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Preface

This text is written for use in a second course in circuit analysis. The reader of this book should have
the traditional undergraduate knowledge of an introductory circuit analysis material such as Circuit
Analysis | with MATLAB® Applications by this author. Another prerequisite would be knowledge of
differential equations, and in most cases, engineering students at this level have taken all required
mathematics courses. It encompasses a spectrum of subjects ranging from the most abstract to the
most practical, and the material can be covered in one semester or two quarters. Appendix B serves as
a review of differential equations with emphasis on engineering related topics and it is recommended
for readers who may need a review of this subject.

There are several textbooks on the subject that have been used for years. The material of this book is
not new, and this author claims no originality of its content. This book was written to fit the needs of
the average student. Moreover, it is not restricted to computer oriented circuit analysis. While it is true
that there is a great demand for electrical and computer engineers, especially in the internet field, the
demand also exists for power engineers to work in electric utility companies, and facility engineers to
work in the industrial areas.

Chapter 1 is an introduction to second order circuits and it is essentially a sequel to first order circuits
that were discussed in the last chapter of as Circuit Analysis | with MATLAB® Applications. Chapter 2
is devoted to resonance, and Chapter 3 presents practical methods of expressing signals in terms of
the elementary functions, i.e., unit step, unit ramp, and unit impulse functions. Thus, any signal can be
represented in the compex frequency domain using the Laplace transformation.

Chapters 4 and 5 are introductions to the unilateral Laplace transform and Inverse Laplace transform
respectively, while Chapter 6 presents several examples of analyzing electric circuits using Laplace
transformation methods. Chapter 7 begins with the frequency response concept and Bode magnitude
and frequency plots. Chapter 8 is devoted to transformers with an introduction to self and mutual
inductances. Chapter 9 is an introduction to one- and two-terminal devices and presents several
practical examples. Chapter 10 is an introduction to three-phase circuits.

It is not necessary that the reader has previous knowledge of MATLAB®. The material of this text
can be learned without MATLAB. However, this author highly recommends that the reader studies
this material in conjunction with the inexpensive MATLAB Student Version package that is available
at most college and university bookstores. Appendix A of this text provides a practical introduction
to MATLAB. As shown on the front cover of this text the magnitude and phase plots can be easily
obtained with a one line MATLAB code. Moreover, MATLAB will be invaluable in later studies such
as the design of analog and digital filters.
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As stated above, Appendix B is a review of differential equations. Appendix C is an introduction
to matrices, Appendix D provides instructions on constructing semilog templates to be used with
Bode plots, and Appendix E discusses scaling methods.

In addition to numerous real-world examples, this text contains several exercises at the end of
each chapter. Detailed solutions of all exercises are provided at the end of each chapter. The
rationale is to encourage the reader to solve all exercises and check his effort for correct solutions
and appropriate steps in obtaining the correct solution. And since this text was written to serve as
a self-study or supplementary textbook, it provides the reader with a resource to test his
knowledge.

The author has accumulated many additional problems for homework assignment and these are
available to those instructors who adopt this text either as primary or supplementary text, and
prefer to assign problems without the solutions. He also has accumulated many sample exams.

The author is indebted to the class of the Spring semester of 2001 at San Jose State University,
San Jose, California, for providing several of the examples and exercises of this text.

Like any other new book, this text may contain some grammar and typographical errors.
Accordingly, all feedback for errors, advice, and comments will be most welcomed and greatly
appreciated.

Orchard Publications
info@otchardpublications.com
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Chapter 1

Second Order Circuits

his chapter discusses the natural, forced and total responses in circuits containing resistors,

inductors and capacitors. These circuits are characterized by linear second-order differential

equations whose solutions consist of the natural and the forced responses. We will consider
both DC (constant) and AC (sinusoidal) excitations.

1.1 The Response of a Second Order Circuit

A circuit containing N energy storage devices (inductors and capacitors) is said to be an nth-order cir-
cuit, and the differential equation describing the circuit is an nth-order differential equation. For exam-
ple, if a circuit contains an inductor and a capacitor, or two capacitors or two inductors, along with
other devices such as resistors, it is said to be a second-order circuit and the differential equation that
describes it is a second order differential equation. It is possible, however, to describe a circuit having
two energy storage devices with a set of two first-order differential equations, a circuit which has
three energy storage devices with a set of three first-order differential equations and so on. These are

called state equations* but these will not be discussed here.

The response is found from the differential equation describing the circuit, and its solution is
obtained as follows:

1. We write the differential or integrodifferential (nodal or mesh) equation describing the circuit. We
differentiate, if necessary, to eliminate the integral.

2. We obtain the forced (steady-state) response. Since the excitation in our work here will be either a
constant (DC) or sinusoidal (AC) in nature, we expect the forced response to have the same form
as the excitation. We evaluate the constants of the forced response by substitution of the assumed
forced response into the differential equation and equate terms of the left side with the right side.
Refer to Appendix B for the general expression of the forced response (particular solution).

3. We obtain the general form of the natural response by setting the right side of the differential
equation equal to zero, in other words, solve the homogeneous differential equation using the
characteristic equation.

4. Add the forced and natural responses to form the complete response.

5. We evaluate the constants of the complete response from the initial conditions.

* State variables and state equations are discussed in Signals and Systems with MATLAB Applications, ISBN 0-
9709511-3-2 by this author.
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Chapter 1 Second Order Circuits

1.2 The Series RLC Circuit with DC Excitation

Let us consider the series RLC circuit of Figure 1.1 where the initial conditions are i (0) = Iy,

ve(0) = Vg, and Uy(t) is the unit step function.” We want to find an expression for the current i(t)
fort>0.

VY
Vs Ug(t)
(2 i 5L
e

Figure 1.1. Series RLC Circuit

For this circuit
. di 1"
R|+Ldt+CJ.O|d'[+V0_vS t>0 (1.1)

and by differentiation
. 2. )
Rg N Ld i dvg

dt gt ar t>0

To find the forced response, we must first specify the nature of the excitation Vs, that is, DC or AC.
If vg is DC (vg =constant), the right side of (1.1) will be zero and thus the forced response compo-
nent iy = 0. If vg is AC (vg = Vcos(ot+0), the right side of (1.1) will be another sinusoid and

therefore iy = 1cos(wt + ¢). Since in this section we are concerned with DC excitations, the right

side will be zero and thus the total response will be just the natural response.

The natural response is found from the homogeneous equation of (1.1), that is,

di dii i
Rdt+ L—dtz ts = 0 1.2)
The characteristic equation of (1.2) is

L52+Rs+é =0

* The unit step function is discussed in detail in Chapter 3. For our present discussion it will suffice to state that
Up(t) = 0 for t<0 and uy(t) = 1 for t>0.
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The Series RLC Circuit with DC Excitation

or
sz+Bs+l=0
L LC
from which
R R 1
$,S) = —— % [— - — 1.3
1> S TRl TR (1.3)

We will use the following notations:

_ R __1 o E— 2 2
Qg = Z Wy = ,_LC BS — aSZ _ (D(Z) (Dns = Joo— o

. (1.4)
a. or Damping Resonant Beta Damped Natural
Coefficient Frequency Coefficient Frequency

where the subscript s stands for series circuit. Then, we can express (1.3) as

/2 2 . 2 2
Sl’ Sz = —asi (X,S—(DO = —asi BS |f (x,s>(,00 (15)
or
[ 2 2 . 2 2
Sl’ 52 = _asi (l)o_as = _asi(l)ns |f (Do>as (1.6)

2 2 . . .
Case I: If ag> g, the roots s; and S, are real, negative, and unequal. This results in the over-

damped natural response and has the form

t

i (1) = ke + ke’ (1.7)

Case II: If océ = co(z), the roots s; and s, are real, negative, and equal. This results in the critically
damped natural response and has the form

i (1) = e (K + ko) (1.8)

Case III: If mg > ocg , the roots s; and s, are complex conjugates. This is known as the underdamped
or oscillatory natural response and has the form

in(t) = e_ast(klcosa)nsukzsinconst) = k3e_a5t(c03mnst+cp) (1.9)

A typical overdamped response is shown in Figure 1.2 where it is assumed that i (0) = 0. This plot
was created with the following MATLAB code:
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Chapter 1 Second Order Circuits

t=0: 0.01: 6; ft=8.4.*(exp(-t)-exp(—6.*1)); plot(t,ft); grid; xlabel('t);...
ylabel(f(t)"); title(Overdamped Response for 4.8.* (exp(-t)—exp(—6.*1))")

Overdarmped Response for 4.8, “(exp{t)expi-6 1))
5 T T T T T

Figure 1.2. Typical overdamped response
A typical critically damped response is shown in Figure 1.3 where it is assumed that i(0) = 0. This
plot was created with the following MATLAB code:

t=0: 0.01: 6; ft=420.*t.*(exp(—2.45.*t)); plot(t,ft); grid; xlabel('t);...
ylabel(f(t)"); title('Critically Damped Response for 420.*t.* (exp(—2.45.*1))")

Gritically Damped Response for 4201, “(Exp{-2.45. 1))
70 T T T T T

Figure 1.3. Typical critically damped response

A typical underdamped response is shown in Figure 1.4 where it is assumed that i,(0) = 0. This
plot was created with the following MATLAB code:

1-4 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Response of Series RLC Circuits with DC Excitation

t=0: 0.01: 10; ft=210.*sqrt(2).*(exp(—0.5.*t)).*sin(sqrt(2).*1); plot(t,ft); grid; xlabel('t);...
ylabel(f(t)"); titte(Underdamped Response for 210.*sqrt(2).* (exp(—0.5.*1)).*sin(sqrt(2).*t)")

Underdamped Response for 210, sqrt{2). "exp{0.5. ). =sinfzqri@). 1)

0 T T T T T T T T T

00 i i i ; i 1
0
Figure 1.4. Typical underdamped response

1.3 Response of Series RLC Circuits with DC Excitation

Depending on the circuit constants R, L, and C, the total response of a series RLC circuit that is
excited by a DC source, may be overdamped, critically damped, or underdamped. In this section we
will derive the total response of series RLC circuits that are excited by DC sources.

Example 1.1

For the circuit of Figure 1.5, i.(0) = 5 A, v¢(0) = 25V, and the 0.5 Q resistor represents the

resistance of the inductor. Compute and sketch i(t) for t>0.

05Q
i(t) 1 mH
15u,(t) V
) 100/6 mF

Figure 1.5. Circuit for Example 1.1
Solution:

This circuit can be represented by the integrodifferential equation

1-5 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Chapter 1 Second Order Circuits

Ri+ L4 +Cj|dt+vc(0)_15 t>0 (1.10)

Differentiating and noting that the derivatives of the constants V¢(0) and 15 are zero, we obtain the
homogeneous differential equation

di di i _

Rdt+Ldt2+C—0
or

dii Rdi, i _

dz+ dt+ =0

and by substitution of the known values R, L, and C

ﬂ +500% 1 60000i

dt? dt

Il
o

(1.11)

The roots of the characteristic equation of (1.11) are s; = —200 and s, = —300. The total response

is just the natural response and for this example it is overdamped. Therefore, from (1.7),
(=i (1) = ke  + ke = ke ™+ ke ™™ (1.12)

The constants k; and K, can be evaluated from the initial conditions. Thus from the first initial con-
dition i, (0) = i(0) = 5 A and (1.12) we get

i(0) = ke’ +k,e’ = 5

kl + k2 = 5 (1.13)

We need another equation in order to compute the values of k; and k,. With this equation we will
. . dve

make use of the second initial condition, that is, vo(0) = 2.5 V. Since ic(t) = i(t) = CW we dif-

ferentiate (1.12), we evaluate it at t = 07, and we equate it with this initial condition. Then,

g—= —200k,e**'-300k,e**" and g-; = —200k,—300k, (1.14)
t=0"
Also,att = 0",
Ri(0+)+Lg—; +v, (0" = 15
t=0"
1-6
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and solving for ?F'[ we get
t=0"
atj . 10°
t=

Next, equating (1.14) with (1.15) we get:

—200k,~300k, = 10000

Simultaneous solution of (1.13) and (1.16) yields k; = 115 and k, = —110. By substitution into (1.12)

we find the total response as
i(t)= i (t) = 115e°*"-110e~>™ (1.17)

Check with MATLAB:

syms t; % Define symbolic variable t

R=0.5; L=10"(-3); C=100*10" (—3)/6;% Circuit constants

y0=115%exp(—200*t)—110*exp(-300*t); % Let solution i(t)=y0

y1=diff(y0); % Compute the first derivative of y0, i.e., di/dt

y2=diff(y0,2); % Compute the second derivative of y0, i.e, di2/dt2
% Substitute the solution i(t), i.e., equ (1.17)
% into differential equation of (1.11) to verify
% that correct solution was obtained.
% We must also verify that the initial
% conditions are satisfied

y=y2+500*y1+60000*yO0;

i0=115*exp(—200*0)—110*exp(—300*0);

vCO=-R*i0—L*(—23000*exp(—200*0) +33000*exp(—300*0)) +15;

fprintf(' \n');...

disp(‘'Solution was entered as y0 ='); disp(y0);...

disp('1st derivative of solution is y1 ="); disp(y1);...

disp(2nd derivative of solution is y2 =); disp(y2);...

disp('Differential equation is satisfied since y = y2+y1+y0 ="); disp(y);...

disp('1st initial condition is satisfied since att = 0, i0 = ); disp(i0);...

disp('2nd initial condition is also satisfied since vC+vL+vR=15 and vCO = ;...

disp(vC0);...

fprintf(' \n')

Solution was entered as y0 =
115*exp (-200*t)-110*exp (-300*t)
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lst derivative of solution is yl =
-23000*exp (-200*t)+33000*exp (-300*t)

2nd derivative of solution is y2 =
4600000*exp (-200*t)-9900000*exp (-300*t)

0

Differential equation is satisfied since vy = y2+yl+y0
1st initial condition 1s satisfied since at t = 0, 10 = 5

2nd initial condition is also satisfied since vC+vL+vR=15 and vCO
= 2.5000

We will use the following MATLAB code to sketch i(t).

t=0: 0.0001: 0.025; i1=115.*(exp(—200.*1)); i2=110.*(exp(—300.*t)); iT=i1—-i2;...
plot(t,i1,t,i2,1,iT); grid; xlabel('t); ylabel(i1, i2, iT'); title(Response iT for Example 1.1')

FResponse iT for Example 1.1

2,7

i,

1 I
0 0.005 0.01 0015 0.02 0.025

Figure 1.6. Plot for i(t) of Example 1.1

In the above example, differentiation eliminated (set equal to zero) the right side of the differential
equation and thus the total response was just the natural response. A different approach however,
may not set the right side equal to zero, and therefore the total response will contain both the natural
and forced components. To illustrate, we will use the following approach.

t
The capacitor voltage, for all time t, may be expressed as V(1) = éJ. idt and as before, the circuit

can be represented by the integrodifferential equation

coodi 1t
R|+Ldt+CLO|dt_ 15u,(t) (1.18)
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and since
dv¢
P =le = O
we rewrite (1.18) as
2
rede 1 c 9%\~ 1su,t) (1.19)
dt dt?

We observe that this is a non-homogeneous differential equation whose solution will have both the
natural and the forced response components. Of course, the solution of (1.19) will give us the capaci-
tor voltage V¢(t). This presents no problem since we can obtain the current by differentiation of the

expression for v¢(t).

Substitution of the given values into (1.19) yields

50 .. dve 5100, dve
Exlo W+1X1O X?lo E+VC=15UO(U
or
2
d
dlg + 5oodltC + 60000V, = 9 x 10°U,(t) (1.20)
dt

The characteristic equation of (1.20) is the same as of that of (1.11) and thus the natural response is
Ven(t) = kee™ +kpe? = ke 4 ke (1.21)

Since the right side of (1.20) is a constant, the forced response will also be a constant and we denote it
as V¢ = Ky. By substitution into (1.20) we get

0+ 0 + 60000k; = 900000

or
V= kg = 15 (1.22)

cf

The total solution then is the summation of (1.21) and (1.22), that is,
Ve(t)= V(D) + Vg = ke ™" + ke + 15 (1.23)

As before, the constants k; and k, will be evaluated from the initial conditions. First, using
ve(0) = 2.5V and evaluating (1.23) att = 0, we get

ve(0) = ke + ke’ +15 = 25
or
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Also,

dve dve i and ve|  _ 1O _ 5 — 300 (1.25)
dt | _, C 100 x 107
6

iL:iC:C

dt’ dt  C

Next, we differentiate (1.23), we evaluate it at t = 0 and equate it with (1.25). Then,

Ve _ _o00k,e ™ 300k,e ™ and IVe| = _200k,-300k, (1.26)
dt at |, _,
Equating the right sides of (1.25) and (1.26) we get
—200k,~300k, = 300
or
—k,~1.5k, = 1.5 (1.27)

From (1.24) and (1.27), we get k; = —34.5 and k, = 22. By substitution into (1.23), we obtain the

total solution as

ve(t) = (2267723457 + 15)u,(t) (1.28)
Check with MATLAB:
syms t % Define symbolic variable t
y0=22*exp(—300*t)—34.5*exp(—200*t)+15; % The total solution y(t)
y1=diff(y0) % The first derivative of y(t)
vyl =
-6600*exp (-300*t)+6900*exp (-200*t)
y2=diff(y0,2) % The second derivative of y(t)
Y2 =
1980000*exp (-300*t)-1380000*exp (-200*t)
y=y2+500*y1+60000*y0 % Summation of y and its derivatives
y =
900000

Using the expression for V¢ (t) we can find the current as

i= i, =i = C("d—"tC = %’ x 107°(6900e **'-6600e **") = 115e*'-110e """ A (1.29)
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We observe that (1.29) is the same as (1.17).
We will use the following MATLAB code to sketch i(t).

t=0: 0.001: 0.03; vc1=22.*(exp(—300.*t)); vc2=—34.5.*(exp(—200.*1)); vc3=15;...
vcT=vc1+ve2+vceG; plot(t,vel,t,ve2,t,ve3,t,veT); grid; xlabel(1);...
ylabel('vc1, ve2, veg, veT'); title('(Response veT for Example 1.1Y)

FResponse voT for Example 1.1

wo2, vod, voT

voi,

0 0.005 001 0015 ooz 0.025 003

Figure 1.7. Plot for vc(t) of Example 1.1

1.4 Response of Series RLC Circuits with AC Excitation

The total response of a series RLC circuit, which is excited by a sinusoidal source, will also consist of
the natural and forced response components. As we found in the previous section, the natural
response can be overdamped, or critically damped, or underdamped. The forced component will be a
sinusoid of the same frequency as that of the excitation, and since it represents the AC steady-state
condition, we can use phasor analysis to find it. The following example illustrates the procedure.
Example 1.2

For the circuit of Figure 1.8, i.(0) = 5 A, v¢(0) = 25V, and the 0.5 Q resistor represents the
resistance of the inductor. Compute and sketch i(t) for t>0.

Solution:

This circuit is the same as that of Example 1.1 except that the circuit is excited by a sinusoidal source;
therefore it can be represented by the integrodifferential equation

Ri+ L +Cj idt + vc(0) = 200010000t t >0 (1.30)
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05 Q
— A

@ i(t) % 1 mH
(200¢0s10000t)uy(t) V N
/1100/6 mF

Figure 1.8. Circuit for Example 1.2

whose solution consists of the summation of the natural and forced responses. We know its natural
response from the previous example. We start with

i(D)= i () +if(1) = ke + ke +ic (1) (1.31)

where the constants k; and Kk, will be evaluated from the initial conditions after i;(t) has been
found. The steady state (or forced) response will have the form i (t) = kzcos(10, 000t +6) in the

time domain (t-domain) and has the form k3 £0 in the frequency domain (jo -domain).

