rndz=round(abs(z)); %  Rounds |Z| to read polar plot easier
theta=angle(z); %  Computes the phase angle of impedance Z
polar(theta,rndz); %  Angle is the first argument
grid;
ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures A.11, A.12, and A.13 respectively.

Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m-files since both require the .m extension.

A script file consists of two or more built-in functions such as those we have discussed thus far.
Thus, the code for each of the examples we discussed earlier, make up a script file. Generally, a script
file is one which was generated and saved as an m-file with an editor such as the MATLAB’s Editor/
Debugger.

Figure A.11. Plot for the real part of the impedance in Example A.15
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Script and Function Files

Figure A.12. Plot for the imaginary part of the impedance in Example A.15

Figure A.13. Polar plot of the impedance in Example A.15

A function file is a user-defined function using MATLAB. We use function files for repetitive tasks.
The first line of a function file must contain the word function, followed by the output argument, the
equal sign ( = ), and the input argument enclosed in parentheses. The function name and file name
must be the same, but the file name must have the extension .m. For example, the function file con-
sisting of the two lines below
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function y = myfunction(x)

y=x.^ 3 + cos(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions.

fzero(f,x) tries to find a zero of a function of one variable, where f is a string containing the name of
a real-valued function of a single real variable. MATLAB searches for a value near a point where the
function f changes sign, and returns that value, or returns NaN if the search fails. 

Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fmin(f,x1,x2) minimizes a function of one variable. It attempts to return a value of x where  is
minimum in the interval . The string f contains the name of the function to be minimized.

Note: MATLAB does not have a function to maximize a function of one variable, that is, there is no
fmax(f,x1,x2) function in MATLAB; but since a maximum of  is equal to a minimum of ,
we can use fmin(f,x1,x2) to find both minimum and maximum values of a function.

fplot(fcn,lims) plots the function specified by the string fcn between the x-axis limits specified by
lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y-axis limits. The
string fcn must be the name of an m-file function or a string with variable .

Note: NaN (Not-a-Number) is not a function; it is MATLAB’s response to an undefined expression
such as , or inability to produce a result as described on the next paragraph. We can avoid
division by zero using the eps number, that we mentioned earlier.

Example A.16

Find the zeros, maxima and minima of the function 

Solution:

We first plot this function to observe the approximate zeros, maxima, and minima using the follow-
ing code.

x= 1.5: 0.01: 1.5;
y=1./ ((x 0.1).^ 2 + 0.01) 1./ ((x 1.2).^ 2 + 0.04) 10;
plot(x,y); grid

The plot is shown in Figure A.14.

f x
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f x f x–
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Figure A.14. Plot for Example A.16 using the plot command

The roots (zeros) of this function appear to be in the neighborhood of  and . The
maximum occurs at approximately  where, approximately, , and the minimum
occurs at approximately  where, approximately, .

Next, we define and save f(x) as the funczero01.m function m-file with the following code:

function y=funczero01(x)

% Finding the zeros of the function shown below

y=1/((x 0.1)^2+0.01) 1/((x 1.2)^2+0.04)-10;

Now, we can use the fplot(fcn,lims) command to plot  as follows.

fplot('funczero01', [ 1.5  1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14 that
was obtained with the plot(x,y) command.
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Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of  in (A.20) more precisely. The code
below must be saved with a file name, and then invoked with that file name.

x1= fzero('funczero01', -0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)

MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

Whenever we use the fmin(f,x1,x2) function, we must remember that this function searches for a
minimum and it may display the values of local minima* , if any, before displaying the function mini-
mum. It is, therefore, advisable to plot the function with either the plot(x,y) or the fplot(fcn,lims)
command to find the smallest possible interval within which the function minimum lies. For this
example, we specify the range  rather than the interval 

The minimum of f(x) is found with the fmin(f,x1,x2) function as follows.
min_val=fmin('funczero01', 0, 1.5)

min_val = 1.2012

* Local maxima or local minima, are the maximum or minimum values of a function within a restricted range of
values in the independent variable. When the entire range is considered, the maxima and minima are considered
be to the maximum and minimum values in the entire range in which the function is defined.
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This is the value of x at which  is minimum. To find the value of y corresponding to this
value of x, we substitute it into , that is,

x=1.2012; y=1 / ((x 0.1) ^ 2 + 0.01) 1 / ((x 1.2) ^ 2 + 0.04) 10

y = -34.1812

To find the maximum value, we must first define a new function m-file that will produce  We
define it as follows:

function y=minusfunczero01(x)

% It is used to find maximum value from -f(x)

y= (1/((x 0.1)^2+0.01) 1/((x 1.2)^2+0.04) 10);

We have placed the minus ( ) sign in front of the right side of the last expression above, so that the
maximum value will be displayed. Of course, this is equivalent to the negative of the funczero01
function.

Now, we execute the following code to get the value of x where the maximum  occurs.

max_val=fmin('minusfunczero01', 0,1)

max_val = 0.0999

x=0.0999;% Using this value find the corresponding value of y
y=1 / ((x 0.1) ^ 2 + 0.01) 1 / ((x 1.2) ^ 2 + 0.04) 10

y = 89.2000

A.11 Display Formats

MATLAB displays the results on the screen in integer format without decimals if the result is an inte-
ger number, or in short floating point format with four decimals if it a fractional number. The format
displayed has nothing to do with the accuracy in the computations. MATLAB performs all computa-
tions with accuracy up to 16 decimal places.

The output format can changed with the format command. The available formats can be displayed
with the help format command as follows:

help format

FORMAT Set output format.

All computations in MATLAB are done in double precision.

FORMAT may be used to switch between different output display formats as follows:

FORMAT  Default. Same as SHORT.

y f x=

f x

f x–

y f x=
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FORMAT SHORT Scaled fixed point format with 5 digits.

FORMAT LONG Scaled fixed point format with 15 digits.

FORMAT SHORT E Floating point format with 5 digits.

FORMAT LONG E  Floating point format with 15 digits.

FORMAT SHORT G Best of fixed or floating point format with 5 digits.

FORMAT LONG G  Best of fixed or floating point format with 15 digits.

FORMAT HEX     Hexadecimal format.

FORMAT +   The symbols +, - and blank are printed for positive, negative and zero elements.
                         Imaginary parts are ignored.

FORMAT BANK    Fixed format for dollars and cents.

FORMAT RAT    Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.

FORMAT LOOSE   Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short 33.3335  Four decimal digits (default)

format long 33.33333333333334 16 digits

format short e 3.3333e+01  Four decimal digits plus exponent

format short g 33.333  Better of format short or format format short e

format bank 33.33 two decimal digits

format +  only + or  or zero are printed

format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the text
is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is used,
the values will be displayed and printed in fixed decimal format, and if %e is used, the values will be
displayed and printed in scientific notation format. With these commands only the real part of each
parameter is processed.
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Appendix B

Differential Equations

his appendix is a review of ordinary differential equations. Some definitions, topics, and exam-
ples are not applicable to introductory circuit analysis but are included for continuity of the
subject, and for reference to more advance topics in electrical engineering such as state vari-

ables. These are denoted with an asterisk and may be skipped.

B.1 Simple Differential Equations

In this section we present two simple examples to show the importance of differential equations in
engineering applications.

Example B.1  

A  capacitor is being charged by a constant current . Find the voltage  across this capacitor as
a function of time given that the voltage at some reference time  is . 

Solution:

It is given that the current, as a function of time, is constant, that is,

(B.1)

We know that the current and voltage in a capacitor are related by

(B.2)

and for our example, . Then, by substitution of (B.2) into (B.1) we get

By separation of the variables,

(B.3)

and by integrating both sides of (B.3) we get

(B.4)

where  represents the constants of integration of both sides. 
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We can find the value of the constant  by making use of the initial condition, i.e., at , 
and (B.4) then becomes

(B.5)

or , and by substitution into (B.4),

(B.6)

This example shows that when a capacitor is charged with a constant current, a linear voltage is pro-
duced across the terminals of the capacitor.

Example B.2

Find the current  through an inductor whose slope at the coordinate  is  and the cur-
rent  passes through the point .

Solution:

We are given that

(B.7)

By separating the variables we get

(B.8)

and integrating both sides we get

(B.9)

where  represents the constants of integration of both sides.

We find the value of the constant  by making use of the initial condition. For this example, 
and thus at , . With these values (B.9) becomes

(B.10)

or , and by substitution into (B.9),

(B.11)
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B.2  Classification

Differential equations are classified by:

1. Type  Ordinary or Partial

2. Order  The highest order derivative which is included in the differential equation

3. Degree  The exponent of the highest power of the highest order derivative after the differential
equation has been cleared of any fractions or radicals in the dependent variable and its derivatives

For example, the differential equation

is an ordinary differential equation of order  and degree .

If the dependent variable  is a function of only a single variable , that is, if , the differen-
tial equation which relates  and  is said to be an ordinary differential equation and it is abbreviated
as ODE.

The differential equation

is an ODE with constant coefficients.

The differential equation

is an ODE with variable coefficients.

If the dependent variable  is a function of two or more variables such as , where  and 
are independent variables, the differential equation that relates , , and  is said to be a partial dif-
ferential equation and it is abbreviated as PDE.

An example of a partial differential equation is the well-known one-dimensional wave equation shown
below.

Most of the electrical engineering problems are solved with ordinary differential equations with con-
stant coefficients; however, partial differential equations provide often quick solutions to some prac-
tical applications as illustrated with the following three examples.
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Example B.3

The equivalent resistance  of three resistors , , and  in parallel is given by

Given that initially , , and  compute the change in  if is
increased by  and  is decreased by  while  does not change.

Solution:

The initial value of the equivalent resistance is 

Now, we treat  and  as constants and differentiating  with respect to we get

Similarly,

and the total differential  is

By substitution of the given numerical values we get

Therefore, the eequivalent resistance decreases by .

Example B.4

In a series  circuit that is excited by a sinusoidal voltage, the magnitude of the impedance  is

computed from . Initially,  and . Find the change in the imped-
ance  if the resistance  is increased by  ( ) and the capacitive reactance is
decreased by ).

RT R1 R2 R3

1
RT
------ 1

R1
----- 1

R2
----- 1

R3
-----+ +=

R1 5= R2 20= R3 4= RT R2

10 % R3 5 % R1

RT 5 20 4 2= =

R2 R3 RT R1

1
RT

2
------–

RT

R1
--------- 1

R1
2

-----–=    or RT

R1
---------

RT

R1
------

2
=

RT

R2
---------

RT

R2
------

2
= and   RT

R3
---------

RT

R3
------

2
=

dRT

dRT
RT

R1
---------dR1

RT

R2
---------dR2

RT

R3
---------dR3+ +

RT

R1
------

2
dR1

RT

R2
------

2
dR2

RT

R3
------

2
dR3+ += =

dRT
2
5
---

2
0 2

20
------

2
2 2

4
---

2
0.2–+ + 0.02 0.05– 0.03–= = =

3 %

RC Z

Z R 2 XC
2+= R 4= XC 3=

Z R 0.25 6.25 % XC

0.125 4.167%–



Circuit Analysis II with MATLAB Applications B-5
Orchard Publications

Classification

Solution:

We will first find the partial derivatives  and ; then we compute the change in impedance

from the total differential . Thus,

and

and by substitution of the given values

Therefore, if  increases by  and decreases by , the impedance  increases by
.

Example B.5

A light bulb is rated at  volts and  watts. If the voltage decreases by volts and the resistance
of the bulb is increased by , by how much will the power change?

Solution:

At  volts and  watts, the bulb resistance is

and since

and the total differential is

That is, the power will decrease by  watts.
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B.3  Solutions of Ordinary Differential Equations (ODE)

A function  is a solution of a differential equation if the latter is satisfied when  and its
derivatives are replaced throughout by  and its corresponding derivatives. Also, the initial condi-
tions must be satisfied.