To find is(t) we will use the phasor analysis relation | = V/Z where | is the phasor current, V is

the phasor voltage, and Z is the impedance of the phasor circuit which, as we know, is

Z =R+j(oL-1/0C) = JR*+ (0oL -1/0C) /tan (oL -1/0C)/R (1.32)

The inductive and capacitive reactances are

X, = oL =10"x10° = 10 Q

and
Xe = == = —— = 6x10° Q
oC 10" x (100/6)10
Then,
R?= (05 =025 and (oL-1/wC)?=(10-6x 107’ = 99.88
Also,

-1 -3 -1
-1 3 _ (10-6x107) _ (9.994)
tan (oL-1/wC)/R = tan G = tan 05

and this yields 6 = 1.52 rads = 87.15°. Then, by substitution into (1.32),

Z = ,J/0.25+99.88.,0° = 10,87.15°
and thus
Vo _ 2000°

| = =
Z 10,87.15°

= 20/-87.15° < 20¢os(10000t-87.15°) = i (1)
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The total solution is
(D)= in(t) + i (1) = kye ™" + ke + 20¢0s(10000t-87.15 °) (1.33)
The constants k; and Kk, are evaluated from the initial conditions. From (1.33) and the first initial
condition i (0) = 5 A we get
i(0)= ke’ +k,e’ +20cos(-87.15°) = 5
i(0)= k;+k,+20x0.05 =5
ki+k, = 4 (1.34)

We need another equation in order to compute the values of k; and K,. This equation will make use

. _ d
of the second initial condition, that is, vo(0) = 2.5 V. Since io(t) = i(t) = c%, we differentiate

(1.33), we evaluate it at t = 0, and we equate it with this initial condition. Then,

di

T —200k, e 2*'-300k,e**'-2 x 10°sin(10000t-87.15 °) (1.35)
andatt = 0,
g—; = —200k,~300k,—2 x 10°sin(-87.15°) = —200k,~300k, + 2 x 10° (1.36)
t=0
Also,att = 0
Ri(0%) + Lg—: +v,(0") = 200cos(0) = 200
t=0"
. di
and solving for pm we get
t=0"
dt| . 10 '
t=

Next, equating (1.36) with (1.37) we get
—-200k,-300k, = -5000

or
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Simultaneous solution of (1.34) and (1.38) yields k; = —38 and k, = 42. Then, by substitution into
(1.31), the total response is

i(t)= —38e7%" + 42" + 20cos(10000t-87.15°) A (1.39)
The plot is shown in Figure 1.9 and was created with the following MATLAB code:

t=0: 0.005: 0.20; i1=-38.*(exp(—200.*1)); i2=42.*(exp(—300.*1));...
i3=20.*cos(10000.*t-87.15.*pi./180); iT=i1+i2+i3; plot(t,i1,1,i2,t,i3,t,iT); grid; xlabel(t);...
ylabel(i1, i2, i3, iT'); title(Response iT for Example 1.2

Fesponse iT for Example 1.2

i1, 02,3, 1T

<40
0 002 004 006 002 01 012 014 046 018 02
t

Figure 1.9. Plot for i(t) of Example 1.2

1.5 The Parallel GLC Circuit

Consider the circuit of Figure 1.10 where the initial conditions are i (0) = 1y, vc(0) = V,, and

Ug(t) is the unit step function. We want to find an expression for the voltage v(t) for t>0.

117 ]

isUo(t) e i lc

CD v(t) G g L —~¢C

Figure 1.10. Parallel RLC circuit

For this circuit
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ig(t) +i () +ic(t) = ig(t)

or
1! dv .
Gv+=| vdt+1,+C—==1ig t>0
LJO T
By differentiation,
2 -
C%+G((jj—\t/+%=dd—ltS t>0 (1.40)

To find the forced response, we must first specify the nature of the excitation ig, that is DC or AC.

If ig is DC (vg =constant), the right side of (1.40) will be zero and thus the forced response compo-
nent V¢ = 0. If ig is AC (i = Icos(ot+0), the right side of (1.40) will be another sinusoid and
therefore vy = Vcos(wt+ ¢). Since in this section we are concerned with DC excitations, the right

side will be zero and thus the total response will be just the natural response.

The natural response is found from the homogeneous equation of (1.40), that is,

dv’  .dv v

av y - 1.41
C W + Gdt L 0 (1.41)
whose characteristic equation is
Cs’+Gs+2 = 0
L
or
2. G i
ST+ =S+ — =
T e
from which
G, |G 1
S,S = ———= % |—-— 1.42
1> 92 2C 4C2 LC ( )

and with the following notations,

G _ 1
% =5c P Be= Jop =05 opp = Joo—op’

(1.43)
a. or Damping Resonant Beta Damped Natural
Coefficient Frequency Coefficient Frequency

where the subscript p stands for parallel circuit, we can express (1.42) as
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$1,8; = —ap* /ocﬁ,—coé = —aptPp if océ,>c0§ (1.44)
or

$,8; = —ap=* /coé—aﬁ, = -—oapto,p Iif (D§>oc|2D (1.45)
Note: From (1.4) and (1.43) we observe that g # op

As in a series circuit, the natural response V(1) can be overdamped, critically damped, or under-

damped.

2 2 . : .
Case I If ap > wg, the roots s; and s, are real, negative, and unequal. This results in the over-

damped natural response and has the form
Slt Szt
V() = kie ™ +kqe (1.46)

2 2 . . . ..
Case II: If ap = wg, the roots s; and s, are real, negative, and equal. This results in the critically

damped natural response and has the form
V() = & P (ky+ kot) (1.47)

Case III: If 0’ > (xf-_, , the roots s; and s, are complex conjugates. This results in the underdamped

or oscillatory natural response and has the form

vp(t) = ef%t(klcosa)npukzsina)npt) = kSGiaPt(COS(DnPt+(p) (1.48)

1.6 Response of Parallel GLC Circuits with DC Excitation

Depending on the circuit constants G (or R), L, and C, the natural response of a parallel GLC cir-
cuit may be overdamped, critically damped or underdamped. In this section we will derive the total
response of a parallel GLC circuit which is excited by a DC source using the following example.

Example 1.3

For the circuit of Figure 1.11, i, (0) = 2 A and v¢(0) = 5 V. Compute and sketch v(t) for t>0.
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(D v(t) % =

10uy(t) A 320 |10H |1/640F

Figure 1.11. Circuit for Example 1.3

Solution:

We could write the integrodifferential equation that describes the given circuit, differentiate, and find
the roots of the characteristic equation from the homogeneous differential equation as we did in the
previous section. However, we will skip these steps and start with

v(t) = v¢ (1) + v, (1) (1.49)

and when steady-state conditions have been reached we will have v = v = L(di/dt) = 0, v; = 0
and v(t) = v, (t).
To find out whether the natural response is overdamped, critically damped, or oscillatory, we need to

compute the values of ap and ®, using (1.43) and the values of s; and s, using (1.44) or (1.45).
Then will use (1.406), or (1.47), or (1.48) as appropriate. For this example,

G 1 1

aP = —-— = = = 10
2C 2RC 2x32x1/640
or
2
ap = 100
and
LC 10x1/640
Then
Sl,SZ = —a,pi/\[aé—o)g = —10i6
or S; = -4 and S, = —-16. Therefore, the natural response is overdamped and from (1.46) we get
V(D= vy (t) = ke + ke = ke 4 ket (1.50)

and the constants k; and k, will be evaluated from the initial conditions.

From the initial condition v¢(0) = v(0) = 5V and (1.50) we get
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v(0) = kje®+kpe’ = 5

or
kl + k2 = 5 (1.51)
The second equation that is needed for the computation of the values of k; and Kk, is found from

. o d . .
other initial condition, that is, i,(0) = 2 A. Since ic(t) = CdltC - 3—‘{,% differentiate (1.50),

evaluate itat t = 07, and we equate it with this initial condition. Then,

dv_ dv

gi= ke e *'~16k,e ™ and g = 4k-1ek, (1.52)
t=0"
Also,att = 0"
1 + . + dv
Rv(O )+1i.(0 )+Cdt = 10
t=0
and solving for (;—\{ we get
t=0"
dv 10-5/32-2
= = — /227 2 - 502 1.53
dt| 1/640 (1.53)
t=0
Next, equating (1.52) with (1.53) we get
-4k,-16k, = 502
or

Simultaneous solution of (1.51) and (1.54) yields k; = 291/6, k, = —261/6, and by substitution
into (1.50) we get the total response as

V()= v, (1) = 222 ““—%e‘m _ %(291e‘4t—261e'16t) Y, (1.55)
Check with MATLAB:
syms t % Define symbolic variable t
y0=291*exp(—4*t)/6—261*exp(—16*t)/6; % Let solution v(t) = y0
y1=diff(y0) % Compute and display first derivative
vyl =

-194*exp(-4*t)+696*exp (-16*t)
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y2=diff(y0,2) % Compute and display second derivative

Y2 =
776%exp (-4*t)-11136*exp (-16*t)

y=y2/640+y1/32+y0/10 % Verify that (1.40) is satisfied

y:
0

The plot is shown in Figure 1.12 where we have used the following MATLAB code:

t=0: 0.01: 1; v1=(291./6).*(exp(—4.*1)); v2=—(261./6).* (exp(—16.*1));...
vT=v1+v2; plot(t,v1,t,v2,t,vT); grid; xlabel('t);...
ylabel('v1, v2, vT'); title(Response vT for Example 1.3

Response vT for Example 1.3

v, v, T

Figure 1.12. Plot for v(t) of Example 1.3

From the plot of Figure 1.12, we observe that v(t) attains its maximum value somewhere in the inter-

val 0.10 and 0.12 sec., and the maximum voltage is approximately 24 V. If we desire to compute pre-
cisely the maximum voltage and the exact time it occurs, we can find the derivative of (1.55), set it
equal to zero, and solve for t. Thus,

dvi _ 11646+ 4176e70 = 0 (1.56)
dt|,_,

Division of (1.56) by e ™ yiclds

—1164e"' + 4176 = 0
or
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KL 348
97
or
_ 3i8) _
12t = |n(97 = 1.2775
and
1.2775
t = thay = =2 = 0.106 s
max 12
By substitution into (1.55)
Vinax = %(291e‘4x°-1°6_261e‘16x°-1°5) = 2376 V (1.57)

A useful quantity, especially in electronic circuit analysis, is the settling time, denoted as ts, and it is
defined as the time required for the voltage to drop to 1% of its maximum value. Therefore, tg is an
indication of the time it takes for v(t) to damp-out, meaning to decrease the amplitude of v(t) to
approximately zero. For this example, 0.01 x 23.76 = 0.2376 V, and we can find tg by substitution
into (1.55). Then,

0.01v,,, = 0.2376 = é(291e’4t—261e’16t) (1.58)

and we need to solve for the time t. To simplify the computation, we neglect the second term inside
the parentheses of (1.58) since this component of the voltage damps out much faster than the other
component. This expression then simplifies to

1 -4t
0.2376 = (20le )

or
—4ts = In(0.005) = (-5.32)
or
ty = 1.33 s (1.59)
Example 1.4

For the circuit of Figure 1.13, i, (0) = 2 A and vc(0) = 5V, and the resistor is to be adjusted so

that the natural response will be critically damped. Compute and sketch v(t) for t>0.
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(D v(t) % =

10uy(t) A 10H [1/640F

Figure 1.13. Circuit for Example 1.4

Solution:

Since the natural response is to be critically damped, we must have ®g = 64 because the I and C val-

ues are the same as in the previous example. Please refer to (1.43). We must also have

_ G _ 1 _ 1
Op=—==—"—"—=@0y = [— =8
2C 2RC LC

or
1_g,2 _ 1
R 640 40
or R = 40 Q and thus s; = S, = —ap = -8 . The natural response will have the form
v(t)= v,y(t) = e_apt(kl+k2t) or v(t) = v, ()= e *'(k, + kyt) (1.60)

Using the initial condition V¢(0) = 5V and evaluating (1.60) at t = 0, we get

v(0)= e°(k, +k,0) = 5
or
k, =5 (1.61)
and (1.60) simplifies to
V()= e (5 +kyt) (1.62)

As before, we need to compute the derivative dv/dt in order to apply the second initial condition and

find the value of the constant K, .

We obtain the derivative using MATLAB as follows:
syms t k2; vO=exp(—8*t)*(5+k2*t); v1=diff(v0); % v1 is 1st derivative of vO

vl =
-8*exp (-8*t) * (5+k2*t) +exp (-8*t) *k2
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Then,
‘:'j—‘t’: —8e7°!(5 + kyt) + kg™
and
dv
it —-40 +k, (1.63)
Also, i¢c = C((jj—\tl or ?j_\t/ = IEC and
dv|  _ic(07) _ Is-ig(0) i (07) (1.64)
dt| C C '
t=0
or
dv|  _ ls=ve(0)/R-i(0) _ 10-5/40-2 _ 7.875 _ 1, (1.65)
dt|,_, C 1/640 1/640
Equating (1.63) with (1.65) and solving for k, we get
— 40 +k, = 5040
or
k, = 5080 (1.66)
and by substitution into (1.62), we obtain the total solution as
v(t)= e (5 + 5080t) V (1.67)
Check with MATLAB:
syms t; yO=exp(—8*t)*(5+5080*t); y1=diff(y0)% Compute 1st derivative
vyl =
-8*exp (-8*t) * (5+5080*t)+5080*exp (-8*t)
y2=diff(y0,2) % Compute 2nd derivative
y2 =
6d*exp (-8*t) * (5+5080*t) -81280*exp (-8*t)
y=y2/640+y1/40+y0/10 % Verify differential equation, see (1.40)
y =
0
The plot is shown in Figure 1.14 where we have used the following MATLAB code:
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t=0: 0.01: 1; vi=exp(—8.*1).*(5+5080.*t); plot(t,vt); grid; xlabel(t);...
ylabel(‘vt); title('Response vt for Example 1.4")

Fesponse vt for Exampla 1.4

Figure 1.14. Plot for v(t) of Example 1.4

By inspection of (1.67), we see thatatt = 0, v(t) = 5V and thus the second initial condition is sat-
istied. We can verify that the first initial condition is also satisfied by differentiation of (1.67). We can
also show that v(t) approaches zero as t approaches infinity with I’Hopital’s rule as follows:

limv(t) = lime (5 +5080t) = lim 8330800 _ jjp, (5 + S080L/dt _ 1;y 5080 _ o (1 gg)
to>ow t—>ow t—>ow e t—> o d(e )/dt t—>ow 8e

Example 1.5

For the circuit of Figure 1.15, i,(0) = 2 A and v¢(0) = 5 V. Compute and sketch v(t) for t>0.

(v g =

10uy(t) A 50Q |10H |1/640F

Figure 1.15. Circuit for Example 1.5

Solution:

This is the same circuit as the that of the two previous examples except that the resistance has been
increased to 50 Q. For this example,
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G 1 1
(x,p—_

= = = 64
2C 2RC 2x50x1/640

or
ap = 40.96
and as before,

2 1 1

wp = = = —— =64
LC ~ 10x1/640

2 2 . .
Also, g > ap. Therefore, the natural response is underdamped with natural frequency

O = Joo—0ab = /644096 = ./23.04 = 4.8

Since v; = 0, the total response is just the natural response. Then, from (1.48),

V()= v, (t) = ke " cos(wypt + ) = ke **cos(4.8t+ o) (1.69)
and the constants Kand ¢ will be evaluated from the initial conditions.

From the initial condition V¢(0) = v(0) = 5V and (1.69) we get

v(0) = ke’cos(0+¢) = 5
or

kcosp = 5 (1.70)

To evaluate the constants K and ¢ we differentiate (1.69), we evaluate it at t = 0, we write the equa-
tion which describes the circuit at t = 0", and we equate these two expressions. Using MATLAB we
get:

syms t k phi; yO=k*exp(—6.4*t)*cos(4.8*t+phi); y1 =diff(y0)

vyl =
-32/5*k*exp (-32/5*t) *cos (24/5*t+phi)-24/5*k*exp (-32/5*t) *sin (24/

5*t+phi)
pretty(y1)

- 32/5 k exp(- 32/5 t) cos(24/5 t + phi)
- 24/5 k exp(- 32/5 t) sin(24/5 t + phi)

Thus,

‘3—‘{ = —6.4ke**'cos (4.8t + @) — 4.8ke **'sin (4.8t + ¢) (1.71)
and
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dv

. = —6.4kcoso — 4.8ksine

t=0

By substitution of (1.70), the above expression simplifies to

Also, ic = C

or

_ ls=ve(0)/R—-i(0) _ 10-5/50-2

dv

= —32-4.8ksing (1.72)
dt}, _,
nd
dv|  _ic(07) _ Is-ip(0) i (0")
dy .~ C C
t=

Equating (1.72) with (1.73) we get

or

= 7.9x 640 = 5056 (1.73)
C 1/640
~32-4.8ksing = 5056
ksing = —1060 (1.74)

The phase angle ¢ can be found by dividing (1.74) by (1.70). Then,

or

kSing _ ang = 21980 _ 517
kcoso 5

¢ = tan‘l(—212) = -1.566 rads = —-89.73 deg

The value of the constant K is found from (1.70) as

or

kcos(-1.566) = 5

kz;:1042

c0s(-1.566)

and by substitution into (1.69), the total solution is

v(t)= 1042e**'cos(4.8t - 89.73°) (1.75)

The plot is shown in Figure 1.16 where we have used the following MATLAB code:
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t=0: 0.005: 1.5; vt=10.42.*exp(—6.4.*t).*cos(4.8.*t—89.73.*pi./180);...
plot(t,vt); grid; xlabel(t); ylabel('vt); title('Response v(t) for Example 1.5

Response vit) for Example 1.5

Figure 1.16. Plot for v(t) of Example 1.5

We can also use a spreadsheet to plot (1.75). From the columns of that spreadsheet we can read the
following maximum and minimum values and the times these occur.

t (sec) v (V)
Maximum 0.13 266.71
Minimum 0.79 —4.05

Alternately, we can find the maxima and minima by differentiating the response of (1.75) and setting
it equal to zero.

1.7 Response of Parallel GLC Circuits with AC Excitation

The total response of a parallel GLC (or RLC) circuit that is excited by a sinusoidal source also con-
sists of the natural and forced response components. The natural response will be overdamped, criti-
cally damped, or underdamped. The forced component will be a sinusoid of the same frequency as
that of the excitation, and since it represents the AC steady-state condition, we can use phasor analy-
sis to find the forced response. We will derive the total response of a parallel GLC (or RLC) circuit
which is excited by an AC source with the following example.

Example 1.6

For the circuit of Figure 1.17,1,(0) = 2 A and v¢(0) = 5 V. Compute and sketch v(t) for t>0.
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Dw 3§

Is 502 |10H |1/640 F

iy = 20sin(6400t + 90°)u,(t) A

Figure 1.17. Circuit for Example 1.6
Solution:

This is the same circuit as the previous example where the DC source has been replaced by an AC
source. The total response will consist of the natural response V,(t) which we already know from the

previous example, and the forced response V¢(t) which is the AC steady-state response, will be found

by phasor analysis.
The t-domain to jo -domain transformation yields

i.(t) = 20sin(6400t + 90°) = 20c0s6400t <> | = 20.£0°

The admittance Y is

3 . 1) |2 1)? -1 1
Y=G+jloC-—] = |G"+ | 0oC-—] Ltan |oC-—]/G
ol ol ol
where
1 1 1 1 1 1
G====—=, oC=6400x — =10 and — = =
R 50 * 640 oL ~ 6400 x 10 _ 64000
and thus
Y = (i)z ; (10- J-—)zztan_l((lo— _L_ /l) — 10.89.72°
50 64000 6400 50
Now, we find the phasor voltage V as
vl o _2020° _ 5 g9750
Y 10.89.72°
and jo -domain to t-domain transformation yields
V = 2/-89.72° < vi(t) = 2c0s(6400t — 89.72°)
The total solution is
V(1) = v (1) + ve(t) = ke **'cos (4.8t + @) + 2c0s (6400t — 89.72°) (1.76)
1-27 Circuit Analysis Il with MATLAB Applications

Orchard Publications



Chapter 1 Second Order Circuits

Now, we need to evaluate the constants K and ¢.

With the initial condition v¢(0) = 5V (1.76) becomes

v(0) = vc(0) = ke’cosg + 2cos(-89.72°) = 5

or
kcose ~ 5 a.77)

To make use of the second initial condition, we differentiate (1.76) using MATLAB as follows, and
then we evaluate itatt = 0.

syms t k phi; y0O=k*exp(—6.4*t)*cos(4.8*t+phi) +2*cos(6400*t—1.5688);
y1=diff(y0); % Differentiate v(t) of (1.76)

vyl =
-32/5*k*exp (-32/5*%t) *cos (24/5*t+phi)-24/5*k*exp (-32/5*t) *sin(24/
5*t+phi)-12800*sin (6400*t-1961/1250)

or
dv

i —6.4ke **'cos (4.8t + @) — 4.8ke **'sin (4.8t + @) — 12800sin (6400t — 1.5688)

and

dv

0 = —6.4kcose — 4.8ksinp — 12800sin(-1.5688) = —6.4kcose —4.8ksing + 12800  (1.78)
t=

0
With (1.77) we get

dv

s = —32 - 4.8ksing + 12800 ~ — 4.8ksinp + 12832 (1.79)

t=0

i = cdv . dv_ic
Also, IC—Cdt or dt—Cand

dv|  _ ic(0) _ is(0)-ig(07) ~i(0%)
dt| .~ C C
t=0
or
dv| _ is0)-Ve(0)/R=i(0) _ 20-5/50-2 _ 11456 (1.80)
dt|,_, C 1/640

Equating (1.79) with (1.80) and solving for k we get
—4.8ksine + 12832 = 11456
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or
ksing = 287 (1.81)

Then with (1.77) and (1.81),

ksing _ yang = 287 _ 574
kcoso 5

or
¢ = 153 rad = 89°

The value of the constant K is found from (1.77), that is,
k = 5/(cos89°) = 279.4
By substitution into (1.76), we obtain the total solution as
v(t) = 279.4e **'cos (4.8t + 89°) + 2c0s(6400t — 89.72°) (1.82)
With MATLAB we get the plot shown in Figure 1.18.

Responsea v(t) for Example 1.6
10 T T T T T

- i i i i i
o

0.5 1 1.5 2 25 3

Figure 1.18. Plot for v(t) of Example 1.6

1.8 Other Second Order Circuits

Second order circuits are not restricted to series RLC and parallel GLC circuits. Other second order
circuits include amplifiers and filters. It is beyond the scope of this text to analyze such circuits in
detail. In this section we will use the following example to illustrate the transient analysis of a second
order active low-pass filter.
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Example 1.7

The circuit of Figure 1.19 a known as a Multiple Feed Back (MIFB) active low-pass filter. For this cir-
cuit, the initial conditions are V¢; = V¢, = 0. Compute and sketch v (1) for t>0.

e
R,S40KQ 217"

T~
Ry 50 KQ
o AAAA——AAA—

f 200KQ |1 Ry 2 —

Vin PN
| C1 | 25nF

V(1) = 6.25c056280tu,(t)

Figure 1.19. Circuit for Example 1.7

Solution:
At node v, :
V-V d \' Vv
L tin, o Tout \VitVe _ g 4o (1.83)
R, dt R, Rs
At node v,:
dv
Vo, =V, _ out
T (1.84)
We observe that v, = 0 (virtual ground).
Collecting like terms and rearranging (1.83) and (1.84) we get
1 1 1 dv; 1 1
( R_1+R_2+R_3)V1+Cl—d-ti_ﬁ—zvout = ﬁzvin (185)
and
v, = -R,C,Nou (1.86)
dt
Differentiation of (1.86) yields
dVl dvzou[
—1 - _R.Cc,— 1.87
dt 3v2 dt2 ( )
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and by substitution of given numerical values into (1.85) through (1.87), we get

1 1 1 ) odv; 1 1
+ + Vi+25x10° — - ————v —V;
(2><105 4x10* 5x10"/ dt 4% 10° 0 T 5x10°
or
d
(0.05 x 107%)v, + 25 x 10‘9 —(0.25x 10y, = (05x 1070y, (1.88)
dv
= 5x10™ d—‘;‘“ (1.89)
dv, L dPVour
T = -5x10 ? (1.90)
Next, substitution of (1.89) and (1.90) into (1.88) yields
d OUt OUt
0.05x 10" ( 5x 107 gt ) +25x%x10° ( 5x10° ) (1.91)
dt?
—(0.25x 10, , = (0.5 x 107°)v;
out n
or
d’v dv,
~125x 107 - — 34 -0.25x 107 —3¥ - (025 x 10 v, = 107y,
t?
Division by -125 x 107" yields
d’v 3 WVout 6 5
dtg“t +2x10° =25 +2x 10V, = (<16 x 10°)v;,
or
d?v t 3 dVout 6 6
2 +2x10° == +2x 10"V, = ~10°c0s6280t (1.92)
dt
We use MATLAB to find the roots of the characteristic equation of (1.92).
syms s; yO=solve('s ~2+2*10 "~ 3*s+2*10 " 6')
y0 =
[ -1000+1000%*1i]
[ -1000-1000%*1]
that is,
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51,5, = —a.£jp = —1000 +j1000 = 1000(-1 +j1)

We cannot classify the given circuit as series or parallel and therefore, we should not use the damping
ratio ag or ap . Instead, for the natural response v, (t) we will use the general expression

V()= Ae™ +Be? = e "' (k,cosPt + k,sinpt) (1.93)
where
1,5, = —o+ jB = —1000 £ j1000
Therefore, the natural response is oscillatory and has the form

v, (1) = e (k,c0s1000t + k,sin1000t) (1.94)

Since the right side of (1.92) is a sinusoid, the forced response has the form

V¢ (1) = k3056280t + k,5in6280t (1.95)

Of course, for the derivation of the forced response we could use phasor analysis but we must first
derive an expression for the impedance or admittance because the expressions we’ve used eatlier are
valid for series and parallel circuits only.

The coefficients k; and k, will be found by substitution of (1.95) into (1.92) and then by equating
like terms. Using MATLAB we get:

syms t k3 k4; yO=k3*cos(6280*t) +k4*sin(6280*t); y1=diff(y0)

vyl =
-6280*k3*sin (6280*t)+6280*k4*cos (6280*t)

y2=diff(y0,2)

Y2 =
-39438400*k3*cos (6280*t)-39438400*k4*sin (6280*t)

y=y2+2*%10 "~ 3*y1+2%10 "~ 6*y0

y =
-37438400*k3*cos (6280*t)-37438400*k4*sin(6280*t) -
12560000*k3*sin(6280*t)+12560000*k4*cos (6280*t)

Equating like terms with (1.92) we get

(— 37438400 - k, + 12560000 - k,)c0os6280t = —10°cos6280t

) (1.96)
(- 12560000 - k; — 37438400 - k,)sin6280t = 0
Simultaneous solution of the equations of (1.96) is done with MATLAB.
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syms k3 k4; eq1=-37438400*k3+12560000*k4+10 " 6;...
eq2=-12560000*k3-37438400*k4 +0; y=solve(eq1,eq2)
y =

k3: [1x1l sym]

kd: [1x1 sym]

y.k3

ans =
0.0240

y.k4

ans =
-0.0081

that is, k3 = 0.024 and k, = —0.008. Then, by substitution into (1.95)
Vi (t) = 0.024c0s6280t-0.0085sin6280t (1.97)
The total response is

Vout(t) = V() +vg (1) = e (k,c0s1000t + k,5in 1000t) (1.98)
+0.024.c0s6280t-0.0085in 6280t

We will use the initial conditions V¢; = Vg, = 0 to evaluate k; and k,. We observe that Ve, = Vg,

and at t = 0 relation (1.98) becomes
Vout(0) = €”(k,c0s0 + 0) +0.024¢0s0-0 = 0
or k; = -0.024 and thus (1.98) simplifies to

Vout(t) = €7%(~0.024c0s1000t + k,in 1000t) (1.99)
+0.024 c0s6280t—0.0085in 6280t

To evaluate the constant K,, we make use of the initial condition v¢;(0) = 0. We observe that

Ve = V; and by KCL at node v; we have:

dv
V-V, out
R; +C, gt 0
or
v,—-0 10 aVout
5 x 10* dt
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or

dv
4 WVout
=-5x10 at

and since v;(0) = v,(0) = 0, it follows that

dv
—out -~ (1.100)
dt |,_,

The last step in finding the constant K, is to differentiate (1.99), evaluate it at t = 0, and equate it
with (1.100). This is done with MATLAB as follows:

yO0=exp(—1000*t)*(—0.024*cos(1000*t) + k2*sin(1000*t))...
+0.024*cos(6280*t)—0.008*sin(6280*t);
y1=diff(y0)

vyl =

-1000*exp (-1000*t) * (-3/125*cos (1000*t)+k2*sin(1000*t)) +exp (-
1000*t) *(24*sin (1000*t)+1000*k2*cos (1000*t))-3768/
25*sin (6280*t)-1256/25*cos (6280*t)

or

dv 3
ou 1000t
dt = —1000e" (125 €0s1000t + k,sin 1000t)
e %"(245sin 1000t + 1000k, cos 1000t)
3768 1256
-5 ——sin(6280t) - 55 €0s 6280t
and
dv _3
“Yout 1256
- 1000( + 1000k 1.101
dt |, _, 12 2725 (1.101)

Simplifying and equating (1.100) with (1.101) we get

1000k, — 26.24 = 0
ot
k, = 0.026
and by substitution into (1.99),

(t) = e'(~0.024cos1000t + 0.026 5in 1000t) (1.102)
+0.024c0s 6280t-0.0085in 6280t

OU'[
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We use Excel to sketch v (t). In Column A we enter several values of time t and in Column B

Vout(D) . The plot is shown in Figure 1.20.

0.03

AN
UV

Voltage (V)

-0.01

-0.02

-0.03
0.000 0.002 0.004 0.006 0.008

Time (s)

Figure 1.20. Plot for Example 1.7
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1.9 Summary

Circuits that contain energy storing devices can be described by integrodifferential equations and
upon differentiation can be simplified to differential equations with constant coefficients.

A second order circuit contains two energy storing devices. Thus, an RLC circuit is a second order
circuit.

The total response is the summation of the natural and forced responses.

If the differential equation describing a series RLC circuit that is excited by a constant (DC) volt-
age source is written in terms of the current, the forced response is zero and thus the total
response is just the natural response.

If the differential equation describing a parallel RLC circuit that is excited by a constant (DC) cur-
rent source is written in terms of the voltage, the forced response is zero and thus the total
response is just the natural response.

If a circuit is excited by a sinusoidal (AC) source, the forced response is never zero.

The natural response of a second order circuit may be overdamped, critically damped, or under-
damped depending on the values of the circuit constants.

For a series RLLC circuit, the roots S; and S, are found from

2 2 . 2 2

S, S, = —asi,\/as—ﬁ)o = —(XsiBS if Qg > Mg
/[ 2 2 - 2 2

Sl, 52 = _asi_ (DO_(X’S = —asi_(l)ns lf (1)0>as

R 1 [ 2 2 [ 2 2
0°s=i Wy = — Bs = Jag -y Ops = O —0Og

or

where

2 2 . . .
If a5 > mp, the roots S; and S, are real, negative, and unequal. This results in the overdamped nat-
ural response and has the form

S t S,t
i (1) = ke " +kpe”

2 2 . . . .
If as = g, the roots S; and S, are real, negative, and equal. This results in the critically damped
natural response and has the form

i (1) = e "(ky + kb
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2 2 : .
If wy>as, the roots s; and S, are complex conjugates. This is known as the underdamped or
oscillatory natural response and has the form

R —0ogt R —ot
i(t) = e °(kicoso,t+KySinm,t) = ke °(COS®,t+¢)

e Tor a parallel GLC circuit, the roots s; and s, are found from

2 2 . 2 2

$1,S, = —0p*t Jap—wy = —aptPp If oap>wmg

[2 2 . 2 2

Sl,SZ =_api mo_ap =_api(,0np If 0)0>OLP
_ G _ 1 _ 2 2 _ 2 2
ap—i Wy = — Bp = Jop — g Opp = A/ ®o—Op

2 2 . . .
If ap > o, the roots s; and s, are real, negative, and unequal. This results in the overdamped nat-

or

where

ural response and has the form
t

Slt 52
Vn(t) = kle + kze
If oclz;, = ), the roots $; and s, are real, negative, and equal. This results in the critically damped
natural response and has the form
—opt
Vo) = e 7 (Ky +kyt)
If 05> a|23 , the roots s; and s, are complex conjugates. This results in the underdamped or oscil-

latory natural response and has the form
—apt —apt
V() = e 7 (Kycoso,pt+KySinm pt) = kse " (COS®pt+ @)

e If a second order circuit is neither series nor parallel, the natural response if found from

syt s,t
Y, = ke +kye

or
511
Yo = (ki +kt)e
or
y= € “(kscosBt +k,sinpt)= e “'kscos(Bt + @)

depending on the roots of the characteristic equation being real and unequal, real and equal, or
complex conjugates respectively.
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1.10 Exercises

1. For the circuit of Figure 1.21, it is known that v¢(0 ) = 0 and i, (0 ) = 0. Compute and sketch
ve(t) and i (t) for t>0.

i (1) —

100u,(t) V 8 mF|

Figure 1.21. Circuit for Exercise 1

2. For the circuit of Figure 1.22, it is known that v¢(0 ) = 0 and i (0 ) = 0. Compute and sketch
ve(t) and i (t) for t>0.

(1) —

== Vc(b)

100u,(t) V 21.83 mF

Figure 1.22. Circuit for Exercise 2

3. In the circuit of Figure 1.23, the switch S has been closed for a very long time and opens at
t = 0. Compute V¢(t) for t>0.

+
@) 400 O = Ve®
100 v 1/120 F

Figure 1.23. Circuit for Exercise 3
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4. In the circuit of Figure 1.24, the switch S has been closed for a very long time and opensatt = 0.
Compute V¢(t) for t>0.

(D 400 Q a { Ve(®

vg = (100cost)u,(t) V 1/120 F

Figure 1.24. Circuit for Exercise 4

5. In the circuit of Figure 1.25, the switch S has been in position A for closed for a very long time
and it is placed in position B at t = 0. Find the value of R that will cause the circuit to become

critically damped and then compute V¢ (t) and i (t) for t>0

3 t=0 R 6 Q
AR VWAV
B 3H Lib)

Ve(t) %

(+)
N
o)
B
T+

12V 1/12

Figure 1.25. Circuit for Exercise 5

0. In the circuit of Figure 1.26, the switch S has been closed for a very long time and opens at t = 0.
Compute Vup(t) for t>0.

12V

Figure 1.26. Circuit for Exercise 6
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1.11 Solutions to Exercises
Dear Reader:
The remaining pages on this chapter contain the solutions to the exercises.

You must, for your benefit, make an honest effort to find the solutions to the exercises without first
looking at the solutions that follow. It is recommended that first you go through and work out those
you feel that you know. For the exercises that you are uncertain, review this chapter and try again.
Refer to the solutions as a last resort and rework those exercises at a later date.

You should follow this practice with the rest of the exercises of this book.
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1.
iL(t) —
10Q 02H
+
i‘) . T~ Ve(D)
100u,(t) V ! 8 mF’
di
R|+L-—+VC=1OO t>0
dt
dve
and since i = i¢g = CW the above becomes
d 2
RC—= dt +LC—= +ve = 100
d’ve ,RAVe 1. _ 100
g Ldt "LCC LC
d’ve , 10 dve 1 Ve = —100
d? 02dt 02x8x10° 02x8x107°
2
dve
dVe | 50%e | 625y, = 62500
dt dt

From the characteristic equation

s’ +50s + 625 = 0
we get S; = S, = —25 (critical damping) and ag = R/2L = 25
The total solution is

—ogt
Ve(t) = VgtV = 100+e °

(K; + Kot) = 100 + e (ky + kot) (1)

With the first initial condition VC(O_) = 0 the above expression becomes 0 = 100 + eo(kl +0) or

k; = =100 and by substitution into (1) we get
Ve(t) = 100 + e (k,t —100) (2)

To evaluate k, we make use of the second initial condition i, (0 ) =

0 and since i, = ic, and

i = ic = C(dv¢)/(dt), we differentiate (2) using the following MATLAB code:
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syms t k2
v0=100+exp(—25*t)*(k2*t—100); v1 =diff(v0)

vl =

-25*%exp (-25*t) * (k2*t-100) +exp (-25*t) *k2

Thus,
dd—"tc = kye '~ 25¢ (K, t - 100)
and
Vel _y, 42500 (3)
dt | _,
Also, dve =l _ L ondact=0
dt C C
dve iL(0)
el - =0 @
dt|_, ~¢C @

From (3) and (4) k, + 2500 = 0 or k, = —2500 and by substitution into (2)
ve(t) = 100-e*°'(2500t + 100) 5)

We find i (t) = ic(t) by differentiating (5) and multiplication by C. Using MATLAB we get:

syms t
C=8*10"(-3);
i0=C*(100-exp(~25*t)*(100+2500*t)); iL=diff(i0)

iL =
1/5%exp (-25%t) * (100+2500%t) -20*exp (-25*t)
Thus,

i (t) = ic(t) = 0.2e7°°'(100 + 2500t) — 206>

The plots for v¢(t) and i (t) are shown on the next page.
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t

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115

ve(t)
0
0.7191
2.6499
5.4977
9.0204
13.02
17.336
21.838
26.424
31.011
35.536
39.951
44.217
48.311
52.212
55.91
59.399
62.677
65.745
68.608
71.27
73.741
76.027
78.139

i(t)

2.206
3.894
5.155
6.065
6.691
7.085
7.295
7.358
7.305
7.163
6.953
6.694

6.4
6.082
5.751
5.413
5.076
4.743
4.418
4.104
3.803
3.516
3.244

Volts

100

ve(®)

80

60

40 1

20 A

0.0

0.1

0.2 0.3
Time

0.4

0.5

Amps
N

iL(t)

Time

0.4

0.5

100u,(t) V

©,

4 Q

i (t) —

5H

+
== Ve(b)

21.83 mF

The general form of the differential equation that describes this circuit is same as in Exercise 1,

that is,

d’ve , RdVe

2
dve

dt’

+0.8

1

g2 Ldt ‘Lc’e”

dvc

dt

100
LC

t>0

+9.16v. = 916

From the characteristic equation s’ +0.85+9.16 = 0 and the MATLAB code below
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s=[1 0.8 9.16]; roots(s)

ans =

-0.4000 + 3.00001

-0.4000 - 3.00001
we find that s; = —0.4+j3 and s, = — 0.4 —j3. Therefore, the total solution is

Ve(t) = Vg + Vg = 100+ke_astcos(mnst+(p)
where
as = R/2L = 04
and
Ope = Jos—al = J1/LC-R?/4L% = /9.16-0.16 = 3

Thus

5>

100 + ke **'cos (3t +¢) (1)

Ve(t)

and with the initial condition v¢(0 ) = 0 we get 0 = 100 + kcos(0 + @) or
kcose = —-100 (2)
To evaluate k and ¢ we differentiate (1) with MATLAB and evaluate itatt = 0.
symst k phi; vO=100+k*exp(—0.4*t)*cos(3*t+phi); v1=diff(v0)
vl =
-2/5*k*exp(-2/5*t) *cos (3*t+phi)-3*k*exp(-2/5*t) *sin(3*t+phi)
Thus,

‘LL;: = —0.4ke**'cos(3t+ @) — 3ke **'sin(3t + @)
dve| —0.4kcos — 3ksing
dt |, _,
and with (2)
Vel _ 40_3ksing (3)
dt |,_,
AISO, d—VC = I—C = I—L andat'[ = O
dt c C
dve iL(0)
—_— = —_— = 0 4
atl_, C )
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From (3) and (4)
3ksing = 40 (5)
and from (2) and (5)

3ksing _ _40
kcosp  -100
3tanp = -0.4

¢ = tan}(-0.4/3) = -0.1326 rad = -7.6°
The value of k can be found from either (2) or (5). From (2)

kcos(-0.1236) = —100

- — 10 __ _ 1008
c0s(-0.1236)

and by substitution into (1)
ve(t) = 100-100.8e **'cos(3t—7.6°) (6)
Since i (1) = ic(t) = C(dve/dt), we use MATLAB to differentiate (6).

syms t; vC=100—100.8*exp(—0.4*t)*cos(3*t-0.1326); C=0.02183; iL=C*diff(vC)

iL =
137529/156250%exp (-2/5%t) *cos (3*t-663/5000) +412587/62500*exp (-
2/5%t)*sin (3*t-663/5000)

137529/156250, 412587/62500

ans =
0.8802

ans =
6.6014

i (t) = 0.88e **cos(3t-7.6°) + 6.6e "*'sin(3t—7.6°)

The plots for vc(t) and i (t) are shown on the next page.
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0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110
0.120
0.130
0.140
0.150
0.160

ve(t)
-0.014
0.0313
0.1677

0.394
0.7094
1.1129
1.6034
2.1798
2.8407
3.5851
4.4115
5.3185
6.3046
7.3684
8.5082
9.7224
11.009

i(t)

-0.002

0.198
0.395
0.591
0.784
0.975
1.164

1.35
1.534
1.714
1.892
2.066
2.238
2.405

2.57

2.73
2.887

150

50

ve()

-50 (l)

w

Att = 0 the circuit is as shown below.