For example a solution of the differential equation

is

since  and its second derivative satisfy the given differential equation.

Any linear, time-invariant electric circuit can be described by an ODE which has the form

(B.12)

If the excitation in (B12) is not zero, that is, if , the ODE is called a non-homogeneous ODE. If
, it reduces to:

(B.13)

The differential equation of (B.13) above is called a homogeneous ODE and has  different linearly
independent solutions denoted as .

We will now prove that the most general solution of (B.13) is:

(B.14)

where the subscript  on the left side is used to emphasize that this is the form of the solution of the
homogeneous ODE and  are arbitrary constants.
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Solutions of Ordinary Differential Equations (ODE)

Proof:

Let us assume that  is a solution of (B.13); then by substitution, 

(B.15)

A solution of the form will also satisfy (B.13) since

(B.16)

If  and  are any two solutions, then  will also be a solution since

and

Therefore,

(B.17)

In general, if

are the  solutions of the homogeneous ODE of (B.13), the linear combination

is also a solution.

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary solu-
tion, will be referred to as the natural response, and will be denoted as  or simply . The par-
ticular solution of a non-homogeneous ODE will be referred to as the forced response, and will be
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denoted as  or simply . Accordingly, we express the total solution of the non-homogeneous
ODE of (B.12) as:

(B.18)

The natural response  contains arbitrary constants and these can be evaluated from the given ini-
tial conditions. The forced response , however, contains no arbitrary constants. It is imperative to
remember that the arbitrary constants of the natural response must be evaluated from the total
response.

B.4  Solution of the Homogeneous ODE

Let the solutions of the homogeneous ODE

(B.19)

be of the form

(B.20)

Then, by substitution of (B.20) into (B.19) we get

or

(B.21)

We observe that (B.21) can be satisfied when

(B.22)

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield triv-
ial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the only
meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

(B.23)

Since the characteristic equation is an algebraic equation of an nth-power polynomial, its solutions are
, and thus the solutions of the homogeneous ODE are:

(B.24)
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Solution of the Homogeneous ODE

Case I  Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the  solutions
of (B.23) are independent and the most general solution is:

(B.25)

Case II  Repeated Roots

If two or more roots of the characteristic equation are repeated (same roots), then some of the terms

of (B.24) are not independent and therefore (B.25) does not represent the most general solution. If,

for example, , then,

and we see that one term of (B.25) is lost. In this case, we express one of the terms of (B.25), say

 as . These two represent two independent solutions and therefore the most general solu-
tion has the form:

(B.26)

If there are m equal roots the most general solution has the form:

(B.27)

Case III  Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs. Thus,
if one root is where  and  are real numbers, then another root is 
Then, 

(B.28)

n

yN k1e
s1t

= k2e
s2t

kne
snt

+ + +

FOR DISTINCT ROOTS

s1 s2=

k1e
s1t

k2e
s2t

+ k1e
s1t

k2e
s1t

+ k1 k2+ e
s1t

k3e
s1t

= = =

k2e
s1t

k2te
s1t

yN k1 k2t+ e
s1t

= k3e
s3t

kne
snt

+ + +

yN k1 k2t kmtm 1–+ + + e
s1t

= kn i– e
s2t

kne
snt

+ + +

FOR M EQUAL ROOTS

s1 – j+= s1 – j–=

k1e
s1t

k2e
s2t

+ k1e t– j t+ k2e t– j– t+ e t– k1ej t k2e j– t+= =

e t– k1 tcos jk1 sin t k2 tcos jk2– sin t+ +=

e t– k1 k2+ tcos j k1 k2– sin t+=

e t– k3 tcos k4 sin t+ e t– k5 t +cos==

FOR TWO COMPLEX CONJUGATE ROOTS
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If (B.28) is to be a real function of time, the constants  and  must be complex conjugates. The
other constants , , , and the phase angle are real constants.

The forced response can be found by

a. The Method of Undetermined Coefficients or

b. The Method of Variation of Parameters

We will study the Method of Undetermined Coefficients first.

B.5  Using the Method of Undetermined Coefficients for the Forced Response

For simplicity, we will only consider ODEs of . Higher order ODEs are discussed in differ-
ential equations textbooks.

Consider the non-homogeneous ODE

(B.29)

where , , and  are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and
forced responses.

For the natural response, if  and  are any two solutions of (B.29), the linear combination
, where  and  are arbitrary constants, is also a solution, that is, if we know the

two solutions, we can obtain the most general solution by forming the linear combination of  and
. To be certain that there exist no other solutions, we examine the Wronskian Determinant defined

below.

(B.30)

If (B.30) is true, we can be assured that all solutions of (B.29) are indeed the linear combination of 
and .

The forced response is, in most circuit analysis problems, obtained by observation of the right side of
the given ODE as it is illustrated by the examples that follow.

k1 k2

k3 k4 k5

order 2

a
t2

2

d

d y b d
dt
-----y cy+ + f x=

a b c

y1 y2

y3 k1 y1 k2 y2+= k1 k2

y1

y2

W y1 y2

y1 y2

d
dx
------ y1

d
dx
------ y2

y1
d

dx
------ y2 y2

d
dx
------ y1– 0=

WRONSKIAN DETERMINANT

y1

y2
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Using the Method of Undetermined Coefficients for the Forced Response

Example B.6

Find the total solution of the ODE

(B.31)

subject to the initial conditions  and  where 

Solution:

This is a homogeneous ODE and its total solution is just the natural response found from the char-
acteristic equation  whose roots are  and . The total response is:

(B.32)

The constants  and  are evaluated from the given initial conditions. For this example,

or

(B.33)

Also, 

or

(B.34)

Simultaneous solution of (B.33) and (B.34) yields  and . By substitution into
(B.32), we get 

(B.35)

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4')

y =
(-7/2*exp(-3*t)*exp(t)+13/2)/exp(t)

pretty(y)

      - 7/2 exp(-3 t) exp(t) + 13/2
      -----------------------------
                 exp(t)

t2

2

d

d y 4dy
dt
------ 3y+ + 0=

y 0 3= y' 0 4= y' dy dt=

s2 4s 3+ + 0= s1 1–= s2 3–=

y t yN t k1e t– k2e 3t–+= =

k1 k2

y 0 3 k1e0 k2e0    += =

k1 k2+ 3=

y' 0 4 dy
dt
------

t 0=

k1e t–– 3k2e 3t––
t 0=

= = =

k1– 3k2– 4=

k1 6.5= k2 3.5–=

y t yN t 6.5e t– 3.5e 3t––= =
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The function  is shown in Figure B.1 plotted with the MATLAB command ezplot(y,[0 10]).

Figure B.1. Plot for the function  of Example B.6.

Example B.7

Find the total solution of the ODE

(B.36)

subject to the initial conditions  and 

Solution:

The left side of (B.36) is the same as that of Example B.6.Therefore,

(B.37)

(We must remember that the constants  and  must be evaluated from the total response).

To find the forced response, we assume a solution of the form

(B.38)

We can find out whether our assumption is correct by substituting (B.38) into the given ODE of
(B.36). Then, 

(B.39)

y f t=

y f t=

t2

2

d

d y 4dy
dt
------ 3y+ + 3e 2t–=

y 0 1= y' 0 1–=

yN t k1e t– k2e 3t–+=

k1 k2

yF Ae 2t–=

4Ae 2t– 8Ae 2t–– 3Ae 2t–+ 3e 2t–=
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Using the Method of Undetermined Coefficients for the Forced Response

from which  and the total solution is

(B.40)

The constants  and  are evaluated from the given initial conditions. For this example,

or

(B.41)

Also,

or

Simultaneous solution of (B.41) and (B.42) yields  and . By substitution into (B.40),
we get

(B.42)

Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=3*exp( 2*t)', 'y(0)=1', 'Dy(0)= 1')

y = 
(-3*exp(-2*t)*exp(t)+3/2*exp(-3*t)*exp(t)+5/2)/exp(t)

pretty(y)

     -3 exp(-2 t) exp(t) + 3/2 exp(-3 t) exp(t) + 5/2
     ------------------------------------------------
                     exp(t)
ezplot(y,[0 8])

The plot is shown in Figure B.2

Example B.8

Find the total solution of the ODE

(B.43)

subject to the initial conditions  and 

A 3–=

y t yN yF+ k1e t– k2e 3t– 3– e 2t–+= =

k1 k2

y 0 1 k1e0 k2e0 3e0    –+= =

k1 k2+ 4=

y' 0 1– dy
dt
------

t 0=

k1e t–– 3k2e 3t–– 6e 2t–+
t 0=

= = =

k1– 3k2– 7–=

k1 2.5= k2 1.5=

y t yN yF+ 2.5e t– 1.5e 3t– 3– e 2t–+= =

t2

2

d

d y 6dy
dt
------ 9y+ + 0=

y 0 1–= y' 0 1=
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Figure B.2. Plot for the function  of Example B.7.

Solution:

This is a homogeneous ODE and therefore its total solution is just the natural response found from
the characteristic equation  whose roots are  (repeated roots). Thus, the
total response is

(B.44)

Next, we evaluate the constants  and  from the given initial conditions. For this example,

or

(B.45)

Also,

or

(B.46)

From (B.45) and (B.46) we get yields  and . By substitution into (B.44),

(B.47)

y f t=

s2 6s 9+ + 0= s1 s2 3–= =

y t yN k1e 3t– k2 te 3t–+= =

k1 k2

y 0 1– k1e0 k2 0 e0+= =

k1 1–=

y' 0 1 dy
dt
------

t 0=

3k1e 3t–– k2e 3t– 3k2te 3t––+
t 0=

= = =

3k1– k2+ 1=

k1 1–= k2 2–=

y t e– 3t– 2te 3t––=
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Check with MATLAB:

y=dsolve('D2y+6*Dy+9*y=0', 'y(0)= 1', 'Dy(0)=1')

y =
-exp(-3*t)-2*exp(-3*t)*t

ezplot(y,[0 4])

The plot is shown in Figure B.3.

Figure B.3. Plot for the function  of Example B.8.

Example B.9

Find the total solution of the ODE

(B.48)

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants 
and . By inspection, the roots of the characteristic equation of (B.48) are  and 
and thus the natural response has the form

(B.49)

Next, we find the forced response by assuming a solution of the form

(B.50)

y f t=

t2

2

d

d y 5dy
dt
------ 6y+ + 3e 2t–=

k1

k2 s1 2–= s2 3–=

yN k1e 2t– k2 e 3t–+=

yF Ae 2t–=
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We can find out whether our assumption is correct by substitution of (B.50) into the given ODE of
(B.48). Then, 

(B.51)

but the sum of the three terms on the left side of (B.52) is zero whereas the right side can never be
zero unless we let t and this produces a meaningless result.

The problem here is that the right side of the given ODE of (B.48) has the same form as one of the
terms of the natural response of (B.49), namely the term .