©,

100 V

_,v\/\/\/__m
20H . —

_—

400 Q

+ —
—=Vc(0 )

1/120 F

At this time the inductor behaves as a short and the capacitor as an open. Then,

and this establishes the first initial condition as I,

Ve(0 ) = Vygo o = 400 x i (0)

i,(0 ) = 100/(100 +400) = I, = 0.2 A

0.2 A. Also,

400x 0.2 = V, = 80 V

and this establishes the first initial condition as V, = 80 V.

For t> 0 the circuit is as shown below.
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1000 20H

© A velt)

100 V 1/120 F

The general form of the differential equation that describes this circuit is same as in Exercise 1,
that is,

2
dve Rdvc+iv - 100 t>0

g2 Ldt "LC°” LC
2
d
De , 5% 6v, = 600
dt dt

. . 2
From the characteristic equation s +5s+6 = 0 we find that ; = -2 and S, = -3 and the total

response for the capacitor voltage is

2

Ve(t) = Vg + Vg, = 100+ ke™ +kye? = 100 + ke + ket (1)

Using the initial condition V, = 80 V we get
Ve(0) = V, =80V = 100 + k,e° + k,e°

or

ki+k, = =20 (2)

Differentiation of (1) and evaluation at t = 0 yields

dvc

— =-2k,-3k, (3

at|  ~ 23k O

Also c—ixg—i—c—i—kandatt—o
dt C C B
- 0_

dvel _WO) _ 02 _,, @
dt |, _, C 1/120

Equating (3) and (4) we get
-2k, -3k, = 24 (5)

and simultaneous solution of (2) and (5) yields k; = —36 and k, = 16.
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By substitution into (1) we find the total solution as

Ve(t) = Vgp+ Vg, = 100-36e ' + 166"

4,
_,\/W\/__m .
100 © 20 H S 1
t=0

Vs

" |+
(—) 400 O A= Vel®

1/120 F
vg = (100cost)uy(t) V

This is the same circuit as in Exercise 3 where the DC voltage source has been replaced by an AC

source that is being applied at t = 0". No initial conditions were given so we will assume that

i,(0 ) =0 and VC(O_) = 0. Also, the circuit constants are the same and thus the natural

-2t -3t
response has the form v, = k;e™™ + ke ™.

We will find the forced (steady-state) response using phasor circuit analysis where © = 1,
joL =j20, -j/oC = —j120, and 100cost <> 100£0°. The phasor circuit is shown below.

—AAAN T
100Q j20Q
Vs
. +
(+) -j120 @ == V.
Vs = 100£0° V
Using the voltage division expression we get
_ —j120 o_ _—j120 o _ 120/-90° x 100£0° _ _qaEo
Ve = 100+j20—j12010040 B 100+j10010040 B 100./2 /45° = 60./2.2-135

and in the t-domain v ¢ = 60./2cos(t— 135°). Therefore, the total response is
Ve(t) = 60./2c0s(t—135°) + ke *' + ke ™ (1)

Using the initial condition ve(0 ) = 0 and (1) we get
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V(0 ) = 0 = 60./2c0s(-135°) + k, +k,

and since c0s(~135°) = —./2/2 the above expression reduces to

Differentiating (1) we get

%‘: = 60./2sin(t + 45°) + —2k,e *'~3k, e
and
dVe| 60 /2sin(45°)-2k,—3k,
at |, _,
Vel _ go_ok, -3k, (3)
dt |, _,
dve  ic i
AISO, H = E = 6 andatt =0
vl _ @)
dt|_, ¢

Equating (3) and (4) we get
2k, + 3k, = 60 (5)

Simultaneous solution of (2) and (5) yields k; = 120 and k, = —60. Then, by substitution into (1)

ve(t) = 60./2c0s(t—135°) + 120e *'-60e ™"

5.
3 t=0 R 6 Q
MWW L VAV
B 3H Lilt)
® o 3
- 20 = Ve(b)
12 V 1/12 F |~
We must first find the value of R before we can establish initial conditions for i (0 ) = 0 and
Ve(0 ) = 0. The condition for critical damping is ,/ap — o = 0 where ap = G/2C = 1/2R'C
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2 2 ;)2_ 2 1 -
and wg = 1/LC. Then, ap = (ZR'x1/12 =W = EVEY where R' = R+ 2 Q. Therefore,

12 )2_ ( 6 )2_ ) B ) )
(2(R+2) =4, or R+ 2 =4,0or(R+2)" =36/4 =9,o0rR+2 =3 andthusR = 1.

Att = 0 the circuit is as shown below.

6 Q
— NN _
30 10 | F Veo )
! i.(0 )
+
<—> /l\_Vc(O )
12V |
|
|
From the circuit above
- 6
VC(O ) =Vgq = mle =72V
and
. v 7.2
| O = ﬂ = — = 12 A
(o) =2 L
Att = 0 the circuit is as shown below.
Since the circuit is critically damped, the solution has the form
V() = & ' (ky + kot)
_ 1 2) _
where op = (2(1+2)><1/1 = 2 and thus
Ve(t) = e (ky+kot) (1)
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With the initial condition v¢(0 ) = 7.2 V relation (1) becomes 7.2 = e’(k,+0) or k, = 7.2V
and (1) simplifies to
-2t

ve(t) = e " (7.2+kyt) (2
Differentiating (2) we get

Ve _ e 26?72 + kyt)
dt
and
Vel L ,_2(7240) = k,—144 (3)
at |, _,
Also,dl; = !¢ andatt = 0
dt  C
dve ic0) _ 0
_— = = - = O 4
dt|_,~ c ~C )

because at t = 0 the capacitor is an open circuit.

Equating (3) and (4) we get k, —14.4 = 0 or k, = 14.4 and by substitution into (2)

-2t -2t

Ve(t) = e24(7.2+ 14.41) = 7.2 (2t +1)
We find i (t) from ig(t)+ic(t)+i () = 0 or i (t) = —ic(t) —ix(t) where ic(t) = C(dve/dt)

and ig(t) = Va(t)/(1+2) = ve(t)/3. Then,

i(t) = - 1—12(—14.4e’2t(2t +1)+ 14477 - Lé?e’Zt(2t +1) = —2.4e7%(t+1)
6.
Att = 0 the circuit is as shown below where i, (0 ) = 12/2 = 6 A, ve(0 ) = 12 V, and thus
the initial conditions have been established.
2Q 40
()
z 1 B
12V _+ -~
TEAM =)
i.(0) 1/4 F
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For t > 0 the circuit is as shown below.

[—iL(U

R,>20 R,S40Q
B
+
LE2ZH 14 F == vt
C

For this circuit

. di
(R1+R2)|L+vc+Ld—ItL -0

and with i, = i = C(dvc./dt) the above relation can be written as

dve d2vC
(R + RZ)CW + LC? +ve =0

d’ve (Ry+Rpdve 1
2 L at‘Lce”?

2
dv
dVe 3D oy =g
dt2 dt
The characteristic equation of the last expression above yields s; = -1 and s, = -2 and thus

ve(t) = ket ke (1)

With the initial condition v¢(0 ) = 12 V and (1) we get
ki+k, = 12 (2)

Differentiating (1) we get

dv _ -
d_tc = —k,e'-2k, e

and
dvc
Del  _ k. 2k, 3
at |, 1—2k; (3)

Also dve _ le _ i—Lamdatt—O

dt  C C -
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dv¢ i.(0) 6
< = = — =24 4
C 1/4 )

From (3) and (4)
—k;—2k, = 24 (5)

and from (2) and (5) k; = 48 and k, = —36. By substitution into (1) we get

ve(t) = 48e'-36e™"

Then,
di d’i
Vag = VL(D) = ve(t) = L = ve(t) = Lcﬁ—vc(t)
2
= 0.5( d—2(48e“—36 e‘z‘)) —48e'-36e"
dt
= 0.5(48e'-144¢e°") — 48e'-36e™
= —24e7'-108e % = —24(e " + 4577
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NOTES
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Chapter 2

Resonance

his chapter defines series and parallel resonance. The quality factor Q is then defined in terms
of the series and parallel resonant frequencies. The half-power frequencies and bandwidth are
also defined in terms of the resonant frequency.

2.1 Series Resonance

Consider phasor series RLC circuit of Figure 2.1.

Figure 2.1. Series RLC phasor circuit

The impedance Z is

Impedance:Z:%:\%:R+ij+ﬁ%: R+j(mL—i) (2.1)
or
Z = JR?+ (oL - 1/0C)’tan Yol - 1/0C)/R (2.2)
Therefore, the magnitude and phase angle of the impedance are:
1Z] = JR? + (oL - 1/0C)? (2.3)
and
0, = tan (oL -1/0C)/R (2.4)
The components of |Z| are shown on the plot of Figure 2.2.
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Series Resonance Curves

Magnitude of Impedance
o
b4

ol-1/wC

Radian Frequency

Figure 2.2. The components of |Z| in a series RLC circuit

The frequency at which the capacitive reactance Xo = 1/0C and the inductive reactance X, = ol
are equal is called the resonant frequency. The resonant frequency is denoted as o, or fy and these

can be expressed in terms of the inductance L and capacitance C by equating the reactances, that is,

1
"0 7 5iC
2 _ 1
1
0, = — (2.5)
0 ,\/E:
and
fy = —= (2.6)

- ZRR

We observe that at resonance Z; = R where Z; denotes the impedance value at resonance, and

0, = 0. In our subsequent discussion the subscript zero will be used to indicate that the circuit vari-

ables are at resonance.

Example 2.1

For the circuit shown in Figure 2.3, compute |y, oy, C, Vrg, |V o|,and [V¢g|. Then, draw a phasor
diagram showing Vg, [V ¢| , and |Vl .
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R=120Q jX =j10Q

AR

Figure 2.3. Circuit for Example 2.1

Solution:

At resonance,

XL = -iXc
and thus
Z,=R=120Q
Then,
I, = 222V _ 100 A
1.2 Q
Since

Xio = ool =10Q
it follows that

L 02x10
Therefore,
1
X =X =10 = —
co LO oC
or
c=—1 __ouF
10 x 50000
Now,
Vgo = Rl = 1.2x 100 = 120 V
Vi o| = @oLly = 50000 x 0.2 x 10~ x 100 = 1000
and
Ve = —2=lg = L 100 = 1000V
©C " 50000 x 2 x 10
The phasor diagram showing Vg, [V o| , and [V¢| is shown in Figure 2.4.
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VLol = 1000V

IS

> Vgo =120V

Ny

|Vcol = ]000 V
Figure 2.4. Phasor diagram for Example 2.1

Figure 2.4 reveals that |VLO‘ = |VC0| = 1000 V and these voltages are much higher than the applied

voltage of 120 V. This illustrates the useful property of resonant circuits to develop high voltages
across capacitors and inductors.

2.2 Quality Factor Qqg in Series Resonance

The quality factor  is an important parameter in resonant circuits. Its definition is derived from the
following relations:

At resonance,

1
L= —
@0 (DOC
and
v
07 R
Then
V oL
Vi = oglly = QOL% = =1V (2.7)
and

B S U - I
Ved = coOCIO T 0C R T mORC|VS| (28)

At series resonance the left sides of (2.7) and (2.8) are equal and therefore,

oyl 1

R o RC

*  We denote the quality factor for series resonant circuits as Q, , and the quality factor for parallel resonant cir-
cuits as Qgp .
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Then, by definition

Que = oL _ 1
0S R oy RC (2.9)

Quality Factor at Series Resonance

In a practical circuit, the resistance R in the definition of Qyg above, represents the resistance of the
inductor and thus the quality factor Qg is a measure of the energy storage property of the inductance
L in relation to the energy dissipation property of the resistance R of that inductance.

In terms of Qg, the magnitude of the voltages across the inductor and capacitor are

IViol = [Veol = Qos|V (2.10)

and therefore, we say that there is a “resonant” rise in the voltage across the reactive devices and it is
equal to the Qg times the applied voltage. Thus in Example 2.1,

Vil _ Vel _ 1000 _ 25
V| V| 120 3

The quality factor Q is also a measure of frequency selectivity. Thus, we say that a circuit with a high
Q has a high selectivity, whereas a low Q circuit has low selectivity. The high frequency selectivity is
more desirable in parallel circuits as we will see in the next section.

Figure 2.5 shows the relative response versus o for Q = 25,50, and 100 where we observe that
highest Q provides the best frequency selectivity, i.e., higher rejection of signal components outside
the bandwidth BW = o, — o, which is the difference in the 3 dB frequencies.

Selectivity Curves for Different Qs

—

=
N
|

Q=25

[y
o
I

o
o]
I

Q=50

Q=100

©
N
L

Relative Response (gain)
o o
N o

o
o

W71 Wg O,

o (r/s)

Figure 2.5. Selectivity curves with Q = 25,50, and 100
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We will see later that

Q:

)

_ Resonant Frequency (2.11)

Wy — 0y

Bandwidth

We also observe from (2.9) that selectivity depends on R and this dependence is shown on the plot

of Figure 2.6.

Relative Response

High and Low Q Curves
Dependence on R

<« R

N

2R

(O]

Figure 2.6. Selectivity curves with different values of R

If we keep one reactive device, say L, constant while varying C, the relative response “shifts” as

shown in Figure 2.7, but the general shape does not change.

Relative Response

Resonance at Constant L and Variable C

()

Figure 2.7. Relative response with constant L and variable C

2.3 Parallel Resonance

Parallel resonance (antiresonance) applies to patallel circuits such as that shown in Figure 2.8.

2-6
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H |

C
veSle LEIL 7<IC
|

&

Figure 2.8. Parallel GLC circuit for defining parallel resonance

The admittance Y of this circuit is given by

Phasor Current _ I

Admittance = Y = ==
Phasor Voltage V

— G+joC+—1 = G+j(mc—i)
jolL ol

or

Y = J62+ (0C—1/0L)’ LtanH(oC-1/0L)/G (2.12)

Therefore, the magnitude and phase angle of the admittance Y are:

Wl = G2+ (oC = 1/(0L))? (2.13)
and
0y = tan_lfw2 (2.14)

The frequency at which the inductive susceptance B, = 1/wL and the capacitive susceptance
Bc = oC are equal is, again, called the resonant frequency and it is also denoted as w,. We can find

o, in terms of L and C as before.

Since
1
wOC—@
then,
1
" Tl
and
1
Oy = —— (2.15)
° JLC

as before. The components of |Y| are shown on the plot of Figure 2.2.
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Parallel Resonance Curves

-1/ oL

Magnitude of Admittance

®»C-1/oL

Radian Frequency

Figure 2.9. The components of |Y| in a parallel RLC circuit

We observe that at this parallel resonant frequency,

Yo, = G (2.16)
and

By =0 (2.17)
Example 2.2
For the circuit of Figure 2.10, ig(t) = 10c0s5000t mA. Compute ig (1), i (t), and i (1).

|

i (t)

—

ic(t)

pnF

Ny L(t) Pan ;L
4

0.01Q° |10mH

| ~—

Figure 2.10. Circuit for Example 2.2

Solution:

The capacitive and inductive susceptances are
Be = ©C = 5000 x4 x10° = 002 Q"

and
1 1

oL 5000 x10x 10
and sinceB| = B, the given circuit operates at parallel resonance with o, = 5000 rad/s. Then,

B, = = 0020
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Y, =G =001Q"
and
ig(t) = ig(t) = 10cos5000t mA

Next, to compute i, (t) and i (1), we must first find vy(t). For this example,

ig (D) _ 10c0s5000t mA
G 001 Q"

= 1000c0s5000t mV = cos5000t V

Vo(t) =

In phasor form,
Vo(t) = cos5000t V<V, = 1.£0°

Now,

b

I o = (-]B)V, = (1£-90°)(0.02)(1£0°) = 0.02£-90° A
and in the t-domain,
I o =0.022-90° A< i ,(t) = 0.02cos(5000t - 90°) A

or
i o(t) = 20sin5000t mA
Similarly,
Ico = 1BcVy = (1£90°)(0.02)(1.£0°) = 0.02.£90° A
and in the t-domain,
Ico = 0.02.290° A < ig(t) = 0.02cos (5000t + 90°) A

or

ico(t) = —20sin5000t mA

We observe that i o(t) + igo(t) = 0 as expected.

2.4 Quality Factor QOp in Parallel Resonance

At parallel resonance,

1
ol
and
]
Vo =
7 G
Then,
o,C
lIgg| = @,CVq = wOC|G~°’| = =14 (2.18)
Also,
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At parallel resonance the left sides of (2.18) and (2.19) are equal and therefore,

©C _ 1
G w,GL
Now, by definition
_2C_ 1
Qop = 75~ = 0oGL
Quality Factor at Parallel Resonance

(2.19)

(2.20)

The above expressions indicate that at parallel resonance, it is possible to develop high currents

through the capacitors and inductors. This was found to be true in Example 2.

2.5 General Definition of Q

The general (and best) definition of Q is

Q= 2n Maximum Energy Stored
~ ""Energy Dissipated per Cycle

Essentially, the resonant frequency is the frequency at which the inductor gives

2.

(2.21)

up energy just as fast

as the capacitor requires it during one quarter cycle, and absorbs energy just as fast as it is released by
the capacitor during the next quarter cycle. This can be seen from Figure 2.11 where at the instant of
maximum current the energy is all stored in the inductance, and at the instant of zero current all the

energy is stored in the capacitor.

W, & W¢ in Series RLC Circuit

Wy We

Energy (J)

Ve i

Figure 2.11. Waveforms for W, and W at resonance

2-10
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2.6 Energy in L. and C at Resonance

For a series RLC circuit we let

= | t = e
posot = C—
Then,
|
_ P
Also,
_ 1212 2
W, = 2L| = 2Llpcos ot (2.22)
and
i il
We = 2Cv =3 2Csm 2ot (2.23)

Therefore, by (2.22) and (2.23), the total energy W at any instant is

Wr = W +W¢ = ;Ip [LCOSZ(D'[+ %CsinzcotJ (2.24)
()

and this expression is true for any series circuit, that is, the circuit need not be at resonance. How-
ever, at resonance,

1
L= —
@0 0,C
or
L= L
m%C

By substitution into (2.24),

Wy = = (2.25)

I\)II—\
'Ul\)

I [Lcos m0t+ Lsin mot] = %

and (2.25) shows that the total energy Wy is dependent only on the circuit constants L, C and res-

onant frequency, but it is independent of time.

Next, using the general definition of Q we get:

Oue = 21 Maximum Energy Stored (L/2)1, °L _ ano_'—
0s Energy Dissipated per Cycle (1/2)| R/fo
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or
oql
Qus = =& (2:26)
and we observe that (2.26) is the same as (2.9). Similatly,
2 2
Maximum Energy Stored (1/2)15(1/05C) fo
QOS:nE Dissipated Cvele = 2™ > = 2n—
nergy Dissipated per Cycle (1/2)17R/f, ogRC
or
© 1
Qos = —5— = (227)
0, RC ©oRC
and this is also the same as (2.9).
Following the same procedure for a simple GLC (or RLC) parallel circuit we can show that:
o,C 1
= —— = 2.28
Qop = 75 0oLG (2.28)

and this is the same as (2.20).

2.7 Half-Power Frequencies - Bandwidth

Parallel resonance is by far more important and practical than series resonance and therefore, the
remaining discussion will be on parallel GLC (or RLC) circuits.

The plot of Figure 2.12 shows the magnitude of the voltage response versus radian frequency for a
typical parallel RLC circuit.

Bandwidth in Parallel RLC Circuit

0.707V, /

<
°

Relative Voltage

O ®y O (O]

Figure 2.12. Relative voltage vs.radian frequency in a parallel RLC circuit
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By definition, the half-power frequencies o, and o, in Figure 2.12 are the frequencies at which the

magnitude of the input admittance of a parallel resonant circuit, is greater than the magnitude at res-

onance by a factor of /2, or equivalently, the frequencies at which the magnitude of the input

impedance of a parallel resonant circuit, is less than the magnitude at resonance by a factor of /2 as

shown above. We observe also, that o; and o, are not exactly equidistant from o,. However, it is

convenient to assume that they are equidistant, and unless otherwise stated, this assumption will be

followed in the subsequent discussion.

We call w,; the lower half-power point, and o, the upper half-power point. The difference ®, — o, is

the half-power bandwidth BW | that is,

Bandwidth = BW = ©, — 0

(2.29)

The names half-power frequencies and half-power bandwidth arise from the fact that the power at

these frequencies drop to 0.5 since (A/E/Z)2 = 05.

The bandwidth BW can also be expressed in terms of the quality factor Q as follows:

Consider the admittance

Y = G+j(mc—il_)

(O]

®
Multiplying the j term by G( —-96 ) , we get

®g

on,C G

Y = G+jG(

Recalling that for parallel resonance

1
oy LG

0 _coOC_
oP — G -

by substitution we get

0,G  0oy)LG

_ i o %
Y = G[H,QOP(% m)] (2.30)
and if © = g, then
Y=0G
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Next, we want to find the bandwidth ©, — ®; in terms of the quality factor Qgp. At the half-power

points, the magnitude of the admittance is (+/2/ 2)‘Yp‘ and, if we use the half-power points as refer-

ence, then to obtain the admittance value of

||Ymax| = ﬁG
we must set
o, ‘”0)
—2__0)_1
Qupf 22

for o = o,.

We must also set

Qop(w_l—m_o) =-1

Wy O

for o = 0.

Recalling that |(1+j1)| = 4/2 and solving the above expressions for o, and o, , we get
_ BRY L
©, = (1+( ) + (2.31)
2L 2Qop’  2Qqp]

_l 21\ 1
o= | 1+(2Q0P) o] (2.32)

and

Subtraction of (2.32) from (2.31) yields

BW = 0,— 0, = =2 (2.33)
Qop
or
f0
QOP

As mentioned earlier, »; and o, are not equidistant from w,. In fact, the resonant frequency o is

. * .
the geometric mean of o, and w,, that s,

0y = Jo,0, (2.35)

* The geometric mean of n positive numbers a,, a,,..., a,, is the nth root of the product.a; - a, - ... - a,
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This can be shown by multiplication of the two expressions in (2.31) and (2.32) and substitution into
(2.33).

Example 2.3
For the network of Figure 2.13, find:

a- COO
b. Qop
c. BW
d. o
e- 0»)2
Y—> 6 - CA=
0.001Q7" |ImH 04 uF
Figure 2.13. Network for Example 2.3
Solution:
a.
0l = L = - - = 25x10°
LC  1x107°x04x10
or
o, = 50000 r/s
b.
Qup = ®,C _ 9x 10* % 0.4 x 107° - 920
G -3
10
C.
BW = —0 m:2500 = rad/s
Qop 20
d.
o, = @0—%" = 50000~ 1250 = 48750 rad/s
c.
_ BW _ _
@, = @g+ S5 = 50000 + 1250 = 51250 rad/s
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2.8 A Practical Parallel Resonant Circuit

In our previous discussion, we assumed that the inductors are ideal, but a real inductor has some
resistance. The circuit shown in Figure 2.14 is a practical parallel resonant circuit.

G

}

O

Yy—

Figure 2.14. A practical parallel resonant circuit

To derive an expression for its resonant frequency, we proceed as follows:

The resonant frequency is independent of the conductance G and, for simplicity, it is omitted from
the network of Figure 2.14. We will therefore, find an expression for the network of Figure 2.15.

+ —>I
T lzL

1% C /=

Ic

Figure 2.15. Simplified network for derivation of the resonant frequency

For the network of Figure 2.15,

__ VvV _ (Rijel)
L= — =
R+jol  R?4(olL)?
and
v .
lp = —— = (091
c = TGecy - U0
where
R
Re{l } = 2—2V
R™+ (ol)
and
|muL}=-7fﬂ&=3v
R?+ (ol)
Also,
Re{lc} = 0
and
Im{l} = (oC)V
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Then,

= I+l = [Re{l_} +Im{I_}]V+[Re{lc} + Im{I}]V
[Re{l } +Ref{lc}+Im{l }+Im{l.}]V (2.36)
= [Re{l;} +Im{l}]V

=
|

Now, at resonance, the imaginary component of | must be zero, that is,

Im{1;} = Im{I }+Im{l.} = (wOC—-—-—w—O-L-——EJV =

R” + (L)
and solving for o, we get
2
_ /1 R
09 = [FE- [-5 (2.37)
or
oL [L_R (2.38)
o= A LC L2 '
We observe that for R = 0, (2.37) reduces to oy = L a5 before.

JLC

2.9 Radio and Television Receivers

When a radio or TV receiver is tuned to a particular station or channel, it is set to operate at the res-
onant frequency of that station or channel. As we have seen, a parallel circuit has high impedance
(low admittance) at its resonant frequency. Therefore, it attenuates signals at all frequencies except
the resonant frequency.

We have also seen that one particular inductor and one particular capacitor will resonate to one fre-
quency only. Varying either the inductance or the capacitance of the tuned circuit, will change the
resonant frequency. Generally, the inductance is kept constant and the capacitor value is changed as
we select different stations or channels.

The block diagram of Figure 2.16 is a typical AM (Amplitude Modulation) radio receiver.

Circuit Analysis 11 with MATLAB Applications 2-17
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Antenna Local Speaker
Oscillator \ /
Radio Intermediate Audio I
Frequency{~| Mixer [~| Frequency Detector —~| Frequency
Amplifier Amplifier Amplifier

Figure 2.16. Block diagram of a typical AM radio receiver

The antenna picks up signals from several stations and these are fed into the Radio Frequency (RF)
Amplifier which improves the Signal-to-Noise (S/N) ratio. The RF amplifier also serves as a prese-
lector. This preselection suppresses the image-frequency interference as explained below.

When we tune to a station of, say 740 KHz, we are setting the RF circuit to 740 KHz and at the
same time the local oscillator is set at 740 KHz + 456 KHz = 1196 KHz. This is accomplished by
the capacitor in the RF amplifier which is also ganged to the local oscillator. These two signals, one
of 740 KHz and the other of 1196 KHz, are fed into the mixer whose output into the Intermediate
Frequency (IF) amplifier is 456 KHz; this is the difference between these two frequencies
(1196 KHz-740 KHz = 456 KHz ).

The IF amplifier is always set at 456 KHz and therefore if the antenna picks another signal from
another station, say 850 KHz, it would be mixed with the local oscillator to produce a frequency of
1196 KHz-850 KHz = 346 KHz but since the IF amplifier is set at 456 KHz, the unwanted
850 KHz signal will not be amplified. Of course, in order to hear the signal at 850 KHz the radio

receiver must be retuned to that frequency and the local oscillator frequency will be changed to
850 KHz + 456 KHz = 1306 KHz so that the difference of these frequencies will be again

456 KHz.

Now let us assume that we select a station at 600 KHz. Then, the local oscillator will be set to
600 KHz + 456 KHz = 1056 KHz so that the IF signal will again be 456 KHz. Now;, let us suppose
that a powerful nearby station broadcasts at 1512 KHz and this signal is picked up by the mixer cir-
cuit. The difference between this signal and the local oscillator will also be 456 KHz
1512 KHz-1056 KHz = 456 KHz. The IF amplifier will then amplify both signals and the result
will be a strong interference so that the radio speaker will produce unintelligent sounds. This inter-
ference is called image-frequency interference and it is reduced by the RF amplifier before entering
the mixer circuit and for this reason the RF amplifier is said to act as a preselector.

The function of the detector circuit is to convert the IF signal which contains both the carrier and
the desired signal to an audio signal and this signal is amplified by the Audio Frequency (AF) Ampli-
tier whose output appears at the radio speaker.
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Example 2.4

A radio receiver with a parallel GLC circuit whose inductance is L = 0.5 mH is tuned to a radio

station transmitting at 810 KHz frequency.
a. What is the value of the capacitor of this circuit at this resonant frequency?

b. What is the value of conductance G if Qyp = 757

c. If a nearby radio station transmits at 740 KHz and both signals picked up by the antenna have the
same current amplitude | (nA), what is the ratio of the voltage at 810 KHz to the voltage at
740 KHz?

Solution:
a.
02 = L
e
or
= —
4n°LC
Then,
C = 1 = 772 pF
47%0.5 x 10~ x (810 x 10°)
b.
B 0,C
Qop = G
or
G = 2MC | 2mx81x10°x772x10" _ o) o
Qop 75
C.
Veio ks = 1. 1___1 5 (2.39)
Yewknd Yo ©  524x10
Also,
|
Voo kg = ——
Mookl = ¥ e
where
2 1 )2
Y740 kha| = JG +(®C—'—L)
(O]
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or
_ _ 2
Y720 e = J(5.24 %10 + (275 x 740 x 10° x 77.2 x 1072 - L 3)
21t x 740 x 10” x 0.5 x 10"
or
-1
Y720 ko] = 712 pQ
and
|
V740 ke = 12x10° (2.40)
L X
Then from (2.39) and (2.40),
-6 -6
Vewknd _ 1/5.24x10° _ 71.2x10° _ 154 (2.41)

V7aokhd — 1/71.2x10° 524 x107°
that is, the voltage developed across the parallel circuit when it is tuned at f = 810 KHz is 13.6
times larger than the voltage developed at f = 740 KHz.
2.10 Summary

e In a series RLC circuit, the frequency at which the capacitive reactance X = 1/0wC and the

inductive reactance X| = oL are equal, is called the resonant frequency.

The resonant frequency is denoted as o, or f; where

JLC
and
£y 1

~ 2nJLC

The quality factor Qg at series resonance is defined as

_ogl 1
Qos = g ~ 0oRC

In a parallel GLC circuit, the frequency at which the inductive susceptance B = 1/wL and the
capacitive susceptance B = wC are equal is, again, called the resonant frequency and it is also

denoted as ®;. As in a series RLC circuit, the resonant frequency is

2-20 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Summary

e The quality factor Qgp at parallel resonance is defined as

o ®C 1
Qop = =5 "~ o,GL

e The general definition of Q is

_ o Maximum Energy Stored
~ ""Energy Dissipated per Cycle

Q

e In a parallel RLC circuit, the half-power frequencies w; and o, are the frequencies at which the
magnitude of the input admittance of a parallel resonant circuit, is greater than the magnitude at
resonance by a factor of /2, or equivalently, the frequencies at which the magnitude of the input

impedance of a parallel resonant circuit, is less than the magnitude at resonance by a factor of /2.

e We call o; the lower half-power point, and ®, the upper half-power point. The difference

®, — 0, is the half-power bandwidth BW , that is,
Bandwidth = BW = o, -0,

e The bandwidth BW can also be expressed in terms of the quality factor Q as

BW 20
= ®0,— 0, = —
2 1 QOP
or
fo
Qop
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2.11 Exercises

1. A series RLC circuit is resonant at f; = 1 MHz with Z; = 100 Q and its half-power bandwidth
is BW = 20 KHz. Find R, L, and C for this circuit.

2. For the network of Figure 2.17, the impedance Z; is variable, Z, = 3+j4 and Z; = 4-j3. To

what value should Z; be adjusted so that the network will operate at resonant frequency?

T

Lz %]

ZIN

Figure 2.17. Network for Exercise 2

3. For the circuit of Figure 2.18 with the capacitance C adjusted to 1 pF, the half-power frequen-
cies are f; = 925 KHz and f, = 1075 KHz.

a. Compute the approximate resonant frequency.

b. Compute the exact resonant frequency.

c. Using the approximate value of the resonant frequency, compute the values of Q,,, G, and L.

£

\

Figure 2.18. Circuit for Exercise 3

4. The GLC circuit of Figure 2.19, is resonant at f; = 500 KHz with V; = 20 V and its half-power
bandwidth is BW = 20 KHz.

a. Compute L, C, and | for this circuit.

b. Compute the magnitude of the admittances |Yy| and |Y,| corresponding to the half-power fre-
quencies f; and f,. Use MATLAB to plot |Y| in the 100 KHz < f<1000 KHz range.

+

C
G L
|4 A

/|

Figure 2.19. Circuit for Exercise 4
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5. For the circuit of Figure 2.20, v, = 170coswt and Q, = 50. Find:

a. (00

b. BW

c. o, and o,

d. |V

R, L

10 1 mH

@ C ——~ 10 Q R,
Vg 1 uF

Figure 2.20. Circuit for Exercise 5

6. The series-parallel circuit of Figure 2.21, will behave as a filter if the parallel part is made resonant
to the frequency we want to suppress, and the series part is made resonant to the frequency we
wish to pass. Accordingly, we can adjust capacitor C, to achieve parallel resonance which will

reject the unwanted frequency by limiting the current through the resistive load to its minimum
value. Afterwards, we can adjust C; to make the entire circuit series resonant at the desired fre-

quency thus making the total impedance minimum so that maximum current will flow into the
load.

For this circuit, we want to set the values of capacitors so that V| gap Will be maximum at
f, = 10 KHz and minimum at f, = 43 KHz. Compute the values of C; and C, that will
achieve these values. It is suggested that you use MATLAB to plot V| gap| versus frequency f in

the interval 1 KHz <f<100 KH to verify your answers.

A
Ve )
N Ry @
A Lapn—mm L | Ry

* 100 Q 2mH
@ VioaD
10

“|vg = 170cosot

Figure 2.21. Circuit for Exercise 6
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2.12 Solutions to Exercises

1. At series resonance Zy = R = 100 and thus R = 100 Q. We find L from Qyg = wyL/R where

o, = 2nfy. Also,

6

- ®q 21t x 10

Qpg = L =WV=—3=50
Wy — 0 21 x 20 x 10

Then,

R.

L = R Qos _ 100X52 — 0.796 mH
©o 21 x 10
and from (0(2) =1/LC
c--L1 - 1 — 318 pF

ool (271 x 10%)° % 7.96 x 10~
Check with MATLAB:

f0=10"6; wO=2*pi*f0; Z0=100; BW=2*pi*20000; w1=w0-BW/2; w2=w0+BW/2;...
R=Z0; Qos=w0/BW; L=R*Qos/w0; C=1/(w0 ™ 2*L); fprintf(' \n');...

fprintf(R = %5.2f Ohms \t, R); fprintf(L = %5.2e H \t, L);...

fprintf('C = %5.2e F \t', C); fprintf(' \n"); fprintf(' \n");

R = 100.00 Ohms L = 7.96e-004 H C = 3.18e-011 F

7T

2 (%]

ZIN

Ziy = 21+ 251 Z4

where
_(3+j4)-(4—-j3) _ 12-j9+j16+12 7]
z,l1z, = G£1 13) _ 16+12 7-]
3+j4+4-;3 T+] 7—]
_ 168+]49-j24+7 _175+]25 55 o5
72 41° 50

We let Z, = Ry +JX;y and Z; = Ry + jX; . For resonance we must have

Ziy = Rin+iX;y = Ry +jX;+35+j05 = R)y+0 = R; +jX; +35+]j0.5
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Equating real and imaginary parts we get
Rin

0

R, +35
jX,+j05

and while R; can be any real number, we must have jX; = —j0.5 and thus

a. BW = f,—f, = 1075925 = 150 KHz. Then,

fo = f;, +BW/2 = 925+ 150/2 = 1000 KHz

b. The exact value of f; is the geometric mean of f; and f, and thus

fy = Jf T, = +/(925+1075)10° = 997.18 KHz

f 1000 ®,C
c. Qpp = f2_0f1 =155 © 20/3. Also, Qgp = %.Then
G- 0,C _ 2nf,C _ 2mx10°% 107° =31 _ 910"
Qop  Qop 20/3 0
and
1 1 1
L = = = = 0.025 pH
0,C 4n2f02C 471'2 x 1012 x 10_6
4,
f 500 onC
e -3 _
c- e G _ 25x10 - =7.96x10° F =796 nF
®q 2t x5x10
L=t __1 1 = 1273x10° H = 12.73 uH

©C  47°2C  4n*x25x10"x7.96 x 10°°

ly = VoYp = VoG = 20x10° A = 20 mA

b. f; = f;-BW/2 = 500-10 = 490 KHz and f, = f;+ BW/2 = 500 + 10 = 510 KHz
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: 1
Vi, = G+j(®1C—gl—|:)
= 107° +j(2n %490 x 10° x 7.96 x 10° — 31 . )
2n x 490 x 10° x 12.73 x 10~
Likewise,
: 1
Vi, = G+j(®1C—m———lL)

1072+ j(zn x 510 x 10% x 7.96 x 107° - 31 - )
2t x 510 x 10” x 12.73 x 10

We will use MATLAB to do the computations.

G=10" (-3); BC1=2*pi*490*10 ~ 3*7.96*10 "~ (-9);...

BL1=1/(2*pi*490*10 ~ 3*12.73*10 " (-6)); Y1=G+j*(BC1-BL1);...
BC2=2*pi*510*10 ~ 3*7.96*10 "~ (-9); BL2=1/(2*pi*510*10 ~ 3*12.73*10 ™ (-6));...
Y2=G+j*(BC2-BL2); fprintf(' \n'); fprintf(mag¥Y1 = %5.2e mho \t, abs(Y1));...
fprintf(mag¥Y2 = %5.2e mho \t', abs(Y2)); fprintf(' \n"); fprintf(' \n)

mag¥Yl = 1.42e-003 mho mag¥Y2 = 1.41e-003 mho
We will use the following MATLAB code for the plot

f=100*10"3: 10" 3: 1000*10 ™ 3; w=2*pi*f;...

G=10"(-3); C=7.96*10" (-9); L=12.73*10 " (-6);...
BC=w.*C; BL=1./(w.*L); Y=G+j*(BC-BL); plot(f,abs(Y));...
xlabel('Frequency in HZ'); ylabel('Magnitude of Admittance');grid

The plot is shown below.

0.1

cL
=}
@

Magnitude of Admittance
o
=]
(2]

I
o
B

002

Frequency in Hz «10°
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a. It is important to remember that the relation o, = 1/4/LC applies only to series RLC and
parallel GLC circuits. For any other circuit we must find the input impedance Z,, set the

imaginary part of Z,y equal to zero, and solve for o, . Thus, for the given circuit

2 = s 0y = 1+ Aol
_ 10+j(oL-1/0C) +10/joC+L/C 10 —j(oL-1/0C)
10+ j(ol - 1/wC) 10— j(oL - 1/0C)
_ 100 +j10(0L - 1/0C) + 100/ (joC) + 10L/C - j10(oL - 1/C)

100 + (oL - 1/0C)?

, (0L=1/0C)*~ (10/0C)(oL - 1/0C) - jL/C(oL ~1/C)
100 + (oL - 1/0C)?

100 + 10L/C + (oL - 1/0C)* = (10/0C)(oL — 1/ C)
100 + (oL - 1/0C)?
, 100/(joC) ~jL/C(oL ~1/0C)
100 + (oL - 1/0C)?

For resonance, the imaginary part of Z; must be zero, that is,

100 ]|__( 1
—_ L-—] =0
joo,C C o o
A0, (- L )] < 0
ClL o, @0 0,C
100 2 L
— +oL°—-—— =0
o @0 0,C

L’Cop+100C - L

Il
o
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2_ 1 100_ 1 100

9 8 8
= 10°-10% = 9x 10
LC 12 10°x10° 107

and thus

0y = ¥9x10° = 30,000 r/s

BW = 0,/Q = 30,000/50 = 600 r/s

0, = wg—BW/2 = 30,000 - 300

29,700 r/s

o, = oy+BW/2 = 30,000 + 300 = 30,300 r/s

d. At resonance, jogL = j3x10*x 107 = j30 Q and 1/jo,C = —j10~*x 10°/3 = —j100/3.