To work around this problem, we assume that the forced response has the form

(B.52)

that is, we multiply (B.50) by  in order to eliminate the duplication of terms in the total response.
Then, by substitution of (B.52) into (B.48) and equating like terms, we find that . Therefore,
the total response is

(B.53)

Check with MATLAB:

y=dsolve('D2y+5*Dy+6*y=3*exp(-2*t)')

y =
-3*exp(-2*t)+3*t*exp(-2*t)+C1*exp(-3*t)+C2*exp(-2*t)

Example B.10

Find the total solution of the ODE

(B.54)

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants  and
. We observe that the left side of (B.54) is the same of that of Example B.9. Therefore, the natural

response is the same, that is, it has the form

(B.55)

Next, to find the forced response and we assume a solution of the form

(B.56)

4Ae 2t– 10Ae 2t–– 6Ae 2t–+ 3e 2t–=

k1 e 2t–

yF Ate 2t–=

t
A 3=

y t yN yF+ k1e 2t– k2e 3t– 3te 2t–+ += =

t2

2

d

d y 5dy
dt
------ 6y+ + 4 5tcos=

k1

k2

yN k1e 2t– k2e 3t–+=

yF A 5tcos=
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We can find out whether our assumption is correct by substitution of the assumed solution of (B.56)
into the given ODE of (B.55). Then,

but this relation is invalid since by equating cosine and sine terms, we find that  and also
. This inconsistency is a result of our failure to recognize that the derivatives of  pro-

duce new terms of the form  and these terms must be included in the forced response.
Accordingly, we let

(B.57)

and by substitution into (B.54) we get

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

(B.58)

We use MATLAB to solve (B.58)

format rat; [k3 k4]=solve(19*x+25*y, 25*x-19*y-4)

k3 =
50/493
k4 =
-38/493

Therefore, the total solution is

(B.59)

Check with MATLAB.

y=dsolve('D2y+5*Dy+6*y=4*cos(5*t)'); y=simple(y)

y =
-38/493*cos(5*t)+50/493*sin(5*t)+C1*exp(-3*t)+C2*exp(-2*t)

In most engineering problems the right side of the non-homogeneous ODE consists of elementary
functions such as  (constant),  where  is a positive integer, , , , and linear combi-
nations of these. Table B.1 summarizes the forms of the forced response for a second order ODE
with constant coefficients.

25A 5tcos– 25A 5sin t– 6A 5tcos+ 19A 5tcos– 25A 5sin t– 4 5tcos= =

A 4– 19=

A 0= A 5tcos
B 5tsin

yF k3 5sin t k4 5tcos+=

25– k3 5tsin 25k4 5cos t 25k3 5cos t+– 25k4 5sin t–
6k3 5tsin 6k4 5cos t+ + 4 5cos t=

19k3 25k4+ 0=

25k3 19– k4 4=

y t yN yF t+ k1e 2t– k2e 3t– 50
493
--------- 5tsin 38–

493
--------- 5tcos+ + += =

k xn n ekx kxcos kxsin
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We must remember that if  is the sum of several terms, the most general form of the forced
response  is the linear combination of these terms. Also, if a term in  is a duplicate of a
term in the natural response , we must multiply  by the lowest power of  that will elimi-
nate the duplication.

Example B.11  

Find the total solution of the ODE

(B.60)

Solution:

No initial conditions are given; therefore we will express solution in terms of the constants  and
. The roots of the characteristic equation are equal, that is, , and thus the natural

response has the form

(B.61)

To find the forced response (particular solution), we refer to the table of the previous page and from
the last row we choose the term . This term with , , and , reduces to

. Therefore the forced response will have the form

TABLE B.1 Form of the forced response for 2nd order differential equations

Forced Response of the ODE 

Form of Forced Response 

 (constant)  (constant)

 ( = positive integer)

 (  =real or complex)

or ( =constant)

or

+

ad2y
dt2
-------- bdy

dt
------ cy+ + f t=

f t yF t

k K

k t n n K0 t n K1 tn 1– Kn 1– t Kn+ + + +

ker t r Ker t

k tcos k tsin K1coa t K2 tsin+

k t ner t tcos k t ner t sin t K0 t n K1 tn 1– Kn 1– t Kn+ + + + er t tcos

K0 t n K1 tn 1– Kn 1– t Kn+ + + + er t tsin

f t
yF t yF t

yN t yF t t

t2

2

d

d y 4dy
dt
------ 4y+ + te 2t– e 2t––=

k1

k2 s1 s2 2–= =

yN k1e 2– t k2 te 2– t+=

k t ner t tcos n 1= r 2–= 0=

kte 2– t



Circuit Analysis II with MATLAB Applications B-19
Orchard Publications

Using the Method of Undetermined Coefficients for the Forced Response

(B.62)

But the terms and  are also present in (B.61); therefore, we multiply (B.62) by to obtain a
suitable form for the forced response which now is

(B.63)

Now, we need to evaluate the constants  and . This is done by substituting (B.63) into the given
ODE of (B.60) and equating with the right side. We use MATLAB do the computations as shown
below.

syms t k3 k4 % Define symbolic variables
f0=(k3*t^3+k4*t^2)*exp( 2*t); % Forced response (B.64)
f1=diff(f0); f1=simple(f1) % Compute and simplify first derivative

f1 =
-t*exp(-2*t)*(-3*k3*t-2*k4+2*k3*t^2+2*k4*t)

f2=diff(f0,2); f2=simple(f2) % Compute and simplify second derivative

f2 =
2*exp(-2*t)*(3*k3*t+k4-6*k3*t^2-4*k4*t+2*k3*t^3+2*k4*t^2)

f=f2+4*f1+4*f0; f=simple(f) % Form and simplify the left side of the given ODE

f = 2*(3*k3*t+k4)*exp(-2*t)

Finally, we equate f above with the right side of the given ODE, that is

(B.64)

and we find  and . By substitution of these values into (B.64) and combining
the forced response with the natural response, we get the total solution

(B.65)

We verify this solution with MATLAB

z=dsolve('D2y+4*Dy+4*y=t*exp( 2*t) exp( 2*t)')

z =
1/6*exp(-2*t)*t^3-1/2*exp(-2*t)*t^2
+C1*exp(-2*t)+C2*t*exp(-2*t)

yF k3 t k4+ e 2– t=

e 2t– te 2t– t2

yF k3 t3 k4 t2+ e 2– t=

k3 k4

2 3k3 t k4+ e 2t– te 2t– e 2t––=

k3 1 6= k4 1 2–=

y t k1e 2– t k2te 2– t 1
6
---t3e 2– t 1

2
---t2e 2– t

–+ +=
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B.6  Using the Method of Variation of Parameters for the Forced Response

In certain non-homogeneous ODEs, the right side  cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters. This
method will work with all linear equations including those with variable coefficients such as

(B.66)

provided that the general form of the natural response is known.

Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants  and  by two variables  and 
that satisfy the following three relations:

(B.67)

(B.68)

(B.69)

Simultaneous solution of (B.68) and (B.69) will yield the values of  and ; then, integra-
tion of these will produce  and , which when substituted into (B.67) will yield the total solution.

Example B.12

Find the total solution of

(B.70)

in terms of the constants  and  by the

a. method of undetermined coefficients

b. method of variation of parameters

Solution:

With either method, we must first find the natural response. The characteristic equation yields the
roots  and . Therefore, the natural response is

f t

d2y
dt2
-------- t dy

dt
------ t y+ + f t=

k1 k2 u1 u2

y u1 y1 u2 y2+=

du1

dt
------- y1

du2

dt
------- y2+ 0=

du1

dt
------- dy1

dt
------- du2

dt
-------- dy2

dt
--------+ f t=

du1 dt du2 dt
u1 u2

d2y
dt2
-------- 4dy

dt
------ 3y+ + 12=

k1 k2

s1 1–= s2 3–=
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(B.71)

a. Using the method of undetermined coefficients we let (a constant). Then, by substitution
into (B.70) we get  and thus the total solution is

(B.72)

b. With the method of variation of parameters we start with the natural response found above as
(B.71) and we let the solutions  and  be represented as

(B.73)

Then by (B.67), the total solution is

or

(B.74)

Also, from (B.68),

or

(B.75)

and from (B.69),

or

(B.76)

Next, we find  and  by Cramer’s rule as follows:

(B.77)

and

yN k1e t– k2 e 3– t+=

yF k3=

k3 4=

y t yN yF+ k1e t– k2e 3– t 4+ += =

y1 y2

y1 e t–= and y2 e 3t–=

y u1y1 u2y2+=

y u1e t– u2e 3t–+=

du1

dt
--------y1

du2

dt
--------y2+ 0=

du1

dt
--------e t– du2

dt
--------e 3t–+ 0=

du1

dt
------- dy1

dt
------- du2

dt
-------- dy2

dt
--------+ f t=

du1

dt
-------- e t––

du2

dt
-------- 3e 3t––+ 12=

du1 dt du2 dt

du1

dt
--------

0 e 3t–

12 3e 3t––

e t– e 3t–

e t–– 3e 3t––

------------------------------------------ 12e 3t––

3e 4t–– e 4t–+
------------------------------ 12e 3t––

2e 4t––
----------------- 6et= = = =
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(B.78)

Now, integration of (B.77) and (B.78) and substitution into (B.75) yields

(B.79)

(B.80)

We observe that the last expression in (B.80) is the same as (B.72) of part (a).

Check with MATLAB:

y=dsolve('D2y+4*Dy+3*y=12')

y =
(4*exp(t)+C1*exp(-3*t)*exp(t)+C2)/exp(t)

Example B.13

Find the total solution of

(B.81)

in terms of the constants  and  by any method.

Solution:

This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use the
method of variation of parameters.

The characteristic equation is  from which  and thus the natural response is

(B.82)

We let

(B.83)

du2

dt
--------

e t– 0

e t–– 12
2e 4t––

--------------------------------- 12e t–

2e 4t––
-------------- 6– e3t= = =

u1 6 et td 6et k1+= = u2 6– e3t td 2– e3t k2+= =

y u1e t– u2e 3t–+=

6et k1+ e t– 2– e3t k2+ e 3t–+=

6 k1e t– 2 k2e 3t–+–+=

k1e t– k2e 3t– 4+ +=

d2y
dt2
-------- 4y+ 2ttan=

k1 k2

s2 4+ 0= s j2=

yN k1ej2t k2e j– 2t+=

y1 2tcos= and y2 2tsin=
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Then, by (B.67) the solution is

(B.84)
Also, from (B.68),

or

(B.85)

and from (B.69),

(B.86)

Next, we find  and  by Cramer’s rule as follows:

(B.87)

and

(B.88)

Now, integration of (B.87) and (B.88) and substitution into (B.84) yields

(B.89)

(B.90)

(B.91)

Check with MATLAB:

y=dsolve('D2y+4*y=tan(2*t)')

y =
-1/4*cos(2*t)*log((1+sin(2*t))/cos(2*t))+C1*cos(2*t)+C2*sin(2*t)

y u1y1 u2y2+ u1 2tcos u2 2tsin+= =

du1

dt
-------y1

du2

dt
--------y2+ 0=

du1

dt
------- 2tcos

du2

dt
-------- 2tsin+ 0=

du1

dt
------- dy1

dt
------- du2

dt
-------- dy2

dt
--------+ f t du1

dt
-------= = 2 2tsin–

du2

dt
-------- 2 2tcos+ 2ttan=

du1 dt du2 dt

du1

dt
-------

0 2tsin
2ttan 2 2tcos
2tcos 2tsin

2 2tsin– 2 2tcos

------------------------------------------------------

2t2sin
2tcos

--------------–

2 2t2cos 2 2t2sin+
------------------------------------------- 2t2sin–

2 2tcos
------------------= = =

du2

dt
--------

2tcos 0
2 2tsin– 2ttan

2
--------------------------------------------------- 2tsin

2
------------= =

u1
1
2
---–

2t2sin
2tcos

-------------- td 2tsin
4

------------ 1
4
--- 2tsec 2ttan+ln– k1+= =

u2
1
2
--- 2tsin td 2tcos

4
-------------– k2+= =

y u1y1 u2y2+ 2t 2tcossin
4

--------------------------- 1
4
--- 2t 2tsec 2ttan+lncos– k1 2tcos+ 2t 2tcossin

4
---------------------------– k2 2tsin+= =

1
4
--- 2t 2tsec 2ttan+lncos– k1 2tcos k2 2tsin+ +=
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B.7 Exercises

Solve the following ODEs by any method.

1.

     Answer:  

2.

     Answer: 

3.  Hint: Use 

     Answer: 

4.