The phasor equivalent circuit is shown below.

@ ~j100/3 Q

1704£0° V

Weletz; = 1Q, 2, = -j100/3 Q, and z; = 10 +j30 Q. Using nodal analysis we get:

V—CO_VS_}.\@.}.\@ =0

Zy Zy Z3
V
(l+l+l)vco - _S
Z; I I3 Zy

We wil use MATLAB to obtain the value of V.

Vs=170; z1=1; z22=-j*100/3; z8=10+j*30; Z=1/z1+1/22+1/z3; Vc0=Vs/Z;...
fprintf(' \n'); fprintf('VcO = %6.2f, abs(Vc0)); fprintf(' \n'); fprintf(' \n')

VcO = 168.32

0. First, we will find the appropriate value of C,. We recall that at parallel resonance the voltage is

maximum and the current is minimum. For this circuit the parallel resonance was found as in

(2.37), that is,
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Solutions to Exercises

_ /1 R
g —_———
LC |2
or
1 10°
21 x 43,000 = T -
2x107°C, 4x10
3 4 4 4.2 6
100 _ 10 6+(27”<4.3X104)2 _ 10 +(2nx4.3><106) x4 x10
2C;  4x10 4x10°
4x10° 9
C, = 500 > 6} = 6.62x10"° F = 6.62 nF
10° + (2 x 43x 10" x4 x 107

Next, we must find the value of C; that will make the entire circuit series resonant (minimum
impedance, maximum current) at f = 10 KHz. In the circuit below we let z; = —jX¢q,

Z;, = —jxcz, i3 = R1+jX|_,and ZioAD = 1.

C, | _
I ¢ N “1Xe, .
T Ry JX
_JXCl — + R|_
+ 100 QO L 2mH
@ Ziy — VioaD
= _51Q
Vg = 170.20° V
Then,
Ziy = 23+ 2,123+ 2 gpp
and
Zn(F=10KH2) =2+ 2, 23| o, *Zoao = 2+ 22l Za) g, +1 ()

where 7, || Zs‘f 0K is found with the MATTL.AB code below.

Hz

format short g; f=10000; w=2*pi*f; C2=6.62*10 " (-9); XC2=1/(w*C2); L=2*10" (-3);...
XL=w*L; R1=100; z2=-j*XC2; z3=R1+j*XL; Zp=22*z3/(z2+23)

Zp =
111.12 + 127.721

and by substitution into (1)
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Z,y(f=10 KHz) = 2, + 11112+ j127.72 + 1 = 7, + 113.12 +j127.72 Q (2)

The expression of (2) will be minimum if we let z; = —j127.72 Q at f = 10 KHz. Then, the

capacitor C; value must be such that 1/0C = 127.72 or

1

_ y = 1.25x 10" F = 0.125 pF
2n x 10 x 127.72

Cy

Shown below is the plot of |V| gap| Versus frequency and the MATLAB code that produces this

plot.
f=1000: 100: 60000; w=2*pi*f; Vs=170; C1=1.25*10 "~ (-7); C2=6.62*10 " (-9);...
L=2.%10." (-3);...

R1=100; Rload=1; z1=—-j./(w.*C1); z2=—j./(Ww.*C2); zZ3=R1+j.*w.*L; Zload=Rload;...
Zin=2z1+22.*23./(z2+2z3); Vload=Zload.*Vs./(Zin+Zload); magVload=abs(Vload);...
plot(f,magVload); axis([1000 60000 0 2]);...
xlabel(Frequency f); ylabel('|Vload|'); grid

0§ 1 15 2 25 3 B85 4 45 &5 55 6
Frequency f w10*

This circuit is considered to be a special type of filter that allows a specific frequency (not a band
of frequencies) to pass, and attenuates another specific frequency.
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Chapter 3

Elementary Signals

his chapter begins with a discussion of elementary signals that may be applied to electric net-

works. The unit step, unit ramp, and delta functions are then introduced. The sampling and

sifting properties of the delta function are defined and derived. Several examples for expressing
a variety of waveforms in terms of these elementary signals are provided.

3.1 Signals Described in Math Form

Consider the network of Figure 3.1 where the switch is closed at time t = 0.

R

—/\/\/\/\h\wﬁ
\Yj t = O
S +

(—D Vout open terminals

Figure 3.1. A switched network with open terminals.

We wish to describe V,,; in a math form for the time interval —oo <t < +o0. To do this, it is conve-
nient to divide the time interval into two parts, —oo <t<0,and 0 <t<oo.

For the time interval —oo <t <0, the switch is open and therefore, the output voltage v, ; is zero. In

other words,

Vour = 0 for —o<t<0 (3.1)

For the time interval 0 <t < oo, the switch is closed. Then, the input voltage Vg appears at the output,

i.e.

5

Vout = Vg for O<t<oo (3.2)

Combining (3.1) and (3.2) into a single relationship, we get

0 —wo<t<0 13
Vour = Vg O<t<oo (33)

We can express (3.3) by the waveform shown in Figure 3.2.
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out
Vs

0

Figure 3.2. Waveform for v, as defined in relation (3.3)

The waveform of Figure 3.2 is an example of a discontinuous function. A function is said to be dis-
continuous if it exhibits points of discontinuity, that is, the function jumps from one value to another
without taking on any intermediate values.

3.2 The Unit Step Function Uy(t)

A well-known discontinuous function is the unit step function u,(t) " that is defined as

0 t<0
uO(t)={1 tiO (3.4)

It is also represented by the waveform of Figure 3.3.

Uo(t)

Figure 3.3. Waveform for u,(t)

In the waveform of Figure 3.3, the unit step function Uy(t) changes abruptly from 0 to 1 att = 0.
But if it changes at t = t; instead, it is denoted as Uy(t—ty). Its waveform and definition are as

shown in Figure 3.4 and relation (3.5).

: Ug(t—ty)
! t
0' 1o

Figure 3.4. Waveform for uy(t—ty)

* In some books, the unit step function is denoted as u(t), that is, without the subscript 0. In this text, however, we

will reserve the u(t) designation for any input.
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0 t<t, 35
Usg(t-ty) = .
ot=l) =1, t ©-3)
If the unit step function changes abruptly from 0 to 1 att = —t;, it is denoted as Uy(t+1ty). Its

waveform and definition are as shown in Figure 3.5 and relation (3.0).

Ug(t+tp)

1, 0
Figure 3.5. Waveform for ug(t + ty)

0 t<—t,

Ug(t+1ty) = {1 ot (3.6)

Example 3.1
Consider the network of Figure 3.6, where the switch is closed at time t = T.
R
—ANVNVA—
VS t = T
+
C*_-) Vout open terminals

Figure 3.6. Network for Example 3.1

Express the output voltage V,,; as a function of the unit step function, and sketch the appropriate

waveform.
Solution:
For this example, the output voltage v, = 0 for t< T, and v, = Vg for t>T. Therefore,
Vout = VsUp(t—T) 3.7

and the waveform is shown in Figure 3.7.
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Figure 3.7. Waveform for Example 3.1

Other forms of the unit step function are shown in Figure 3.8.

T -T
t ! T t
o (@ o) o
A A A —
~Auy(t) ~Auy(t-T) —Auy(t+T)
Aug(~t) Aug(-t+T) Alg(-t-T)
A — A — |4
t ! t I t
o 0 T () IO p
T -T
t . t t
o (s o0 m )
—— A — A — |4
—Auy(-t) —Aug(—t+T) -Auy(-t-T)

Figure 3.8. Other forms of the unit step function

Unit step functions can be used to represent other time-varying functions such as the rectangular

pulse shown in Figure 3.

9.

Ug(t)

1
(a)

(b)

Figure 3.9. A rectangular pulse expressed as the sum of two unit step functions

Thus, the pulse of Figure 3.9(a) is the sum of the unit step functions of Figures 3.9(b) and 3.9(c) is
represented as Ug(t) —Uy(t—1).

3-4
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The Unit Step Function

The unit step function offers a convenient method of describing the sudden application of a voltage
or current source. For example, a constant voltage source of 24 V applied at t = 0, can be denoted
as 24uy(t) V. Likewise, a sinusoidal voltage source V(t) = V,,coswt V that is applied to a circuit at

t = ty, can be described as v(t) = (V,cosmt)uy(t—ty) V. Also, if the excitation in a circuit is a rect-

angular, or triangular, or sawtooth, or any other recurring pulse, it can be represented as a sum (dif-
terence) of unit step functions.
Example 3.2

Express the square waveform of Figure 3.10 as a sum of unit step functions. The vertical dotted lines
indicate the discontinuities at T, 2T, 3T and so on.

v(t)
@ )

_A I @ I

Figure 3.10. Square waveform for Example 3.2

Solution:

Line segment ® has height A, startsat t = 0, and terminates at t = T. Then, as in Example 3.1, this
segment is expressed as

Vi(t) = Afug(t) —ug(t—T)] (3.8)

Line segment @ has height A, starts at t = T and terminates at t = 2T. This segment is expressed
as

V(1) = —Afug(t—T) —ug(t—2T)] 3.9)
Line segment @ has height A, startsat t = 2T and terminates at t = 3T. This segment is expressed as
Va(t) = Afuy(t—2T) —ug(t-3T)] (3.10)

Line segment @ has height —A | starts at t = 3T, and terminates at t = 4T. It is expressed as
V4 (t) = —A[Ug(t—3T) —uy(t—4T)] (3.11)

Thus, the square waveform of Figure 3.10 can be expressed as the summation of (3.8) through (3.11),
that is,
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V(L) = vi(t) + Vo(t) + Va(t) + vu(t)
Alug(t) —ug(t—=T)]-Alug(t—=T) —ug(t-2T)] (3.12)

+AUG(t - 2T) — ug(t — 3T)]-A[Ug(t — 3T) — Uy(t — 4T)]

Combining like terms, we get

V(t) = Afug(t) —2ug(t=T) + 2up(t—2T) - 2up(t—3T) + ...] (3.13)

Example 3.3

Express the symmetric rectangular pulse of Figure 3.11 as a sum of unit step functions.

RLC

—T/2 0 T/2

Figure 3.11. Symmetric rectangular pulse for Example 3.3

Solution:

This pulse has height A, starts at t = —-T/2, and terminates at t = T/2. Therefore, with reference to
Figures 3.5 and 3.8 (b), we get

iﬂ):A%(t+g)—N%0—£):=A@OO+£)—UOO—£)J (3.14)

Example 3.4

Express the symmetric triangular waveform of Figure 3.12 as a sum of unit step functions.

L v(t)

-T2 0 T/2

Figure 3.12. Symmetric triangular waveform for Example 3.4

Solution:

We first derive the equations for the linear segments @ and @ shown in Figure 3.13.
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2i41 | YO 241
T TN s T
@ @
t
—T/2 0] T/2

Figure 3.13. Equations for the linear segments of Figure 3.12

For line segment @,

v = (3t ug (t+ ) - ugv)] (3.15)
and for line segment @,

Vo) = (- t+ 1)[ug®-up (t- 1] (3.16)

Combining (3.15) and (3.16), we get

V(D) = V(D +Vvy(D)

(—gr t+ 1) [Uo (t + 15-) - Uo(t)} + (—% t+ 1) [uo(t) — U, (t— %ﬂ 3.17)

Example 3.5

Express the waveform of Figure 3.14 as a sum of unit step functions.

[ V()

| : . t
0 1 2 3

Figure 3.14. Waveform for Example 3.5.

Solution:

As in the previous example, we first find the equations of the linear segments @ and @ shown in Fig-
ure 3.15.
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v(t)
3
2_
1 /——t+3
I | : t
0 1 2 3

Figure 3.15. Equations for the linear segments of Figure 3.14

Following the same procedure as in the previous examples, we get

V(t) = (2t + 1)[up(t) —ug(t—=1)]+3[ug(t—1) —ug(t-2)]
+ (—t+3)[up(t—2) —up(t-3)]

Multiplying the values in parentheses by the values in the brackets, we get

V(t) = (2t+ D)ug(t) — (2t + 1)uy(t—1) + 3up(t—1)
=3Up(t=2)+ (=t +3)up(t—2) — (=t +3)uy(t-3)

or
V(1) = (2t+ 1)ug(t) + [ (2t + 1) + 3]ug(t - 1)

+[-3+(—t+3)Jup(t—2) - (—t+3)uy(t-3)
and combining terms inside the brackets, we get
v(t) = (2t+ 1)uy(t)-2(t—Dug(t—1)—tuy(t—2) + (t-3)ug(t-3) (3.18)

Two other functions of interest are the unit ramp function, and the unit impulse or delta function. We
will introduce them with the examples that follow.

Example 3.6

In the network of Figure 3.16, where ig is a constant source, the switch is closed at time t = 0.

i t=0

@® 1 vel®

Figure 3.16. Network for Example 3.6
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Express the capacitor voltage V(t) as a function of the unit step.

Solution:

The current through the capacitor is ic(t) = ig = constant, and the capacitor voltage V(1) is

1. #
ve(t) = EI ic(t)dt (3.19)
where 1 is a dummy variable.

Since the switch closes at t = 0, we can express the current i¢(t) as

and assuming that v(t) = 0 for t<0, we can write (3.19) as

iS 0 .
's d
Ve(t) = %j_;is Uy(v)d = CLOUO(T) ! +'(—§ ;uo(r)dr 3.21)
0
or
ve(t) = i%tuo(t) (3.22)

Therefore, we see that when a capacitor is charged with a constant current, the voltage across it is a
linear function and forms a ramp with slope ig /C as shown in Figure 3.17.

¥

slope = ig/C
t

Figure 3.17. Voltage across a capacitor when charged with a constant current source.

* Since the initial condition for the capacitor voltage was not specified, we express this integral with — at the
lower limit of integration so that any non-zero value prior to t <0 would be included in the integration.
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3.3 The Unit Ramp Function U,(t)

The unit ramp function, denoted as u,(t), is defined as

t

uy(t) = j ug(t)dr (3.23)

—00

where T is a dummy variable.

We can evaluate the integral of (3.23) by considering the area under the unit step function Uy(t) from

—oo to t as shown in Figure 3.18.

Area=1xt=1=t

T

Figure 3.18. Area under the unit step function from — to t

Therefore, we define uy(t) as

0 0

Since uy(t) is the integral of Uy(t), then Uy(t) must be the derivative of u,(t), i.e.,

d%ul(t) = uy(t) (3.25)

Higher order functions of t can be generated by repeated integration of the unit step function. For
example, integrating Uy(t) twice and multiplying by 2, we define u,(t) as

0 t<0 t
uy(t) = { ) or Uy (t) = 2j uy(t)de (3.26)
t t>0 —o
Similarly,
0 t<0 t
Ug(t) = { X or Ug(t) = 3j u,(t)dr (3.27)
t t>0 —o
and in general,
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m={> P ® =3[ u,_,()d
u = or u = u T)dtT
" t" t>0 " Lo n-t

Also,
1ld
Uy,_1(1) = ﬁd_tun(t)
Example 3.7

In the network of Figure 3.19, the switch is closed at time t = 0 and i, (t) = 0 for t<O0.

R t=0

WA~

Is | L+

™) it F ()
L ‘ _

Figure 3.19. Network for Example 3.7

Express the inductor current i (t) in terms of the unit step function.

Solution:

The voltage across the inductor is

!
VL() - dt

and since the switch closesatt = 0,
i (t) = igUg(t)

Therefore, we can write (3.30) as

vi(t) = Lig adI[Uo(t)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

But, as we know, Uy(t) is constant (0 or 1) for all time except at t = 0 where it is discontinuous.

Since the derivative of any constant is zero, the derivative of the unit step Uy(t) has a non-zero value

only at t = 0. The derivative of the unit step function is defined in the next section.
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3.4 The Delta Function d(t)

The unit impulse or delta function, denoted as 8(t), is the derivative of the unit step Uy(t). It is also
defined as

t d(t)dt = uy(t) (3.33)

—00

and

3(t) = 0 forall t=0 (3.34)

To better understand the delta function 5(t), let us represent the unit step Ug(t) as shown in Figure
3.20 (a).

]ﬁ

/ 0! igure (a)

t

—€ €
1
Area=1 =~ |  2¢ .

I I Figure (b
s| 0 | & ( )

= | ¢ t

Figure 3.20. Representation of the unit step as a limit.

The function of Figure 3.20 (a) becomes the unit step as € - 0. Figure 3.20 (b) is the derivative of
Figure 3.20 (a), where we see that as € - 0, 1/2¢ becomes unbounded, but the area of the rectangle
remains 1. Therefore, in the limit, we can think of §(t) as approaching a very large spike or impulse

at the origin, with unbounded amplitude, zero width, and area equal to 1.

Two useful properties of the delta function are the sampling property and the sifting property.

3.5 Sampling Property of the Delta Function d(t)

The sampling property of the delta function states that

f(t)d(t—a) = f(a)d(t) (3.35)

or, whena = 0,
f(1)8(t) = f(0)8(t) (3.36)
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that is, multiplication of any function f(t) by the delta function 3(t) results in sampling the function
at the time instants where the delta function is not zero. The study of discrete-time systems is based
on this property.

Proof:
Since 6(t) = 0 for t<0 and t>0 then,
f(t)d(t) = 0 for t<0 and t>0 (3.37)
We rewrite f(t) as
f(t) = f(0) + [f(t) - f(0)] (3.38)

Integrating (3.37) over the interval —co to t and using (3.38), we get

jt f(1)8(t)dt = jt f(0)8(t)dt + jt [f(1) - f(0)]8(1)dt (3.39)

The first integral on the right side of (3.39) contains the constant term f(0); this can be written out-
side the integral, that is,

jt f(0)3(t)dt = f(O)It §(1)dt (3.40)

The second integral of the right side of (3.39) is always zero because

o(t) = 0 for t<0 and t>0
and

[f(1) = £(0)]], _ = F(0)~F(0) = O
Therefore, (3.39) reduces to

jt f(1)8(t)dt = f(O)It §(1)dt (3.41)

Differentiating both sides of (3.41), and replacing t with t, we get

f(1)8(t) = f(0)8(t) (3.42)
Sampling Property of §(t) '
3.6 Sifting Property of the Delta Function 5(t)
The sifting property of the delta function states that
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j T HOS(t— o)t = f(o) (3.43)

—00

that is, if we multiply any function f(t) by 8(t— ), and integrate from —oo t0 +o0, we will obtain the
value of f(t) evaluatedatt = a.
Proof:
Let us consider the integral
b
j f()5(t— a)dt where a<a<b (3.44)

a

We will use integration by parts to evaluate this integral. We recall from the derivative of products
that

d(xy) = xdy +ydx or xdy = d(xy)-ydx (3.45)

and integrating both sides we get
J-xdy = Xy - jydx (3.46)

Now, we let x = f(t); then, dx = f'(t). We also let dy = 8(t—a); then, y = uy(t—a). By substitu-
tion into (3.46), we get

b b
j f()5(t— o)dt = f(t)uo(t—a)‘z—j ug(t—a)f (t)dt (3.47)

We have assumed that a < o <b; therefore, Ug(t—a) = 0 for a <a, and thus the first term of the

right side of (3.47) reduces to f(b). Also, the integral on the right side is zero for a <a, and there-

fore, we can replace the lower limit of integration a by o.. We can now rewrite (3.47) as
b b )
j f(1)5(t— a)dt = f(b)-j f'(t)dt = f(b)—f(b) +f(a)
a o

and letting a—> - and b—o forany|al <o , we get

f(H)o(t—a)dt = f

j_w (H)3(t - a)dt = f(a1) (3.48)
Sifting Property of 5(t)
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3.7 Higher Order Delta Functions

An nth-order delta function is defined as the nth derivative of uy(t), that is,

8"(1) = Luy() (3.49)

The function &8'(t) is called doublet, 5"(t) is called triplet, and so on. By a procedure similar to the
derivation of the sampling property of the delta function, we can show that

f(t)'(t—a) = f(a)d'(t—a)—f'(a)d(t—a) (3.50)

Also, the derivation of the sifting property of the delta function can be extended to show that

jw f(t)8"(t — o)t = (—1)”%[f(t)] (3.51)
- t t=a

Example 3.8

Evaluate the following expressions:

a 3t'8(t-1)

b, jw t8(t— 2)dt

c. t%8'(t-3)
Solution:
a. The sampling property states that f(t)d(t—a) = f(a)d(t—a) For this example, f(t) = 3t* and
a = 1. Then,
3t'8(t-1) = (3t"|,_}8(t-1) = 35(t-1)

b. The sifting property states that I f(t)d(t—oa)dt = f(a). For this example, f(t) = t and o = 2.
Then,
j t3(t-2)dt=f(2)=t,_,=2

—00

c. The given expression contains the doublet; therefore, we use the relation
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f(t)é'(t—-a) = f(a)d'(t—a)-f'(a)d(t-a)
Then, for this example,

2 2 . d,2
t°5'(t-3) =t |t=36(t—3)—ait | _58(t-3)

95'(t—3) - 63(t—3)

Example 3.9

a. Express the voltage waveform v(t) shown in Figure 3.21 as a sum of unit step functions for the
time interval -1 <t<7s.

b. Using the result of part (a), compute the derivative of v(t) and sketch its waveform.

v V)
J
2“"‘I |
| |
T/ —
S0/ P PN T
T \] ()
e RCLEEECEEPEEEREEEEE,
- -T2

Figure 3.21. Waveform for Example 3.9

Solution:

a. We first derive the equations for the linear segments of the given waveform. These are shown in
Figure 3.22.

Next, we express V(t) in terms of the unit step function Uy(t), and we get

V(1) = 2t[ug(t+ 1) —up(t—1)] + 2[ug(t— 1) — ug(t—2)]
+ (—t+5)[Ug(t—2) — Ug(t—4)] + [Ug(t — 4) — up(t - 5)] (3.52)
+ (—t+6)[Ug(t—5) — Ug(t—T7)]

Multiplying and collecting like terms in (3.52), we get
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vt [ (V) v(t)
RN S J+5
277777 | -t+6
T/ —
1y Klz 2 3 4 15\ 7
L \l t(s)
T S CEEEEEEEEEEREEEE
ot
SRl B

Figure 3.22. Equations for the linear segments of Figure 3.21
V(t) = 2tug(t+1) - 2tug(t—1) — 2ug(t— 1) — 2uy(t— 2) — tuy(t - 2)
+5Ug(t—2) +tuy(t—4) —5uy(t—4) + ug(t—4) —uy(t-5)
—tUg(t—5) + 6uy(t—5) + tuy(t—7) — 6uy(t—7)

or
V(1) = 2tug(t+ 1)+ (= 2t + 2)Ug(t— 1) + (= t+ 3)uy(t— 2)

+ (t=A)ug(t—4) + (= t+5)Ug(t—5) + (t— 6)uy(t— 7)

b. The derivative of v(t) is

%\—tl = 2Up(t+ 1)+ 2t3(t+ 1) - 2up(t—1) + (- 2t + 2)5(t- 1)
CUg(t—2) + (— U+ 3)3(t—2) + Ug(t— 4) + (t— 4)5(t— 4) (3.53)
—Up(t=5) + (=t +5)3(t—5) + ug(t—7) + (t—6)3(t— 7)
From the given waveform, we observe that discontinuities occur only at t = -1, t = 2, and

t = 7. Therefore, 8(t—1) = 0, 3(t—-4) = 0,and 6(t-5) = 0, and the terms that contain these
delta functions vanish. Also, by application of the sampling property,

23(t+1) = {2t __}8(t+1) = -28(t+1)
(~t+3)8(t-2) = {(~t+3)],_, }8(t-2) = 8(t-2)
(t-6)3(t-7) = {(t-6)[, _, }8(t-7) = 8(t-7)

and by substitution into (3.53), we get
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%% = 2Up(t+1)-28(t+1) - 2up(t-1) —ug(t-2) (3.54)

+8(t—2) + Ug(t—4) —Up(t—5) + ug(t—7) + 8(t—7)

The plot of dv/dt is shown in Figure 3.23.

dv
== V/s
T (V/s)
2
S(t—2) d(t-7)
11 A
_] 0 1 2 3 4 5 6 7
T |
t(s)
-]+
\ 4
-25(t+1)

Figure 3.23. Plot of the derivative of the waveform of Figure 3.23.

We observe that a negative spike of magnitude 2 occurs at t = -1, and two positive spikes of
magnitude 1 occuratt = 2, and t = 7. These spikes occur because of the discontinuities at
these points.

MATLAB" has built-in functions for the unit step, and the delta functions. These are denoted by the
names of the mathematicians who used them in their work. The unit step function Uy(t) is referred

to as Heaviside(t), and the delta function 3(t) is referred to as Dirac(t). Their use is illustrated with
the examples below.

symsk at; % Define symbolic variables
u=k*sym('Heaviside(t-a))) % Create unit step functionatt = a

u:
k*Heaviside (t-a)

d=diff(u) % Compute the derivative of the unit step function

d =
k*Dirac(t-a)

* An introduction to MATLAB® is given in Appendix A.
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int(d) % Integrate the delta function

ans =
Heaviside(t-a) *k

3.8 Summary

e The unit step function Uy(t) that is defined as

U (t) = 0 t<0
0 IR t>0

e The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source.

e The unit ramp function, denoted as u;(t), is defined as

t

uy(t) = j Ug(t)dt

—00

e The unit impulse or delta function, denoted as 8(t), is the derivative of the unit step Uy(t) . Itis also

defined as
t
d(t)dt = uy(t)

and
o(t) = 0 forall t=0

e The sampling property of the delta function states that

f(t)6(t—a) = f(a)d(t)
of, whena = 0,

f(1)a(t) = f(0)5(t)

e The sifting property of the delta function states that
j f(1)3(t - o)dt = f(a)

e The sampling property of the doublet function &'(t) states that
f(t)d'(t—a) = f(a)d'(t—a)—f'(a)d(t—a)
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3.9 Exercises

1. Evaluate the following functions:

a.sintS(t—Té)
b. cosZtS(t—ﬁ)

c. coszta(t - g)
d.tan 2t6(t - g)
c jw e '5(t - 2)dt

—00

.2, -1 T
f.sin“té (t——)
' 2

2.
a. Express the voltage waveform V(t) shown in Figure 3.24, as a sum of unit step functions for
the time interval 0 <t< 7 s.
b. Using the result of part (a), compute the derivative of V(t), and sketch its waveform.
v | (V) v(t)
20
10 7
i i g
4 |5 6/ 7 U9
-10 1
20+----—--—"-—-—"—"-—"—"—"—"————-
Figure 3.24. Waveform for Exercise 2
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3.10 Solutions to Exercises

1. We apply the sampling property of the §(t) function for all expressions except () where we apply
the sifting property. For part (f) we apply the sampling property of the doublet.

We recall that the sampling property states that f(t)d(t—a) = f(a)d(t—a). Thus,

H T : T . T T T
a. smtS(t—g) = smt|t=n_/68(t—é) = smgS(t—g) = 0.56(t—6)
T I T I
b. cosZtS(t—Z) = cosZt|t=n/48(t—Z) = coszé(t—z) =0

2 _7_1) _1
c. cos ta(t 5) = 2(1+0052t)

S(t—g) = %(1+c03n)5(t_’§‘) = %(1_1)8@_@ =0

t=mn/2

d. tan2t8(t—@ = tan2t|t=n/88(t—§) = tanga(t—g) = s(t_g)

o0

We recall that the sampling property states that I f(H)o(t— a)dt = f(a). Thus,

e [ felst-2)dt = e |, = 4e7 = 054
We recall that the sampling property for the doublet states that

f(1)8'(t—a) = f(a)d'(t—a)—f'(a)d(t—a)

Thus,
2.1, w .2 i, m)y d_. 2 T
sin"to (t—z) = sint| _ .0 (t—z) —5iSin t|t:n/26(t—§)
1 1 e . T
£ = S-cos2y)_,8(t-2) -sin2t|,__,5(t-%)
_ 1 Yo ®) i T) st T
= 51+ 1) (t_ 2) - smns(t_ 2) =5 (t— 2)
2.
v(t) = e_Zt[uo(t)—uo(t—Z)]+(10t—30)[u0(t—2)—uo(t—3)]
a.
(=10t + 50)[Ug(t — 3) — Ug(t— 5)] + (10t — 70)[ug(t - 5) — Ug(t - 7)]
or
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v(t) = e 'ug(t) — e 2ug(t - 2) + 10tuy(t — 2) — 30uy(t — 2) — 10tuy(t — 3) + 30uy(t - 3)
— 10tu,(t - 3) + 50Uy (t — 3) + 10tuy(t — 5) — 50Uy (t — 5) + 10tuy(t — 5)
—70uy(t—5) — 10tuy(t— 7) + 70Uy (t - 7)
= e 2'ug(t) + (—e 7'+ 10t — 30)ug(t — 2) + (=20t + 80)uy(t — 3) + (20t — 120)up(t - 5)
+(=10t + 70)uy(t - 7)
b.
‘;—‘t’ = —2e 'Ug(t) + € 25 (t) + (26 2+ 10)up(t— 2) + (—e *'+ 10t — 30)3(t - 2)
—20ug(t—3) + (— 20t + 80)3(t - 3) + 20ug(t—5) + (20t - 120)5(t—5) (D
~10uy(t—7) + (- 10t + 70)3(t - 7)
Referring to the given waveform we observe that discontinuities occur only at t = 2, t = 3,
and t = 5. Therefore, 6(t) = 0 and §(t—7) = 0. Also, by the sampling property of the delta
function
(-6 ' +10t-30)8(t-2) = (-¢ >'+ 10t - 30)|, _,8(t-2) ~-108(t-2)
(~ 20t +80)8(t - 3) = (— 20t + 80)|, _ ,8(t—3) = 205(t - 3)
(20t - 120)5(t - 5) = (20t~ 120)| _ 3(t-5) = ~208(t~5)
and with these simplifications (1) above reduces to
dv/dt = -2 'ug(t) + 2e 'ug(t - 2) + 10uy(t— 2) — 105(t - 2)
—20u(t - 3) + 208(t — 3) + 20Uy (t —5) — 208(t — 5) — 10u,(t— 7)
= —2e 2 Tug(t) — up(t—2)]-108(t - 2) + 10[ug(t — 2) — uy(t — 3)] + 208(t - 3)
—10[ug(t—3) — Uy(t—5)] — 208(t — 5) + 10[Uy(t— 5) — Uy(t— 7)]
The waveform for dv/dt is shown below.
dv/dt
(V/s) 205(t-3)
20 1
10 +
| | |
_10 /\/f 2y 3 4 5 6 7t
Con L ~108(t-2)
20 g2t _208(t-5)
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Chapter 4

The Laplace Transformation

his chapter begins with an introduction to the Laplace transformation, definitions, and proper-

ties of the Laplace transformation. The initial value and final value theorems are also discussed

and proved. It concludes with the derivation of the Laplace transform of common functions
of time, and the Laplace transforms of common waveforms.

4.1 Definition of the Laplace Transformation

The two-sided or bilateral Laplace Transform pair is defined as

L {f(t)}= F(s) = jw f(t)e 'dt (4.1)
£ HF(s)) = f(t) = ziﬂjcfij(s)e“ds (4.2)
c—-jo

where <£{f(t)} denotes the Laplace transform of the time function f(t), <£ _l{ F(s)} denotes the
Inverse Laplace transform, and s is a complex variable whose real part is 6, and imaginary part ©,
thatis, s = 6+ jo.

In most problems, we are concerned with values of time t greater than some reference time, say

t = t; = 0, and since the initial conditions are generally known, the two-sided Laplace transform

pair of (4.1) and (4.2) simplifies to the unilateral or one-sided Laplace transform defined as

L {f(t)}= F(s) = fof(t)e‘“dt = fof(t)e‘“dt (4.3)
t 0

1 ) = L [ Ee)ed 44

LUUFEN= A0 = 5[ Feets (44)

The Laplace Transform of (4.3) has meaning only if the integral converges (reaches a limit), that is, if

j f(t)e 'dt
0

<o 4.5)

To determine the conditions that will ensure us that the integral of (4.3) converges, we rewrite (4.5)
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as

j f(t)e e 7't <o (4.6)

0

The term 7" in the integral of (4.6) has magnitude of unity, i.e., e_jmt‘ = 1, and thus the condition
for convergence becomes
I f(t)e °'dt| < oo (4.7)
0

. . . . . . . x
Fortunately, in most engineering applications the functions f(t) are of exponential order . Then, we
can express (4.7) as,

j f(t)e °'dt| <

0

[ ke%tectdt‘ (4.8)
0

and we see that the integral on the right side of the inequality sign in (4.8), converges if 6> G

Therefore, we conclude that if f(t) is of exponential order, &£ {f(t)} exists if
Re{s} = o>0, 4.9)

where Re{s} denotes the real part of the complex variable s.

Evaluation of the integral of (4.4) involves contour integration in the complex plane, and thus, it will
not be attempted in this chapter. We will see, in the next chapter, that many Laplace transforms can
be inverted with the use of a few standard pairs, and therefore, there is no need to use (4.4) to obtain
the Inverse Laplace transform.

In our subsequent discussion, we will denote transformation from the time domain to the complex
frequency domain, and vice versa, as

f(t) = F(s) (4.10)

4.2 Properties of the Laplace Transform
1. Linearity Property

The linearity property states that if
fl(t)a f2(t)7 ceey fn(t)

have Laplace transforms

0

*  Afunction f(t) is said to be of exponential order if |f(t)| < ke™ for all t>0.
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Fl(S)a FZ(S)7 ceey Fn(S)
respectively, and
Cl’ Cz, ey Cn

are arbitrary constants, then,

¢y fi() +cy fp() + ... +c f () & ¢y Fi(s)+Cy Fy(s) +... +¢ F L (S) 4.11)

Proof:

L A{c fi()y+c, fL()+ ...+, f (D}

jm[c1 fL(t) +Cy Fp(t) + ... + ¢, F (D)]dt
ty

—st

le fl(t)e_Stdt+czj fo(t)e 'dt+ ... + an f,(He " dt
t t t

CiFi(s)+CyFy(s)+...+C F,(s)

Note 1:

It is desirable to multiply f(t) by uy(t) to eliminate any unwanted non-zero values of f(t) for t<0.
2. Time Shifting Property

The time shifting property states that a right shift in the time domain by a units, corresponds to mul-

tiplication by e *° in the complex frequency domain. Thus,

f(t—a)uy(t—a) < e “F(s) (4.12)
Proof:
% {f(t—a)uy(t-a)} = jaOe‘S‘dt+ jwf(t—a)e_Stdt (4.13)
0 a

Now, we let t—a = t; then, t = t+a and dt = dt. With these substitutions, the second integral
on the right side of (4.13) becomes

[ f(0e™ " Pdr = ™ [ f(1)e ™ dr = eF(s)
0 0
3. Frequency Shifting Property

The frequency shifting property states that if we multiply some time domain function f(t) by an

. . —at . . .. . T . .
exponential function € = where ais an arbitrary positive constant, this multiplication will produce a

shift of the s variable in the complex frequency domain by a units. Thus,
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e 'f(t) < F(s + a) (4.14)

Proof:

£ (e () = f: e "f(tye "t = f:f(t)e‘““)‘dt = F(s+a)

Note 2:

A change of scale is represented by multiplication of the time variable t by a positive scaling factor
a. Thus, the function f(t) after scaling the time axis, becomes f(at).

4. Scaling Property

Let a be an arbitrary positive constant; then, the scaling property states that

f(at) < iF(g) 4.15)

Proof:

£ {f(at)} = I:f(at)e_Stdt

and letting t = t/a, we get

< {f(at)} = Loof(r)e_s(r/a)d(g) = gj:f(t)e_(S/a)Td(r) = %IF G)

Note 3:
Generally, the initial value of f(t) is takenatt = 0 to include any discontinuity that may be present

att = 0.Ifitis known that no such discontinuity exists at t = 0 , we simply interpret f(0 ) as f(0).

5. Differentiation in Time Domain

The differentiation in time domain property states that differentiation in the time domain corresponds

to multiplication by s in the complex frequency domain, minus the initial value of f(t) att = 0 .
Thus,

F(t) = dﬂt £(t) <> sE(s) - £(07) (4.16)
Proof:
L (f(1) = j f'(t)e dt
0
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Using integration by parts where

_[vdu = uv- judv 4.17)

we let du = f'(t) and v = ', Then, u = f(t), dv = —se”*', and thus

L {f'(t)} = f(t)e™ !

§_J+ sF(s)

“ s [ e tdt = tim [f(t)e‘s
O O_

a—» o

—Ssa

lim [e "f(a)-f(0 )] +sF(s) =0-f(0) +sF(s)

The time differentiation property can be extended to show that

;—; f(t) < s%F(s)-sf(07) - f'(0") (4.18)
j’% f(t) < s°F(s) - s*f(07) - sf'(07) - £"(0") (4.19)

and in general
Hdt—nﬁ f(t) < s"F(s)—s" H(0)—s" 2 (0)—... "0 (4.20)

To prove (4.18), we let
_fp =
o) = 'V = § v

and as we found above,

£{g'(t)} =sL{g(t)}-9(0)
Then,

L AT (D}

sL {f'(t)} —f'(0") = s[sL [f(t)] -f(0)]-f'(0)
s2F(s)—sf(07)—f'(0")

Relations (4.19) and (4.20) can be proved by similar procedures.

We must remember that the terms f(0 ), f'(0), f"(0 ), and so on, represent the initial conditions.
Therefore, when all initial conditions are zero, and we differentiate a time function f(t) n times,

this corresponds to F(s) multiplied by s to the nth power.
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6. Differentiation in Complex Frequency Domain

This property states that differentiation in complex frequency domain and multiplication by minus one,
corresponds to multiplication of f(t) by t in the time domain. In other words,

d
th(D) = T F(S) (4.21)

Proof:
£ {f(t)) = F(s) = fof(t)e‘“dt
0

Differentiating with respect to S, and applying Leibnitz’s rule” for differentiation under the integral, we

get

i i * sty © 5 st _ OO_ —st
3 F ) dsL f(tye*'dt = L%e f(t)dt _j te () dt

0

_Iw [tf(t)]e*'dt = —<£ [tf(1)]
0

In general,

t"f(t) < (—1)”:—:F(s) (4.22)
S

The proof for n>2 follows by taking the second and higher-order derivatives of F(s) with respect
to S.