     Answer: 

d2y
dt2
-------- 4dy

dt
------ 3y+ + t 1–=

y k1e t– k2e 3t– 1
3
---t 7

9
---–+ +=

d2y
dt2
-------- 4dy

dt
------ 3y+ + 4e t–=

y k1e t– k2e 3t– 2te t–+ +=

d2y
dt2
-------- 2dy

dt
------ y+ + t2cos= t2cos 1

2
--- 2t 1+cos=

y k1e t– k2te t– 1
2
--- 3 2tcos 4 2tsin–

50
---------------------------------------–+ +=

d2y
dt2
-------- y+ tsec=

y k1 tcos k2 tsin t tsin t tcoslncos+ + +=
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Appendix C

Matrices and Determinants

his appendix is an introduction to matrices and matrix operations. Determinants, Cramer’s
rule, and Gauss’s elimination method are reviewed. Some definitions and examples are not
applicable to subsequent material presented in this text, but are included for subject continuity,

and reference to more advance topics in matrix theory. These are denoted with a dagger (†) and may
be skipped. 

C.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

In general form, a matrix A is denoted as

(C.1)

The numbers  are the elements of the matrix where the index i indicates the row, and j indicates
the column in which each element is positioned. Thus,  indicates the element positioned in the
fourth row and third column.

A matrix of m rows and n columns is said to be of  order matrix.

If , the matrix is said to be a square matrix of order m (or n). Thus, if a matrix has five rows
and five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements  are called the main diagonal elements. Alter-
nately, we say that the matrix elements , are located on the main diagonal.

T

2 3 7
1 1– 5

or
1 3 1
2– 1 5–

4 7– 6

A

a11 a12 a13 a1n
a21 a22 a23 a2n
a31 a32 a33 a3n

am1 am2 am3 amn

=

aij

a43

m n

m n=

a11 a22 a33 ann

a11 a22 a33 ann
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† The sum of the diagonal elements of a square matrix  is called the trace* of .

† A matrix in which every element is zero, is called a zero matrix.

C.2 Matrix Operations

Two matrices  and  are equal, that is, , if and only if 

(C.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order m  n.

If  and  are conformable for addition (subtraction), their sum (difference) will be

another matrix  with the same order as  and , where each element of  is the sum (difference)
of the corresponding elements of  and , that is,

(C.3)

Example C.1  

Compute  and  given that

 and 

Solution:

and

Check with MATLAB:

A=[1  2  3;   0  1  4];  B=[2  3  0; 1  2  5]; % Define matrices A and B
A+B % Add A and B

* Henceforth, all paragraphs and topics preceded by a dagger ( † ) may be skipped. These are discussed in matrix
theory textbooks.

A A

A aij= B bij= A B=

aij bij= i 1 2 3 m= j 1 2 3 n=

A aij= B bij=

C A B C
A B

C A B aij bij= =

A B+ A B–

A 1 2 3
0 1 4

= B 2 3 0
1– 2 5

=

A B+ 1 2+ 2 3+ 3 0+

0 1– 1 2+ 4 5+

3 5 3
1– 3 9

= =

A B– 1 2– 2 3– 3 0–

0 1+ 1 2– 4 5–

1– 1– 3
1 1– 1–

= =
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Matrix Operations

ans =
     3     5     3
    -1     3     9

A B % Subtract B from A

ans =
    -1    -1     3
     1    -1    -1

If  is any scalar (a positive or negative number), and not [k] which is a  matrix, then multipli-
cation of a matrix  by the scalar is the multiplication of every element of  by .

Example C.2  

Multiply the matrix

by 

a.  

b. 

Solution:

a.

b.

Check with MATLAB:

k1=5; k2=( 3 + 2*j); % Define scalars k1 and k2
A=[1 2; 2  3]; % Define matrix A
k1*A % Multiply matrix A by constant k1
ans =

     5   -10
    10    15

k 1 1
A k A k

A 1 2–

2 3
=

k1 5=

k2 3– j2+=

k1 A 5 1 2–

2 3
5 1 5 2–

5 2 5 3
5 10–

10 15
= = =

k2 A 3– j2+ 1 2–

2 3
3– j2+ 1 3– j2+ 2–

3– j2+ 2 3– j2+ 3
3– j2+ 6 j4–

6– j4+ 9– j6+
= = =
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k2*A %Multiply matrix A by constant k2

ans =
  -3.0000+ 2.0000i   6.0000- 4.0000i
  -6.0000+ 4.0000i  -9.0000+ 6.0000i

Two matrices  and  are said to be conformable for multiplication  in that order, only when the
number of columns of matrix  is equal to the number of rows of matrix . That is, the product

 (but not ) is conformable for multiplication only if  is an  matrix and matrix  is
an  matrix. The product  will then be an  matrix. A convenient way to determine if
two matrices are conformable for multiplication is to write the dimensions of the two matrices side-
by-side as shown below. 

For the product  we have: 

For matrix multiplication, the operation is row by column. Thus, to obtain the product , we
multiply each element of a row of  by the corresponding element of a column of ; then, we add
these products.

Example C.3  

Matrices  and  are defined as

 and 

Compute the products  and 

A B A B
A B

A B B A A m p B
p n A B m n

m  p p  n
A B

Shows that A and B are conformable for multiplication

Indicates the dimension of the product A  B 

B A

Here, B and A are not conformable for multiplication

B           A 
p  n    m  p

A B
A B

C D

C 2 3 4= D
1
1–

2
=

C D D C
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Special Forms of Matrices

Solution:

The dimensions of matrices  and  are respectively ; therefore the product  is
feasible, and will result in a , that is,

The dimensions for  and  are respectively  and therefore, the product  is also
feasible. Multiplication of these will produce a  matrix as follows:

Check with MATLAB:

C=[2  3  4];  D=[1;  1;  2]; % Define matrices C and D
C*D % Multiply C by D

ans =
     7

D*C % Multiply D by C

ans =
     2     3     4
    -2    -3    -4
     4     6     8

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it
will become apparent later in this chapter, when we discuss the inverse of a matrix. 

C.3 Special Forms of Matrices

† A square matrix is said to be upper triangular when all the elements below the diagonal are zero.
The matrix  of (C.4) is an upper triangular matrix.

In an upper triangular matrix, not all elements above the diagonal need to be non-zero.

C D 1 3 3 1 C D
1 1

C D 2 3 4
1
1–

2
2 1 3 1– 4 2+ + 7= = =

D C 3 1 1 3 D C
3 3

D C
1
1–

2
2 3 4

1 2 1 3 1 4
1– 2 1– 3 1– 4

2 2 2 3 2 4

2 3 4
2– 3– 4–

4 6 8
= = =

A
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(C.4)

† A square matrix is said to be lower triangular, when all the elements above the diagonal are zero.
The matrix  of (C.5) is a lower triangular matrix.

(C.5)

In a lower triangular matrix, not all elements below the diagonal need to be non-zero.

† A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix  of (C.6) is a diagonal matrix.

(C.6)

† A diagonal matrix is called a scalar matrix, if where k is a sca-

lar. The matrix  of (C.7) is a scalar matrix with k = 4.

(C.7)

A scalar matrix with , is called an identity matrix . Shown below are , , and 
identity matrices. 

A

a11 a12 a13 a1n
0 a22 a23 a2n
0 0

0
0 0 0 amn

=

B

B

a11 0 0 0
a21 a22 0 0

0 0
0

am1 am2 am3 amn

=

C

C

a11 0 0 0
0 a22 0 0
0 0 0 0
0 0 0 0
0 0 0 amn

=

a11 a22 a33 ann k= = = = =

D

D

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

=

k 1= I 2 2 3 3 4 4



Circuit Analysis II with MATLAB Applications C-7
Orchard Publications                                                            

Special Forms of Matrices

(C.8)

The MATLAB eye(n) function displays an  identity matrix. For example,

eye(4) % Display a 4 by 4 identity matrix

ans =

     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix
. For example, let matrix  be defined as

A=[1  3  1; 2  1 5; 4 7  6] % Define matrix A

A =
     1     3     1
    -2     1    -5
     4    -7     6

then,

eye(size(A))

displays

ans =

     1     0     0
     0     1     0
     0     0     1

† The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and col-
umns of matrix  are interchanged. For example, if

(C.9)

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

n n

A A

A AT

A

A 1 2 3
4 5 6

=   then  AT
1 4
2 5
3 6

=
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In MATLAB we use the apostrophe ( ) symbol to denote and obtain the transpose of a matrix. Thus,
for the above example, 

A=[1  2  3;  4  5  6] % Define matrix A

A =

     1     2     3
     4     5     6

A' % Display the transpose of A

ans =

     1     4
     2     5
     3     6

† A symmetric matrix  is a matrix such that , that is, the transpose of a matrix is the same
as . An example of a symmetric matrix is shown below.

(C.10)

† If a matrix  has complex numbers as elements, the matrix obtained from by replacing each
element by its conjugate, is called the conjugate of , and it is denoted as  

An example is shown below.

MATLAB has two built-in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second, conj(A),
computes the conjugate of a matrix . Using MATLAB with the matrix  defined as above, we
get

A = [1+2j   j;  3   2 3j] % Define and display matrix A

A =
  1.0000+ 2.0000i        0+ 1.0000i
  3.0000            2.0000- 3.0000i

conj_A=conj(A) % Compute and display the conjugate of A

conj_A =
  1.0000- 2.0000i        0- 1.0000i

A AT A= A
A

A
1 2 3
2 4 5–

3 5– 6
= AT

1 2 3
2 4 5–

3 5– 6
A= =

A A
A A

A 1 j2+ j
3 2 j3–

= A 1 j2– j–
3 2 j3+

=

A A
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Determinants

  3.0000            2.0000+ 3.0000i

† A square matrix  such that  is called skew-symmetric. For example,

Therefore, matrix  above is skew symmetric.

† A square matrix  such that  is called Hermitian. For example,

Therefore, matrix  above is Hermitian.

† A square matrix  such that  is called skew Hermitian. For example,

Therefore, matrix  above is skew-Hermitian.

C.4 Determinants

Let matrix  be defined as the square matrix

(C.11)

then, the determinant of , denoted as , is defined as

(C.12)

A AT A–=

A
0 2 3–

2– 0 4–

3 4 0
=     AT

0 2– 3
2 0 4
3– 4– 0

A–= =

A

A AT A=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

AT
1 1 j+ 2

1 j– 3 j–

2 j 0
AT*

1 1 j+ 2
1 j– 3 j–

2 j 0
A====

A

A AT A–=

A
j 1 j– 2

1– j– 3j j
2– j 0

AT
j 1– j– 2–

1 j– 3j j
2 j 0

AT*
j– 1– j+ 2–

1 j+ 3j– j–

2 j– 0
A–====

A

A

A

a11 a12 a13 a1n
a21 a22 a23 a2n
a31 a32 a33 a3n

an1 an2 an3 ann

=

A detA

detA a11a22a33 ann a12a23a34 an1 a13a24a35 an2
             an1 a22a13 an2– a23a14 an3 a24a15 –––

+ + +=
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The determinant of a square matrix of order n is referred to as determinant of order n.

Let  be a determinant of order 2, that is,

(C.13)

Then,

(C.14)

Example C.4  

Matrices  and  are defined as

 and 

Compute  and .

Solution:

Check with MATLAB:

A=[1  2; 3  4]; B=[2  1; 2  0]; % Define matrices A and B
det(A) % Compute the determinant of A

ans =
    -2

det(B) % Compute the determinant of B

ans =
     2

Let  be a matrix of order 3, that is,

(C.15)

then,  is found from 

A

A
a11 a12

a21 a22

=

detA a11a22 a21a12–=

A B

A 1 2
3 4

= B 2 1–

2 0
=

detA detB

detA 1 4 3 2– 4 6– 2–= = =

detB 2 0 2 1–– 0 2–– 2= = =

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

detA
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(C.16)

A convenient method to evaluate the determinant of order 3, is to write the first two columns to the
right of the 3  3 matrix, and add the products formed by the diagonals from upper left to lower
right; then subtract the products formed by the diagonals from lower left to upper right as shown
on the diagram of the next page. When this is done properly, we obtain (C.16) above.

This method works only with second and third order determinants. To evaluate higher order deter-
minants, we must first compute the cofactors; these will be defined shortly.

Example C.5  

Compute  and  if matrices  and  are defined as

 and 

Solution:

or

Likewise,

or

Check with MATLAB:

detA a11a22a33 a12a23a31 a11a22a33+ +=

a11a22a33 a11a22a33 a11a22a33–––

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32 +

detA detB A B

A
2 3 5
1 0 1
2 1 0

= B
2 3– 4–

1 0 2–

0 5– 6–

=

detA
2 3 5 2 3
1 0 1 1 0
2 1 0 2 1

=

detA 2 0 0 3 1 1 5 1 1
2 0 5– 1 1 2 0 1 3––

+ +
11 2– 9= =

=

detB
2 3– 4– 2 3–

1 0 2– 1 2–

0 5– 6– 2 6–

=

detB 2 0 6– 3– 2– 0 4– 1 5–
0 0 4–– 5– 2– 2 6– 1 3–––

+ +
20 38– 18–= =

=
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A=[2   3   5;  1   0   1;  2   1   0]; det(A) % Define matrix A and compute detA

ans =
     9

B=[2   3 4;  1   0 2;  0 5   6];det(B) % Define matrix B and compute detB

ans =
   -18

C.5  Minors and Cofactors

Let matrix  be defined as the square matrix of order n as shown below.

(C.17)

If we remove the elements of its ith row, and jth column, the remaining  square matrix is called

the minor of , and it is denoted as .

The signed minor  is called the cofactor of  and it is denoted as .

Example C.6  

Matrix  is defined as

(C.18)

Compute the minors ,     ,      and the cofactors ,  and .

Solution:

A

A

a11 a12 a13 a1n
a21 a22 a23 a2n
a31 a32 a33 a3n

an1 an2 an3 ann

=

n 1–

A Mij

1–
i j+

Mij aij ij

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

M11 M12 M13 11 12 13
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and

The remaining minors

and cofactors

are defined similarly.

Example C.7  

Compute the cofactors of matrix  defined as

(C.19)

Solution:

(C.20)

                                                   (C.21)

                        (C.22)

(C.23)

                         (C.24)

It is useful to remember that the signs of the cofactors follow the pattern

M11
a22 a23

a32 a33

=     M12
a21 a23

a31 a33

=     M11
a21 a22

a31 a32

=

11 1–
1 1+

M11 M11         12 1–
1 2+

M12 M12         13 M13 1– 1 3+
M13= =–= == =

M21 M22 M23 M31 M32 M33

21 22 23 31 32 and 33

A

A
1 2 3–

2 4– 2
1– 2 6–

=

11 1–
1 1+ 4– 2

2 6–
20= =           12 1–

1 2+ 2 2
1– 6–

10= =

13 1– 1 3+ 2 4–

1– 2
0         21 1– 2 1+ 2 3–

2 6–
6= == =

22 1–
2 2+ 1 3–

1– 6–
9–= =           23 1–

2 3+ 1 2
1– 2

4–= =

31 1–
3 1+ 2 3–

4– 2
8–= =         32 1–

3 2+ 1 3–

2 2
8–= =

33 1–
3 3+ 1 2

2 4–
8–= =
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that is, the cofactors on the diagonals have the same sign as their minors.

Let  be a square matrix of any size; the value of the determinant of  is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

Example C.8  

Matrix  is defined as

(C.25)

Compute the determinant of  using the elements of the first row.

Solution:

Check with MATLAB:

A=[1  2  3; 2  4  2; 1  2  6];det(A) % Define matrix A and compute detA

ans =
    40

We must use the above procedure to find the determinant of a matrix  of order 4 or higher. Thus, a
fourth-order determinant can first be expressed as the sum of the products of the elements of its first
row by its cofactor as shown below.

+ + +
+ +

+ + +
+ +

+ + +

A A

A

A
1 2 3–

2 4– 2
1– 2 6–

=

A

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–

1– 2
–– 1 20 2 10– 3 0–– 40= =

A
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(C.26)

Determinants of order five or higher can be evaluated similarly.

Example C.9  

Compute the value of the determinant of the matrix  defined as

(C.27)

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor. Then,

Next, using the procedure of Example C.5 or Example C.8, we find

, , ,
and thus

We can verify our answer with MATLAB as follows:

A=[ 2 1  0  3; 1  1  0  1; 4  0  3  2; 3  0  0  1]; delta = det(A)

delta =
   -33

A

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

a21

a12 a13 a14

a32 a33 a34

a42 a43 a44

–

                                            +a31

a12 a13 a14

a22 a23 a24

a42 a43 a44

a41

a12 a13 a14

a22 a23 a24

a32 a33 a34

–

= =

A

A

2 1– 0 3–

1– 1 0 1–

4 0 3 2–

3– 0 0 1

=

A=2
1 0 1–

0 3 2–

0 0 1

a

1–
1– 0 3–

0 3 2–

0 0 1
–

b

+4
1– 0 3–

1 0 1–

0 0 1

c

3–
1– 0 3–

1 0 1–

0 3 2–

–

d

a 6= b 3–= c 0= d 36–=

detA a b c d+ + + 6 3– 0 36–+ 33–= = =
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Some useful properties of determinants are given below.

Property 1: If all elements of one row or one column are zero, the determinant is zero. An example of
this is the determinant of the cofactor  above.

Property 2: If all the elements of one row or column are m times the corresponding elements of another
row or column, the determinant is zero. For example, if

(C.28)

then,

(C.29)

Here,  is zero because the second column in  is 2 times the first column.

Check with MATLAB:

A=[2  4  1; 3  6  1; 1  2  1];det(A)

ans =
     0

Property 3: If two rows or two columns of a matrix are identical, the determinant is zero. This follows
from Property 2 with .

C.6  Cramer’s Rule

Let us consider the systems of the three equations below

(C.30)

and let

c

A
2 4 1
3 6 1
1 2 1

=

detA
2 4 1
3 6 1
1 2 1

2 4
3 6
1 2

12 4 6 6 4–– 12–+ + 0= = =

detA A

m 1=

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=

a11 a12 a13

a21 a22 a23

a31 a32 a33

D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====
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Cramer’s Rule

Cramer’s rule states that the unknowns x, y, and z can be found from the relations

(C.31)

provided that the determinant  (delta) is not zero.

We observe that the numerators of (C.31) are determinants that are formed from  by the substitu-
tion of the known values , , and , for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (C.30) is a homogeneous set of equations, that is, if , then,  are
all zero as we found in Property 1 above. Then,  also.

Example C.10  

Use Cramer’s rule to find , , and if

(C.32)

and verify your answers with MATLAB.

Solution:

Rearranging the unknowns v, and transferring known values to the right side, we get

(C.33)

Now, by Cramer’s rule,

x
D1------= y

D2------= z
D3------=

A B C

A B C 0= = = D1 D2  and D3

x y z 0= = =

v1 v2 v3

2v1 5– v2– 3v3+ 0=

2v3 3v2 4v1––– 8=

v2 3v1 4– v3–+ 0=

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

2 1– 3
4– 3– 2–

3 1 1–

2 1–

4– 3–

3 1
6 6 12– 27 4 4+ + + + 35= = =

D1

5 1– 3
8 3– 2–

4 1 1–

5 1–

8 3–

4 1
15 8 24 36 10 8–+ + + + 85= = =
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Then, using (C.31) we get

(C.34)

We will verify with MATLAB as follows.

% The following code will compute and display the values of v1, v2 and v3.
format rat % Express answers in ratio form
B=[2  1  3; 4 3 2;  3  1 1]; % The elements of the determinant D of matrix B
delta=det(B); % Compute the determinant D of matrix B
d1=[5  -1  3;  8  -3  -2;  4  1  -1]; % The elements of D1
detd1=det(d1); % Compute the determinant of D1
d2=[2  5  3;  -4  8  -2;  3  4  -1]; % The elements of D2
detd2=det(d2); % Compute the determinant of D2
d3=[2  -1  5; -4  -3  8;  3  1  4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D3
v1=detd1/delta; % Compute the value of v1
v2=detd2/delta; % Compute the value of v2
v3=detd3/delta; % Compute the value of v3
%
disp('v1=');disp(v1); % Display the value of v1
disp('v2=');disp(v2); % Display the value of v2
disp('v3=');disp(v3); % Display the value of v3

v1=
    17/7
v2=
   -34/7     
v3=

   -11/7

These are the same values as in (C.34)

D2

2 5 3
4– 8 2–

3 4 1–

2 5
4– 8
3 4

16– 30– 48– 72– 16 20–+ 170–= = =

D3

2 1– 5
4– 3– 8
3 1 4

2 1–

4– 3–

3 1
24– 24– 20– 45 16– 16–+ 55–= = =

x1
D1------ 85

35
------ 17

7
------= = = x2

D2------ 170
35

---------– 34
7

------–= = = x3
D3------ 55

35
------– 11

7
------–= = =
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Gaussian Elimination Method

C.7  Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimination
method. With this method, the objective is to eliminate one unknown at a time. This can be done by
multiplying the terms of any of the equations of the system by a number such that we can add (or
subtract) this equation to another equation in the system so that one of the unknowns will be elimi-
nated. Then, by substitution to another equation with two unknowns, we can find the second
unknown. Subsequently, substitution of the two values found can be made into an equation with
three unknowns from which we can find the value of the third unknown. This procedure is repeated
until all unknowns are found. This method is best illustrated with the following example which con-
sists of the same equations as the previous example.

Example C.11  

Use the Gaussian elimination method to find , , and of the system of equations

(C.35)

Solution:

As a first step, we add the first equation of (C.35) with the third to eliminate the unknown v2 and we
obtain the following equation.

(C.36)

Next, we multiply the third equation of (C.35) by 3, and we add it with the second to eliminate .
Then, we obtain the following equation.

(C.37)

Subtraction of (C.37) from (C.36) yields

(C.38)

Now, we can find the unknown  from either (C.36) or (C.37). By substitution of (C.38) into (C.36)
we get

(C.39)

Finally, we can find the last unknown  from any of the three equations of (C.35). By substitution
into the first equation we get

v1 v2 v3

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

5v1 2v3+ 9=

v2

5v1 5v3– 20=

7v3 11 or  v3
11
7
------–=–=

v1

5v1 2 11
7

------–+ 9 or  v1
17
7

------==

v2
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(C.40)

These are the same values as those we found in Example C.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small integers,
as in Example C.11. However, it becomes impractical if the coefficients are large or fractional num-
bers.

C.8 The Adjoint of a Matrix

Let us assume that  is an n square matrix and  is the cofactor of . Then the adjoint of ,

denoted as , is defined as the n square matrix below.

(C.41)

We observe that the cofactors of the elements of the ith row (column) of  are the elements of the
ith column (row) of .

Example C.12  

Compute  if Matrix  is defined as

(C.42)

Solution:

v2 2v1 3v3 5–+ 34
7

------ 33
7

------– 35
7

------– 34
7

------–= = =

A ij aij A

adjA

adjA

11 21 31 n1

12 22 32 n2

13 23 33 n3

1n 2n 3n nn

=

A
adjA

adjA A

A
1 2 3
1 3 4
1 4 3

=

adjA

3 4
4 3

2 3
4 3

– 2 3
3 4

1 4
1 3

–       1 3
1 3

2 3
3 4

–

1 3
1 4

1 2
1 4

– 1 2
1 3

7– 6 1–

1 0 1–

1 2– 1
= =
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Singular and Non-Singular Matrices

C.9 Singular and Non-Singular Matrices

An n square matrix  is called singular if ; if , is called non-singular.

Example C.13  

Matrix  is defined as

(C.43)

Determine whether this matrix is singular or non-singular.

Solution:

Therefore, matrix  is singular.

C.10 The Inverse of a Matrix

If  and  are n square matrices such that , where  is the identity matrix,  is called

the inverse of , denoted as , and likewise,  is called the inverse of , that is, 

If a matrix  is non-singular, we can compute its inverse  from the relation

(C.44)

Example C.14  

Matrix  is defined as

(C.45)

Compute its inverse, that is, find 

A detA 0= detA 0 A

A

A
1 2 3
2 3 4
3 5 7

=

detA
1 2 3
2 3 4
3 5 7

1 2
2 3
3 5

21 24 30 27– 20– 28–+ + 0= = =

A

A B AB BA I= = I B

A B A 1–= A B A B 1–=

A A 1–

A 1– 1
detA
------------adjA=

A

A
1 2 3
1 3 4
1 4 3

=

A 1–
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Solution:

Here, , and since this is a non-zero value, it is possible to com-
pute the inverse of  using (C.44).

From Example C.12,

Then,

(C.46)

Check with MATLAB:

A=[1  2  3;  1  3  4;  1  4  3],  invA=inv(A)      % Define matrix A and compute its inverse

A =
     1     2     3
     1     3     4
     1     4     3

invA =
    3.5000   -3.0000    0.5000
   -0.5000         0    0.5000
   -0.5000    1.0000   -0.5000

Multiplication of a matrix  by its inverse produces the identity matrix , that is,

(C.47)

Example C.15  

Prove the validity of (C.47) for the Matrix  defined as

Proof:

detA 9 8 12 9– 16– 6–+ + 2–= =

A

adjA
7– 6 1–

1 0 1–

1 2– 1
=

A 1– 1
detA
------------adjA 1

2–
------

7– 6 1–

1 0 1–

1 2– 1

3.5 3– 0.5
0.5– 0 0.5
0.5– 1 0.5–

= = =

A A 1– I

AA 1– I   or   A 1– A I==

A

A 4 3
2 2

=

detA 8 6– 2   and   adjA 2 3–

2– 4
== =
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Solution of Simultaneous Equations with Matrices

Then,

and

C.11 Solution of Simultaneous Equations with Matrices

Consider the relation

(C.48)

where  and  are matrices whose elements are known, and  is a matrix (a column vector) whose
elements are the unknowns. We assume that  and  are conformable for multiplication. Multipli-

cation of both sides of (C.48) by  yields:

(C.49)

or

(C.50)

Therefore, we can use (C.50) to solve any set of simultaneous equations that have solutions. We will
refer to this method as the inverse matrix method of solution of simultaneous equations.

Example C.16  

For the system of the equations

(C.51)

compute the unknowns  using the inverse matrix method.

Solution:

In matrix form, the given set of equations is  where

A 1– 1
detA
------------adjA 1

2
--- 2 3–

2– 4
1 3– 2
1– 2

= = =

AA 1– 4 3
2 2

1 3– 2
1– 2

4 3– 6– 6+

2 2– 3– 4+

1 0
0 1

I= = = =

AX B=

A B X
A X

A 1–

A 1– AX A 1– B IX A 1– B   = = =

X=A 1– B

2x1 3x2 x3+ + 9=

x1 2x2 3x3+ + 6=

3x1 x2 2x3+ + 8=

x1 x2  and x3

AX B=
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(C.52)

Then,

(C.53)

or

(C.54)

Next, we find the determinant , and the adjoint 

Therefore,

and by (C.53) we obtain the solution as follows.

(C.55)

To verify our results, we could use the MATLAB’s inv(A) function, and then multiply  by B.
However, it is easier to use the matrix left division operation ; this is MATLAB’s solution
of  for the matrix equation , where matrix X is the same size as matrix B. For this
example,

A=[2  3  1; 1  2  3; 3  1  2]; B=[9  6  8]';
X=A \ B

A
2 3 1
1 2 3
3 1 2

= X
x1

x2

x3

= B
9
6
8

=

X A 1– B=

x1

x2

x3

2 3 1
1 2 3
3 1 2

1–
9
6
8

=

detA adjA

detA 18=    and   adjA
1 5– 7
7 1 5–

5– 7 1
=

A 1– 1
detA
------------ adjA 1

18
------

1 5– 7
7 1 5–

5– 7 1
= =

X
x1

x2

x3

1
18
------

1 5– 7
7 1 5–

5– 7 1

9
6
8

1
18
------

35
29
5

35 18
29 18
5 18

1.94
1.61
0.28

= = = = =

A 1–

X A \ B=

A 1– B A X B=
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Solution of Simultaneous Equations with Matrices

X =
    1.9444
    1.6111
    0.2778

Example C.17  

For the electric circuit of Figure C.1,

Figure C.1. Circuit for Example C.17

the loop equations are

(C.56)

Use the inverse matrix method to compute the values of the currents , , and 

Solution:

For this example, the matrix equation is or , where

The next step is to find . This is found from the relation

(C.57)

Therefore, we find the determinant and the adjoint of . For this example, we find that

+
V = 100 v

9 9 4

221

I1 I3I2

10I1 9I2– 100=

9I1 20I2 9I3–+– 0=

9I2 15I3+– 0=

I1 I2 I3

RI V= I R 1– V=

R
10 9– 0

9– 20 9–

0 9– 15
= V

100
0
0

and I
I1

I2

I3

==

R 1–

R 1– 1
detR
------------ adjR=

R
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(C.58)

Then,

and

Check with MATLAB:

R=[10 9  0; 9  20  9;  0  9  15]; V=[100  0  0]'; I=R\V

I =
   22.4615
   13.8462
    8.3077

We can also use subscripts to address the individual elements of the matrix. Accordingly, the above
code could also have been written as:

R(1,1)=10; R(1,2)=-9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=-9; R(2,2)=20; R(2,3)=-9; R(3,2)=-9; R(3,3)=15; V=[100 0 0]'; I=R\V

I =
   22.4615
   13.8462
    8.3077

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix
method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT
(Matrix Multiplication) functions, to obtain the values of the three currents in Example C.17.

The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure C.2. Then, we enter the elements of matrix  in G3:G5.

detR 975= adjR
219 135 81
135 150 90
81 90 119

=

R 1– 1
detR
------------adjR 1

975
---------

219 135 81
135 150 90
81 90 119

= =

I
I1

I2

I3

1
975
---------

219 135 81
135 150 90
81 90 119

100
0
0

100
975
---------

219
135
81

22.46
13.85
8.31

= = = =

V
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Solution of Simultaneous Equations with Matrices

2. Next, we compute and display the inverse of R, that is, . We choose B7:D9 for the elements
of this inverted matrix. We format this block for number display with three decimal places. With
this range highlighted and making sure that the cell marker is in B7, we type the formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously.

We observe that  appears in these cells.

3. Now, we choose the block of cells G7:G9 for the values of the current I. As before, we highlight
them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of I then appear in G7:G9.

Figure C.2. Solution of Example C.17 with a spreadsheet

Example C.18  

For the phasor circuit of Figure C.18

Figure C.3. Circuit for Example C.18

R 1–

R 1–

1
2
3
4
5
6
7
8
9
10

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

10 -9 0 100
R= -9 20 -9 V= 0

0 -9 15 0

0.225 0.138 0.083 22.462
R-1= 0.138 0.154 0.092 I= 13.846

0.083 0.092 0.122 8.3077

+ R1

85 

50 
R2

C

L

R3 = 100 

IX

VS

j100 

j200 

170

V1 V2
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the current  can be found from the relation

(C.59)

and the voltages V1 and V2 can be computed from the nodal equations

(C.60)

and

(C.61)

Compute, and express the current  in both rectangular and polar forms by first simplifying like
terms, collecting, and then writing the above relations in matrix form as , where

, , and 

Solution:

The Y matrix elements are the coefficients of  and . Simplifying and rearranging the nodal equa-
tions of (C.60) and (C.61), we get

(C.62)

Next, we write (C.62) in matrix form as

(C.63)

where the matrices , , and  are as indicated.

We will use MATLAB to compute the voltages  and , and to do all other computations. The
code is shown below.

Y=[0.0218 0.005j  0.01;  0.01  0.03+0.01j]; I=[2; 1.7j]; V=Y\I;% Define Y, I, and find V
fprintf('\n'); % Insert a line 
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); % Display values of V1 and V2

V1 = 

IX

IX
V1 V2–

R3
------------------=

V1 170 0–

85
-------------------------------

V1 V2–

100
------------------

V1 0–

j200
---------------+ + 0=

V2 170 0–

j100–
-------------------------------

V2 V1–

100
------------------

V2 0–

50
---------------+ + 0=

Ix

YV I=

Y Admit cetan= V Voltage= I Current=

V1 V2

0.0218 j0.005– V1 0.01V2– 2=

0.01– V1 0.03 j0.01+ V2+ j1.7=

0.0218 j0.005– 0.01–

0.01– 0.03 j0.01+

Y

V1

V2

V

2
j1.7

I

=

Y V I

V1 V2
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 1.0490e+002 + 4.9448e+001i

V2 = 
  53.4162 + 55.3439i

Next, we find  from

R3=100; IX=(V(1) V(2))/R3 % Compute the value of IX

IX =
   0.5149- 0.0590i

This is the rectangular form of . For the polar form we use

magIX=abs(IX) % Compute the magnitude of IX

magIX =
    0.5183

thetaIX=angle(IX)*180/pi % Compute angle theta in degrees

thetaIX =
   -6.5326

Therefore, in polar form

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to com-
pute matrices that include complex numbers in their elements as in Example C.18

IX

IX

IX 0.518 6.53–=
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C.12  Exercises

For Problems 1 through 3 below, the matrices , , , and  are defined as:

1. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d.

e. f. g. h.

2. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d. 

e. f. g. h. 

3. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d. 

e. f. 

4. Solve the following systems of equations using Cramer’s rule. Verify your answers with MATLAB.

a.    b.    

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Solve the following systems of equations using the inverse matrix method. Verify your answers
with MATLAB.

a. b. 

A B C D

A
1 1– 4–

5 7 2–

3 5– 6
=     B

5 9 3–

2– 8 2
7 4– 6

=     C=
4 6
3– 8
5 2–

    D 1 2– 3
3– 6 4–

=

A B+ A C+ B D+ C D+

A B– A C– B D– C D–

A B A C B D C D

B A C A D A D· C

detA detB detC detD

det A B det A C

x1 2x2 x3+– 4–=

2x– 1 3x2 x3+ + 9=

3x1 4x2 5x3–+ 0=

x1– 2x2 3x3– 5x4+ + 14=

x1 3x2 2x3 x4–+ + 9=

3x1 3– x2 2x3 4x4+ + 19=

4x1 2x2 5x3 x4+ + + 27=

1 3 4
3 1 2–

2 3 5

x1

x2

x3

3–

2–

0
=

2 4 3 2–

2 4– 1 3
1– 3 4– 2
2 2– 2 1

x1

x2

x3

x4

1
10
14–

7

=
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Appendix D

Constructing Semilog Plots with Microsoft Excel

his appendix contains instructions for constructing semilog plots with the Microsoft Excel
spreadsheet. Semilog, short for semilogarithmic, paper is graph paper having one logarithmic
and one linear scale. It is used in many scientific and engineering applications including fre-

quency response illustrations and Bode Plots.

D.1 The Excel Spreadsheet Window

Figure D.1 shows the Excel spreadsheet workspace and identifies the different parts of the Excel win-
dow when we first start Excel.

Figure D.1. The Excel Spreadsheet Workspace

T

Menu bar
ChartWizard

Chart toolbar (hidden)
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Figure D.2 shows that whenever a chart is selected, as shown by the visible handles around the
selected chart, the Chart drop menu appears on the Menu bar and that the Chart toolbar now is visi-
ble. We can now use the Chart Objects Edit Box and Format Chart Area tools to edit our chart.

Figure D.2. The Excel Spreadsheet with Chart selected

D.2 Instructions for Constructing Semilog Plots

1. Start with a blank spreadsheet as shown in Figure D.1.

2. Click on ChartWizard.

3. Click on the X-Y (Scatter) Chart type under the Standard Types tab on the ChartWizard menu.

4. The Chart sub-type shows five different sub-types. Click on the upper right (the one showing two
continuous curves without square points.)

5. Click on Next, Series tab, Add, Next.

Menu bar ChartWizard

Chart Objects Edit Box Format Chart Area Handles

Chart drop menu
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Instructions for Constructing Semilog Plots

6. Click on Gridlines tab and click on all square boxes under Value X-axis and Value Y-axis to place
check marks on Major and Minor gridlines.

7. Click on Next, Finish, click on the Series 1 box to select it, and press the Delete key on the key-
board to delete it.

8. The plot area normally appears in gray color. To change it to white, first make sure that the chart
is selected, that is, the handles (black squares) around the plot are visible. Point the mouse on the
Chart Objects Edit Box tool (refer to Figure D.2), scroll down, click on the Plot Area, then click
on the Format Plot Area (shown as Format Chart Area tool in Figure D.2).

9. The Area section on the Patterns tab shows several squares with different colors. Click on the
white square, fifth row, right-most column, and click on OK to return to the Chart display. You
will observe that the Plot Area has a white background.

10. Click anywhere near the x-axis (lowest horizontal line on the plot) and observe that the Chart
Objects Edit Box now displays Value (X) axis. Click on the Format Chart Area tool which now
displays Format Axis, click on the Scale tab and make the following entries:

Minimum: 1     Maximum: 100000     Major Unit: 10     Minor Unit: 10

Make sure that the squares to the left of these values are not checked.

Click on Logarithmic scale to place a check mark, and click on OK to return to the plot.

11. Click anywhere near the y-axis (left-most vertical line on the plot) and observe that the Chart
Objects Edit Box now displays Value (Y) axis. Click on the Format Chart Area tool which now
displays Format Axis, click on the Scale tab and make the following entries:

Minimum: 80     Maximum: 80     Major Unit: 20     Minor Unit: 20

Make sure that the squares to the left of these values are not checked. Also, make sure that the 
Logarithmic scale is not checked. Check on OK to return to the plot.

12. You will observe that the x-axis values appear at the middle of the plot. To move them below the
plot, click on Format Chart Area tool, click on the Patterns tab, click on Tick mark labels (lower
right section), and click on OK to return to the plot area.

13. To expand the plot so that it will look more useful and presentable, make sure that the chart is
selected (the handles are visible). This is done by clicking anywhere in the chart area. Bring the
mouse close to the lower center handle until a bidirectional arrow appears and stretch down-
wards. Repeat with the right center handle to stretch the plot to the right. Alternately, you may
bring the mouse near the lower right handle and stretch the plot diagonally.

14. You may wish to display the x-axis values in exponential (scientific) format. To do that, click any-
where near the x-axis (zero point), and observe that the Chart Objects Edit Box now displays
Value (X) axis. Click on the Format Chart Area tool which now displays Format Axis, click on the
Number tab and under Category click on Scientific with zero decimal places.
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15. If you wish to enter title and labels for the x- and y-axes, with the chart selected, click on Chart
(on the Menu bar), click on chart Options, and on the Titles tab enter the Title and the x- and y-
axis labels. Remember that the Chart drop menu on the Menu bar and the Chart toolbar are hid-
den when the chart is deselected.

16. With the values used for this example, your semilog plot should look like the one below.

-80

-60

-40

-20

0

20

40

60

80

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
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Appendix E

Scaling

his appendix discusses magnitude and frequency scaling procedures that allow us to transform
circuits that contain passive devices with unrealistic values to equivalent circuits with realistic
values.

E.1  Magnitude Scaling

Magnitude scaling is the process by which the impedance of a two terminal network is changed by a
factor  which is a real positive number greater or smaller than unity. 
If we increase the input impedance by a factor , we must increase the impedance of each device of
the network by the same factor. Thus, if a network consists of , , and  devices and we wish to
scale this network by this factor, the magnitude scaling process entails the following transformations
where the subscript m denotes magnitude scaling.

(E.1)

These transformations are consistent with the time-domain to frequency domain transformations 

(E.2)

and the -domain to -domain transformations

(E.3)

E.2  Frequency Scaling 

Frequency scaling is the process in which we change the values of the network devices so that at the
new frequency the impedance of each device has the same value as at the original frequency. The fre-

T

km

km

R L C

Rm kmR

Lm kmL

Cm
C
km
------

R R
L j L

C 1
j C
----------

t s

R R
L sL

C 1
sC
------
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quency scaling factor is denoted as . This factor is also a real positive number and can be greater or
smaller than unity. 

The resistance value is independent of the frequency. However, the complex impedance of any
inductor is , and in order to maintain the same impedance at a frequency  times as great, we must

replace the inductor value by another which is equal to . Similarly, a capacitor with value  must be

replaced with another having a capacitance value equal to . For frequency scaling then, the following

transformations are necessary where the subscript  denotes magnitude scaling.

(E.4)

A circuit can be scaled simultaneously in both magnitude and frequency using the scales values below
where the subscript  denotes simultaneous magnitude and frequency scaling.

(E.5)

Example E.1  

For the network of Figure E.1 compute

Figure E.1. Network for Example E.1

a. the resonant frequency .

b. the maximum impedance .

c. the quality factor .

d. the bandwidth BW.

kf

sL kf

L kf C

C kf

f

Rf R

Lf
L
kf
----

Cf
C
kf
----

mf

Rmf kmR

Lmf
km
kf
------L

Cmf
1

kmkf
----------C

Z R L
C

2.5 0.5 H 2 F

0

Zmax

Q0P
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Frequency Scaling

e. the magnitude of the input impedance , and using MATLAB sketch it as a function of frequency.

f. Scale this circuit so that the impedance will have a maximum value of  at a resonant fre-

quency of 

Solution:

a. The resonant frequency of the given circuit is

and thus the circuit is parallel resonant.

b. The impedance is maximum at parallel resonance. Therefore,

c. The quality factor at parallel resonance is

d. The bandwidth of this circuit is 

e. The magnitude of the input impedance versus radian frequency  is shown in Figure E.2 and was
generated with the MATLAB code below.

w=0.01: 0.005: 5; R=2.5; G=1/R; C=2; L=0.5; Y=G+j.*(w.*C 1./(w.*L));...
magY=abs(Y); magZ=1./magY; plot(w,magZ); grid

Z

5 K

5 106 rad s

0
1
LC

----------- 1 rad s= =

Zmax 2.5=

Q0P
0C
G

---------- 0CR 1 2 2.5 5= = = =

BW 0
Q0P
--------- 1

5
--- 0.2= = =
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Figure E.2. Plot for Example E.1

f. Using (E.1), we get

Then,

and

After being scaled in magnitude by the factor , the network constants are as shown in
Figure E.3, and the plot is shown in Figure E.4.

Figure E.3. The network of Figure E.2 scaled by the factor 

The final step is to scale the above circuit to . Using (E.4), we get:

km
Rm
R

------- 5000
2.5

------------ 2000= = =

Lm kmL 2000 0.5 1000 H= = =

Cm
C
km
------ 2

2000
------------ 10 3– F= = =

km 2000=

Z R L
C

5K 10 3 H 10 -3 F

km 2000=

5 106 rad s

Rf R 5 k= =

Lf L kf 1000 5 106 200 H= = =
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Figure E.4. Plot for the network of Figure E.2 after being scaled by the factor 

The network constants and its response, in final form, are as shown in Figures E.5 and E.6 respec-
tively. 

Figure E.5. The network of Figure E.2 scaled to its final form

The plot of Figure E.6 was generated with the following MATLAB code:

w=1: 10^3: 10^7; R=5000; G=1/R; C=200.*10.^( 12); L=200.*10.^( 6); ...
magY=sqrt(G.^2+(w.*C 1./(w.*L)).^2); magZ=1./magY; plot(w,magZ); grid

Check:

The resonant frequency of the scaled circuit is

and thus the circuit is parallel resonant at this frequency.

The impedance is maximum at parallel resonance. Therefore,

km 2000=

Cf C kf 10 3– 5 106 200 pF= = =

Z R L
C

5 K 200 H 200 pF

0
1
LC

----------- 1

0.2 10 3– 0.2 10 9–
----------------------------------------------------------- 1

0.2 10 6–
------------------------ 5 106 rad s= = ==

Zmax 5 K=
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Figure E.6. Plot for Example E.1 scaled to its final form

The quality factor at parallel resonance is

and the bandwidth is 

The values of the circuit devices could have been obtained also by direct application of (E.5), that is,

and these values are the same as obtained before.

Q0P
0C
G

---------- 0CR 5 106 2 10 10– 5 103 5= = = =

BW 0
Q0P
--------- 5 106

5
----------------- 106= = =

Rmf kmR

Lmf
km
kf
------L

Cmf
km
kf
------C

Rmf kmR 2000 2.5 5 K= = =

Lmf
km
kf
------L 2000

5 106
----------------- 0.5 200 H= = =

Cmf
1

kmkf
----------C 1

2 103 5 106
----------------------------------------- 2 200 pf= = =
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Example E.2  

A series  circuit has resistance , inductance , and capacitance . Use
scaling to compute the new values of  and  which will result in a circuit with the same quality fac-
tor , resonant frequency at  and the new value of the capacitor to be .

Solution:

The resonant frequency of the circuit before scaling is 

and we want the resonant frequency of the scaled circuit to be  or .

Therefore, the frequency scaling factor must be

Now, we must compute the magnitude scale factor, and since we want the capacitor value to be ,
we use (E.5), that is,

or

Then, the scaled values for the resistance and inductance are

and

RLC R 1= L 1 H= C 1 F=

R L
QOS 500 Hz 2 F

0
1
LC

----------- 1 rad s= =

500 Hz 2 500 3142 rad s=

kf
3142

1
------------ 3142= =

2 F

Cmf
1

kmkf
----------C=

km
C

kfCmf
------------- 1

3142 2 10 6–
-------------------------------------- 159= = =

Rm kmR 159 1 159= = =

Lmf
km
kf
------L 159

3142
------------ 1 50.6 mH= = =
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E.3  Exercises

1. A series resonant circuit has a bandwidth of ,  and . Compute the
new resonant frequency and inductance if the circuit is scaled

a. in magnitude by a factor of 5

b. in frequency by a factor of 5

c. in both magnitude and frequency by factors of 5

2. A scaled parallel resonant circuit consists of , , and . Compute
 and  if the original circuit had the following values before scaling.

a.  and 

b.  and 

c.   and 

100 rad s Q0s 20= C 50 F=

R 4 K= L 0.1 H= C 0.3 F=

km kf

R 10= L 1 H=

R 10= C 5 F=

L 1 H= C 5 F=



Circuit Analysis II with MATLAB Applications E-9
Orchard Publications

Solutions to the Exercises

E.4 Solutions to the Exercises

1.  a. It is given that  and ; then,

Since , , and with ,

. Also, 

and  or 

b. It is given that  and from (a) . Then, with ,

. Also, 

and  or 

c.  and . Then, from (E.5)

. Also from (E.5)

 and

 or 

2.  a. From (E.1),  and from (E.5)

b. From (a)  and from (E.5),

c. From (E.5)  and thus   (1) 

Also from (E.5),   (2)

Substitution of (1) into (2) yields , , or ,

and from (1) 

BW 0 QOS= 100= QOS 20=

0 BW QOS 100 20 2000 rad s= = =

0
2 1 LC= LOLD 1 0

2C 1 4 106 50 10 6– 5 mH= = = km 5=

LNEW kmLOLD 5 5 mH 25 mH= = = CNEW COLD km 50 10 6– 5 10 F= = =

0 NEW
2 1 LNEWCNEW 1 25 10 3– 10 10 6– 108 25= = = 0 NEW 2000 r s=

COLD 50 10 6–= LOLD 5 mH= kf 5=

LNEW LOLD kf 5 10 3– 5 1 mH= = = CNEW COLD kf 50 10 6– 5 10 F= = =

0 NEW
2 1 LNEWCNEW 1 10 3– 10 10 6– 108= = = 0 NEW 10000 r s=

LOLD 5 mH= COLD 50 10 6–=

LNEW km kf LOLD 5 5 5 mH 5 mH= = =

CNEW 1 kmkf COLD 50 F 5 5 2 F= = =

0 NEW
2 1 LNEWCNEW 1 5 10 3– 2 10 6– 108= = = 0 NEW 10000 r s=

km RNEW ROLD 4000 10 400= = =

kf LOLD LNEW km 1 0.1 400 4000= = =

km 400=

kf 1 km COLD CNEW 1 400 5 0.3 10 6– 41677= = =

kf km LOLD LNEW 1 0.1 10= = = kf 10km=

km kf COLD CNEW 5 0.3 10 6– 5 106 0.3= = =

10km km 5 106 0.3= km
2 5 106 3= km 1291=

kf 1291 10 12910= =
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NOTES



Index
Symbols and Numerics critically damped - see natural response exponential order, function of 4-2

exponentiation in MATLAB
% (percent) symbol in MATLAB A-2 D      dot exponentiation operator A-22
3-phase systems - see eye(n) in MATLAB C-7
     three-phase systems damping coefficient 1-3, 1-15, 7-14

data points in MATLAB A-15 F
A dB - see decibel

DC isolation - see transformer factor(s) in MATLAB 5-4
abs(z) in MATLAB A-25 decade 7-4 Faraday’s law of
admittance 6-2, 6-8, 6-11, 6-16, 6-17 decibel 7-1, A-13      electromagnetic induction 8-2
     driving-point 9-5 deconv in MATLAB A-6 feedback
alpha coefficient 1-3, 1-15 default color in MATLAB A-16      negative 7-4
angle(z) in MATLAB A-25 default line in MATLAB A-16      positive 7-4
antenna 2-18 default marker in MATLAB A-16 figure window in MATLAB A-14
antiresonance 2-6 delta function 3-8, 3-12 filter
asymptotes 7-6      sampling property 3-12      low-pass
asymptotic approximations 7-5      sifting property 3-13           multiple feed back 1-30
Audio Frequency (AF) Amplifier 2-18 demo in MATLAB A-2 final value theorem 4-10

detector circuit 2-18 flux linkage 8-2
B determinants C-9 fmax in MATLAB A-28

differential equations fmin in MATLAB A-28
bandwidth 2-12, 2-13, 7-3      auxiliary equation B-8 forced response B-7
beta coefficient 1-3, 1-15      characteristic equation B-8 format in MATLAB A-31
Bode Plots 7-5      classification B-3 fplot in MATLAB A-28
bode(sys) in MATLAB 7-21      degree B-3 frequency
bode(sys,w) in MATLAB 7-21      most general solution B-6      corner 7-9
bodemag(sys,w) in MATLAB 7-21      solution by the      cutoff 7-3
box in MATLAB A-13           method of undetermined      half-power 2-13

               coefficients B-10      natural
C           method of variation           damped 1-3, 1-15, 7-14

               of parameters B-20      resonant 1-3, 2-2, 2-7
clc in MATLAB A-2 differentiation      response A-13
clear in MATLAB A-2      in time domain 4-4      scaling - see scaling
collect(s) in MATLAB 5-12      in complex frequency domain 4-6      selectivity 2-5
column vector in MATLAB A-20 Dirac(t) in MATLAB 3-15 frequency shifting property 4-3
command screen in MATLAB A-1 direct term in MATLAB 5-4 full rectification waveform 4-36
command window in MATLAB A-1 discontinuous function 3-2 function file in MATLAB A-26
commas in MATLAB A-8 display formats in MATLAB A-31 fzero in MATLAB A-28
comment line in MATLAB A-2 distinct poles 5-2
complex conjugate pairs 5-5, A-4 distinct roots of characteristic equation B-9 G
complex numbers A-3 division in MATLAB
complex poles 5-5      dot division operator A-22 g parameters 9-29
complex roots of dot convention - see transformer gamma function 4-15
     characteristic equation B-9 doublet function 3-15 Gaussian elimination method C-19
conj(A) in MATLAB C-8 driving-point admittance - see admittance generalized factorial function 4-15
conj(x) in MATLAB C-8 geometric mean 2-14
contour integration 4-2 E grid in MATLAB A-13
conv(a,b) in MATLAB A-6 gtext in MATLAB A-14
convolution editor window in MATLAB A-1
     in the complex frequency domain 4-12 editor/debugger in MATLAB A-1 H
     in the time domain 4-11 electrokinetic momentum 8-1
corner frequency - see frequency eps in MATLAB A-23 h parameters 9-24
Cramer’s rule C-16 exit in MATLAB A-2 half-power bandwidth -see bandwidth



half-power frequencies - see frequency      conformable for multiplication C-4 open circuit input impedance 9-20
half-rectified sine wave 4-28      congugate of C-8 open circuit output impedance 9-21
Heavyside(t) in MATLAB 3-15      defined C-1 open circuit transfer impedance 9-20, 9-21
homogeneous differential equation 1-1      diagonal of C-1, C-6 Order of differential equation B-3
hybrid parameters 9-24      Hermitian C-9 ordinary differential equation B-3

     identity C-6 oscillatory natural response - see
I      inverse of C-21      natural response - underdamped

     left division in MATLAB C-24
ideal transformer - see transformer      lower triangular C-6 P
IF amplifier 2-18      minor of C-12
ilaplace function in MATLAB 5-4      multiplication using MATLAB A-20 partial differential equation B-3
imag(z) in MATLAB A-25      non-singular C-21 partial fraction expansion method 5-2
image-frequency interference 2-18      singular C-21      alternate method 5-15
impedance matching 8-32      scalar C-6 PDE - see partial differential equation
improper integral 4-15      skew-Hermitian C-9 plot
improper rational function 5-1, 5-13, 5-18      skew-symmetric C-9      magnitude 7-5
impedance 6-2, 6-16      square C-1      phase 7-5
     reflected 8-26      symmetric C-8      polar A-25
initial value theorem 4-9      theory 3-2 plot in MATLAB A-10
integration in complex frequency domain 4-8      trace of C-2 plot3 in MATLAB A-16
integration in time domain 4-6      transpose C-7 poles 5-2, 7-6
inverse hybrid parameters 9-30      upper triangular C-5      repeated 5-8
Inverse Laplace transform 4-1      zero C-2 poly(r) in MATLAB A-4
Inverse Laplace Transform Integral 5-1, 5-18 maximum power transfer 8-32 polyder(p) in MATLAB A-6

mesh(x,y,z) in MATLAB A-18 polyval in MATLAB A-6
L meshgrid(x,y) in MATLAB A-18 port 9-1

m-file in MATLAB A-1, A-26 preselector 2-18
L’Hôpital’s rule 1-23, 4-16 MINVERSE in Excel C-26 primary winding 8-4
Laplace Transformation 4-1 MMULT in Excel C-26 proper rational function 5-1, 5-18
     bilateral 4-1 multiple poles 5-8
     of common functions 4-12 multiplication in MATLAB Q
     of several waveforms 4-23      dot multiplication operator A-22
left-hand rule 8-2      element-by-element A-20 quadratic factors A-9
Leibnitz’s rule 4-6 mutual inductance - see transformer quality factor at parallel resonance 2-4
Lenz’s law 8-3 mutual voltages - see transformer quality factor at series resonance 2-4
lims = in MATLAB A-28 quit in MATLAB A-2
linear and quadratic factors A-9 N
linear factor A-9 R
linear inductor 8-2 NaN in MATLAB A-28
linearity property 4-2 natural response B-7 Radio Frequency (RF) Amplifier 2-18
line-to-line voltages 10-7      critically damped 1-3 ramp function 3-9
linkage flux 8-4, 8-6      overdamped 1-3 rational polynomials A-8
linspace in MATLAB A-14      underdamped 1-3 real(z) in MATLAB A-25
ln A-13 negative feedback - see feedback reciprocal two-port networks 9-34
log(x) in MATLAB A-13 network reciprocity theorem 9-17
log10(x) in MATLAB A-13      bridged 7-35 reflected impedance - see impedance
log2(x) in MATLAB A-13      pie 7-35 residue 5-2, 5-8
loglog(x,y) in MATLAB A-13 non-homogeneous ODE B-6 resonance

nth-order delta function 3-15      parallel 2-6
M      series 2-1

O resonant frequency - see frequency
magnetic flux 8-2 right-hand rule 8-2
magnitude scaling - see scaling octave 7-4 roots - repeated B-9
matrix, matrices ODE - see ordinary differential equation roots of polynomials A-3
     adjoint of C-20 one-dimensional wave equation B-3 roots(p) in MATLAB 5-6, A-3, A-8, A-9
     cofactor of C-12 one-port network 9-1 round(n) in MATLAB A-25
     conformable for addition C-2 open circuit impedance parameters 9-19 row vector in MATLAB A-3, A-20



S time periodicity 4-8
time shifting property 4-3

saw tooth waveform 4-36 title(‘string’) in MATLAB A-13
scaling transfer admittance 9-5
     frequency E-1 transfer function 6-13, 6-17, 7-4
     magnitude E-1 transformer
scaling property in complex      coefficient of coupling 8-18
     frequency domain 4-4      DC isolation 8-20
script file in MATLAB A-26      dot convention 8-8
secord-order circuit 1-1      equivalent circuit 8-33, 8-36
semicolons in MATLAB A-8      ideal 8-28
semilog plots      linear 8-5, 8-20
     instructions for constructing D-1      mutual inductance 8-5, 8-6
semilogx in MATLAB A-13      mutual voltages 8-8
semilogy in MATLAB A-13      polarity markings 8-11
settling time 1-20      self-induced voltages 8-8
short circuit input admittance 9-12      self-inductance 8-1, 8-3, 8-5
short circuit output admittance 9-13      step-down 8-14
short circuit transfer admittance 9-13      step-up 8-14
signal-to-noise ratio (S/N) 2-18      windings
single-phase three-wire system 10-4           close-coupled 8-19
solve(equ) in MATLAB 7-24           loose-coupled 8-19
state equations 1-1 triplet function 3-15
subplot in MATLAB A-19 two-port network 9-12
symmetric network 9-17, 9-35 two-sided Laplace Transform 4-1
symmetric rectangular pulse 3-6
symmetric triangular waveform 3-6 U

T unit impulse function 3-8, 3-12
unit ramp function 3-8, 3-10

tee network 9-35 unit step function 3-2
text in MATLAB A-14, A-18
Thevenin equivalent circuit 8-34 W
three-phase
     balanced currents 10-2 wattmeter 10-27
     computation by reduction weber 8-2
          to single phase 10-20 Wronskian Determinant B-10
     Delta to Y conversion 10-11
     four-wire system 10-2 X
     four-wire Y-system 10-3
     equivalent Delta and xlabel in MATLAB A-13
          Y-connected loads 10-10
     instantaneous power 10-23, 10-24 Y
     line currents 10-5
     line-to-line voltages 10-7 y parameters 9-4, 9-12
     phase currents 10-5 ylabel in MATLAB A-13
     phase voltages 10-7
     positive phase sequence 10-7 Z
     power 10-21
     power factor 10-21 z parameters 9-19
     systems 10-1 zeros of a rational function 5-2, 7-6
     three-wire Y-system 10-3
     three-wire Delta system 10-4
     two wattmeter method of 
          reading 3-phase power 10-30
     Y to Delta conversion 10.12
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