7. Integration in Time Domain

This property states that integration in time domain corresponds to F(s) divided by s plus the initial
value of f(t) att = 0, also divided by s. That is,

jt f(1)dt < ﬂsﬂ L0 (4.23)

S

—00

* This rule states that if a function of a parameter o is defined by the equation F(a) = pr(x, a)dx where f is some
a
known function of integration x and the parameter o, a and b are constants independent of x and «., and the par-

b
tial derivative of/oa exists and it is continuous, then dF _ J' CXX’—“)dx.
da 45 d(a)
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Proof:

We express the integral of (4.23) as two integrals, that is,

t 0 t
j f(t)dr = j f(t)dt + j f(t)dt (4.24)
_ 0 —0 0

The first integral on the right side of (4.24), represents a constant value since neither the upper, nor
the lower limits of integration are functions of time, and this constant is an initial condition denoted

as (0 ). We will find the Laplace transform of this constant, the transform of the second integral
on the right side of (4.24), and will prove (4.23) by the linearity property. Thus,

st| ®

£ {f(0)} j:f(O‘)e“dt = f(0‘)j:e3‘dt = f(O‘)%

0 (4.25)

f(0) x0-(-12) - 1)

S

This is the value of the first integral in (4.24). Next, we will show that

jtf(t)dtcﬂg
0 S
We let
t
t)y = | f(r)d
g(t) = [ (o)
then,
g(t) = f(r)
and
0
g9(0) = j f(t)dt = 0
0
Now,

LA{gM} = G(s) = sL{g(h}-9(0) = G(s)-0
sL {g(D} = G(s)

< {o(} = 22

0

& {jtf(r)dr} = Eis-sl (4.26)

and the proof of (4.23) follows from (4.25) and (4.26).
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8. Integration in Complex Frequency Domain
This property states that integration in complex frequency domain with respect to s corresponds to

division of a time function f(t) by the variable t, provided that the limit Iimo f®) exists. Thus,
t—

fitD o fo F(s)ds 4.27)

Proof:

F(s) = jo fheldt

Integrating both sides from s to o, we get

foF(s)ds - fo U:f(t)e‘“dqu

Next, we interchange the order of integration, i.e.,

& _ € 0 —st
J;F(s)ds - LU e ds} f(t)dt

S
and performing the inner integration on the right side integral with respect to s, we get
e e o T L _ sy _ o, [T
J;F(s)ds = J.o[ te |SJf(t)dt = J.o Ce dt = Eé{ t}

9. Time Periodicity

The time periodicity property states that a periodic function of time with period T corresponds to
T

the integral I f(t)e_Stdt divided by (1 - e_ST) in the complex frequency domain. Thus, if we let f(t)
0

be a periodic function with period T, that is, f(t) = f(t+nT), for n = 1,2, 3, ... we get the trans-
form pair

T —st
J' f(t)e 'dt

f(t+nT) < =
l-e

(4.28)

-sT
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Proof:

The Laplace transform of a periodic function can be expressed as

0 3
£ {f(t)) = jo f(tye*'dt = IZf(t)e_Stdt+ IZTf(t)e_Stdt+ j

.
f(t)e dt+ ...
T 2T

In the first integral of the right side, we let t = 7, in the second t = 1+ T, in the third t = ©+ 2T,
and so on. The areas under each period of f(t) are equal, and thus the upper and lower limits of
integration are the same for each integral. Then,

T T T
L (f(t)} = j f(t)e > "dr + j f(r+T)e """ Ddr + j f(r+2T)e " 20 dr 4+ . (4.29)
0 0 0
Since the function is periodic, i.e., f(t) = f(t+T) = f(t+2T) = ... = f(t+nT), we can write
(4.29) as
T
L (f()) = (L+e +e 24 )j f(t)e " dt (4.30)
0

By application of the binomial theorem, that is,
l+a+a’+a’+.. = —— (4.31)
l-a

we find that expression (4.30) reduces to

T S
j f(t)e " "dt
_ 0
% (f()} = ——
T—¢€
10. Initial Value Theorem

The initial value theorem states that the initial value f(0") of the time function f(t) can be found
from its Laplace transform multiplied by s and letting s — oo . That is,

limf(t) = limsF(s) = f(0") (4.32)

t—>0 §—>

Proof:

From the time domain differentiation property,
d -
gt f(t) < sF(s)-f(0)

or
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{ f(t)} = sF(s)—f(0) = j 4 foe” 4t

Taking the limit of both sides by letting s — o, we get

S —> o

lim [sF(s)-f(01)] = lim [ lim Id—f(t)eStdt]
S—>® To> oo

e—>0

Interchanging the limiting process, we get

Jim [sF(s)-f(0)] = lim I f(t)[ lim e‘ﬂdt
z—)O

and since

. st
lime™' =0

S—>

the above expression reduces to
lim [sF(s)-f(0)] =0
S —
or
lim sF(s) = f(0")
S—>
11. Final Value Theorem

The final value theorem states that the final value f(0) of the time function f(t) can be found from
its Laplace transform multiplied by s, then, letting S — 0. That is,

lim f(t) = I|m sF(s) = f(0) (4.33)

t>w

Proof:

From the time domain differentiation property,

d .
51 (0 = sF(9) - F(0)

or

{ f(t)} = sF(s)-f(0)) = j o f(t)e 'dt

Taking the limit of both sides by letting s - 0, we get
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To o
e—>0

. _ . . T d st
lim [SF(5)-F(0")] = S|£n0[ lim Ld—tf(t)e dt]

and by interchanging the limiting process, we get

T

lim [SF(s)-f(0)] = lim [ -q-f(t)[ lim e‘ﬂdt
s—0 T w Edt s—0
e—>0
Also, since
lime™ =1
s—>0
the above expression reduces to
T g T
lim [sE(s)-f(07)] = lim I—f(t)dt = lim J-f(t)
s—>0 To>® gdt To>w %
e—>0 e—>0
= lim [f(T)-f(g)] = f(0)-f(0")
T>w
e—>0

and therefore,
limsF(s) = f(w)
s—0

12. Convolution in the Time Domain

Convolution in the time domain corresponds to multiplication in the complex frequency domain,
that is,

fL(D)*f,(t) < F1(S)F,(s) (4.34)
Proof:

L {f ()0} = £ U_OO fi(t)fp(t-1)dt }= ro

0

Uwfl(r)fz(t - r)ere‘Stdt
0 (4.35)

_ j:fl(r)U:fz(t-r)e‘“dtJdr

Welet t—t = Ajthen, t = A +1,and dt = dA. By substitution into (4.35),

*  Convolution is the process of overlapping two signals. The convolution of two time functions f,(t) and f,(t) is

denoted as f, (t)*f,(t), and by definition, f, (t)*f,(t) = Iw f,(0)f,(t—1)dt where t is a dummy variable. It is

discussed in detail Signals and Systems with MATLAB Applications by this author.
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Chapter 4 The Laplace Transformation

L (F (1)} 'wal(r)U:fz(X)e_s(“T)dk}dr - jwfl(r)e‘“drfofz(x)e‘“dx

0 0
F1(S)F,(s)

13. Convolution in the Complex Frequency Domain

Convolution in the complex frequency domain divided by 1/2nj, corresponds to multiplication in the
time domain. That is,

£t & 2%1 FL(5)*F(5) (4.36)

Proof:

o0

%L {f,(Ofy(1)} = j f (D) (t)e'dt (4.37)
0
and recalling that the Inverse Laplace transform from (4.2) is
1 (5+j0) t
fi(t) = 5= Fi(we'du
1 27| L—jm 1

by substitution into (4.37), we get

o0 cHjw
LAHOLO) = [ e[ Fean e ot

0 c-jo

if*—j&) o0 —(S—p)t
o _H(u)“o fo(he "t o

c-jo
We observe that the bracketed integral is F,(s — ) ; therefore,
LO6O) = 2= [ FGOF 6 0dk = Z5FL (94 Fy(9
1\ —anc_jmlllz HH—znjl 2

For easy reference, we have summarized the Laplace transform pairs and theorems in Table 4.1.

4.3 The Laplace Transform of Common Functions of Time

In this section, we will present several examples for finding the Laplace transform of common func-
tions of time.

Example 4.1
Find <£ {uy(1)}

4-12 Circuit Analysis |1 with MATLAB Applications
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TABLE 4.1 Summary of Laplace Transform Properties and Theorems

Property/Theorem Time Domain Complex Frequency Domain
1 Linearity cq f1 (1) + ¢, (1) cy Fi(s)+¢c, Fy(s)
+c, f,(t) +...+c,F ()
2 Time Shifting f(t—a)uy(t—a) e_aSF(s)
3 Frequency Shifting 025 t) F(s+a)
4 |Time Scaling f (at) 1 = (Z}
a
5 Time Differentiation d _
See also (4.18) through (4.20) |at ') sF($)-1(0)
6 Frequency Differentiation tf(t) d F(s)
See also (4.22) as
7 Time Integration t
[ fode F(s) , £(0)
—00 S S
8 Frequency Integration f(t)
v Jpo F(s)ds
S
9 Time Periodicity f(t+nT) T st
j f(t)e " dt
0
1_ e—sT
10  |Initial Value Th i _
nitial Value Theorem tIET; 0f('[) lim sF(s) = f(0))
S—>
11 |Final Value Theorem lim f(t) lim sF(s) = f(w)
| e S—0
12 |Time Convolution fL(t)*f(1) F1(S)F,(s)
13 |Frequency Convolution f, (O, (t 1
q y 1( ) 2( ) Z_TCJ Fl(S)*FZ(S)

Circuit Analysis Il with MATLAB Applications
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Chapter 4 The Laplace Transformation

Solution:
We start with the definition of the Laplace transform, that is,

£ {f(t)} = F(s) = j:f(t)e‘“dt

For this example,

0 st
- Stgp = =€ o (1) 21
%{uo(t)}_jole dt = =2 0_o (S)_S
Thus, we have obtained the transform pair
1
ug(t) S (4.38)

for Re{s} = 6>0."
Example 4.2

Find <£ {uy(t)}
Solution:

We apply the definition
£ {f(t)) = F(s) = j f(t)e 'dt
0
and for this example,

L {u(t)} = Lt} = j:te‘S‘dt

We will perform integration by parts recalling that

_[udv = uv-— _[vdu (4.39)
We let
u=tand dv =e""
then,
—st
du=1andvs==
S
By substitution into (4.39),
* This condition was established in (4.9).
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—st|®

_te —st t st

[t - {—ILS - e—z} (4.40)

£y = s s
0 s

0

Since the upper limit of integration in (4.40) produces an indeterminate form, we apply L’ Hopital’s
rule*, that is,

d
—(1)
limte™' = lim -t-t = lim 94U — Jim ‘17 =0
t— o t—ow es taoodi(est) t»ooses
t

Evaluating the second term of (4.40), we get £ {t} = %

S
Thus, we have obtained the transform pair
1
te = 4.41)
S
for 6 >0.
Example 4.3

Find < {t"uy(1)}
Solution:

To find the Laplace transform of this function, we must first review the gamma or generalized facto-
rial function I"(n) defined as

r'(n) = '[:xn_le_xdx (4.42)

*  QOften, the ratio of two functions, such as é%(l) , for some value of x, say a, results in an indeterminate form. To

work around this problem, we consider the limit lim ) , and we wish to find this limit, if it exists. To find this

x—a g(X

limit, we use L’Hdpital’s rule which states that if f(a) = g(a) = 0, and if the limit a%(f(x)/ad;(g(x) as X

i im 109 _ jim (G0, 4
approaches a exists, then, lim = lim (dxf(x)/dxg(x))

x—a g(X) x->a

Circuit Analysis Il with MATLAB Applications 4-15
Orchard Publications



Chapter 4 The Laplace Transformation

The integral of (4.42) is an improper integral” but converges (approaches a limit) forall n>0.

We will now derive the basic properties of the gamma function, and its relation to the well known
factorial function
n'=nn-1)(n-2)- - 3-2-1

The integral of (4.42) can be evaluated by performing integration by parts. Thus, in (4.39) we let

X -1

u=-e" and dv=x"
Then,

n
du = —edx and v :XF

and (4.42) is written as

n_—x|*
X e

I'(n) =

Sk

+
x=0

J. xe *dx (4.43)
0

With the condition that n> 0, the first term on the right side of (4.43) vanishes at the lower limit
X = 0. It also vanishes at the upper limit as X — . This can be proved with I.” Hopital’s rule by dif-

ferentiating both numerator and denominator m times, where m > n. Then,

d .n d n-1
——X nx
oxe X" dx" g™t
lim = lim =~— = lim -—-—— = |lim~=“=——— = ...
x—w N X —> 0 nex X — 0 m X —> o0 dmfl X
—m e “mo1 ¢
dax dx
lim nn-H(n-2)..(n-m+1)x" " _ lim (M=D(M-2)..(n-m+1) _,
X —> 0 nex X —> o menex
Therefore, (4.43) reduces to
1¢ n —x
rn) = njox e "dx

and with (4.42), we have

* Improper integrals are two types and these are:

b
a. j f(x)dx where the limits of integration a or b or both are infinite
a

b
b. J' f(x)dx where f(x) becomes infinite at a value x between the lower and upper limits of integration inclusive.
a
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© -1 x 1 n x
r'(n) = on e "dx = ﬁfox e "dx (4.44)
By comparing the integrals in (4.44), we observe that
r(n) = H”HLU (4.45)
or
nC(n) = T(n+1) (4.46)

It is convenient to use (4.45) for n <0, and (4.46) for n> 0. From (4.45), we see that I'(n) becomes
infinite as N > 0.

For n = 1, (4.42) yields

r'(1) = j edx = |, =1 (4.47)
0

and thus we have the important relation,
=1 (4.48)
From the recurring relation of (4.406), we obtain

re2)=1-r1r{1) =1

rd)=2-1r2)=2-1=2! (4.49)
rd)=3-13) =3-2=3!
and in general
'(n+1) = n! (4.50)

forn=1,2,3, ...

The formula of (4.50) is a noteworthy relation; it establishes the relationship between the I'(n)

function and the factorial n!

We now return to the problem of finding the Laplace transform pair for tnuot , that is,
£ {t"ugt} = I t"e 'dt (4.51)
0

To make this integral resemble the integral of the gamma function, we let st = y, or t = y/s, and
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thus dt = dy/s. Now, we rewrite (4.51) as

S Sn Sn+1 Sn+1

Therefore, we have obtained the transform pair

£"u (1) & (4.52)
uo()©8n+1 :

for positive integers of N and ¢>0.

Example 4.4
Find <£ {5(t)}

Solution:
£ {5(t) = j:a(t)e“dt
and using the sifting property of the delta function, we get
L {3(t)) = j:s(t)e‘“dt =@ -1

Thus, we have the transform pair

NOES! (4.53)

forall c.
Example 4.5
Find < {5(t-a)}
Solution:
& {8(t-a)} = I S(t—a)e'dt
0
and again, using the sifting property of the delta function, we get

L (3(t-a)} = I:S(t—a)e_Stdt —e™
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Thus, we have the transform pair

S(t—-a) e ™ (4.54)
for >0.
Example 4.6
Find < {e *'uy(t)}
Solution:
< {e—atuo(t)} _ J‘ o ate—stdt _ J‘ e—(s+a)tdt
0 0
_ ( 1 )ef(s+a)t w: 1
S+ a S+a
0
Thus, we have the transform pair
et (1) & —— (4.55)
0 s+a
for o> -a.
Example 4.7
Find < {tne_atuo(t)}
Solution:
For this example, we will use the transform pair of (4.52), i.e.,
£ MU (1) < (4.56)
0 Sn +1 .
and the frequency shifting property of (4.14), that is,
e (1) = F(s + a) (4.57)
Then, replacing s with s+ a in (4.56), we get the transform pair
Circuit Analysis Il with MATLAB Applications 4-19
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n!

(s+a)

n —at
te Uyt —

where n is a positive integer, and 6 >-a. Thus, for n = 1, we get the transform pair

te Uy (t) <

(s+ a)2
for o >-a.
For n = 2, we get the transform
- !
t% atuo(t) = 2! 3
(s+a)
and in general,
—at n!
t'e " uy(t) = —
(s+a)
for o >-a.
Example 4.8
Find <£ {sinot uy(t)}
Solution:
0 a
L {sinot uy(t)} = _[ (sinot)e*'dt = lim [ (sinot)e™'dt
0 a— o 0

and from tables of integrals*

ax -
Ieaxsinbxdx _ € (asinbx —bcosbx)
2 2
a +b
Then,

*  This can also be derived from sinot = jiz(ej‘*’t —e 1Y) and the use of (4.55) where e

(4.58)

(4.59)

(4.60)

(4.61)

1 .
Up(t) & a By the lin-

earity property, the sum of these terms corresponds to the sum of their Laplace transforms. Therefore,

1 1 _ @)

S—jo S+]j 2 4+ @2

L [sinotuy(t)] = le (
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a

e *'(—ssinmt — ®cosot)
£ {sinot uy(t)} = lim =200 — 0L
a— o 2 2
"+ 0
e °(=ssinwa — ®»Ccos®a)
= lim ‘“)—0’“)+“)}=@
a—w 2 2 2 2 2 2
"+ "+ "+
Thus, we have obtained the transform pair
sinot Ut & ——— (4.62)
"+
for 6>0.
Example 4.9
Find <£ {cosmt uy(t)}
Solution:
* st a st
L {cosot uy(t)} = j (coswt)e ~dt = lim | (coswt)e ~dt
0 a— w 0
and from tables of integrals*
ax e**(acosbx + bsinbx)
J.e cosbxdx =
2 2
a +b
Then,
e *'(—scosmt + osin t)a
< {cosmt uy(t)} = lim POl T 00
a— o 2 2
"+
0
e (—scosma + ®sin®a) s s
= lim { —t0cmat oslled) }
a— oo 2 2 2 2 2 2
"+ "+ "+

Thus, we have the fransform pair

*  We can use the relation coswt = %(ej“’t+ e"jwt) and the linearity property, as in the derivation of the transform

of sinot on the footnote of the previous page. We can also use the transform pair dgt f(t) © sF(s)-f(07); this

is the time differentiation property of (4.16). Applying this transform pair for this derivation, we get

1d . 1, 7d . 1 ® S
L [cosotuy(t)] = L [5&]5'”(’“%(0 } = 5L [a;[smmtuo(t) J = asm = Z,
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cosot Ugt & ——— (4.63)
S +m®
forc>0.
Example 4.10
Find < {e *'sinot Uy(t)}
Solution:
Since
sinotugt < ———
S +m®
using the frequency shifting property of (4.14), that is,
e '(t) = F(s +a) (4.64)
we replace s with s+ a, and we get
e sinmt uy(t) < % (4.65)
(s+a) +m
for 6>0 and a>0.
Example 4.11
Find < {e *'cosmt Uy(t)}
Solution:
Since
cosmt Uy(t) < > 5
S +m®
using the frequency shifting property of (4.14), we replace s with s+ a, and we get
e ' cosot ug(t) & — 20— (4.66)
(s+a) +o
for 6>0 and a>0.
For easy reference, we have summarized the above derivations in Table 4.2.
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TABLE 4.2 Laplace Transform Pairs for Common Functions

f(t) F(s)
1 Ug(t) 1/s
2 |tug(d) 1/s°
5t ut) n!
Sn +1
4 st 1
5 [§(t-a) o as
6 -at 1
e " Uy(t _—
oV s+a
7 t”e_atuo(t) n: —
(s+a)" "
8 |sinot uy(t) [0}
2+’
9 cost Uy(t) s
¥+ o
10" e 2tsin et ug(t) _®
(s+ a)2 + o
et cos ot ug(t) __s+a
(s+ a)2 + o

4.4 The Laplace Transform of Common Waveforms

In this section, we will present some examples for deriving the Laplace transform of several wave-
forms using the transform pairs of Tables 4.1 and 4.2.

Example 4.12

Find the Laplace transform of the waveform fy(t) of Figure 4.1. The subscript P stands for pulse.
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fp(t)

0 a
Figure 4.1. Waveform for Example 4.12

Solution:
We first express the given waveform as a sum of unit step functions. Then,
fo(t) = Afuy(t) —up(t—a)] (4.67)

Next, from Table 4.1,
f(t—a)uy(t—a) < e °F(s)
and from Table 4.2,
Ug(t) = 1/s
For this example,
Auy(t) = A/s

and

Aug(t—a) & g @A

Then, by the linearity property, the Laplace transform of the pulse of Figure 4.1 is

A _asA
S

Alug(t) —up(t-a)] g—e_

A -as
A1)

Example 4.13

Find the Laplace transform for the waveform f| (t) of Figure 4.4. The subscript L stands for line.

fL(®

1-__/ |

ol 1 2

Figure 4.2. Waveform for Example 4.13
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Solution:

We must first derive the equation of the linear segment. This is shown in Figure 4.3. Then, we
express the given waveform in terms of the unit step function.

Figure 4.3. Waveform for Example 4.13 with the equation of the linear segment

For this example,
fL(t) = (t—1)ug(t-1)
From Table 4.1,
f(t—a)uy(t—a) < e " F(s)
and from Table 4.2,

tug(t) < %
S

Therefore, the Laplace transform of the linear segment of Figure 4.2 is

(t-Duy(t-1) = e‘s‘s—l2 (4.68)

Example 4.14

Find the Laplace transform for the triangular waveform f(t) of Figure 4.4.

Solution:

We must first derive the equations of the linear segments. These are shown in Figure 4.5. Then, we
express the given waveform in terms of the unit step function.

1 2
Figure 4.4. Waveform for Example 4.14
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fr(t)

— —-t+2
1 t& 1 N\&”

0! ;2

Figure 4.5. Waveform for Example 4.13 with the equations of the linear segments

For this example,

fr(t) = tlug(t) —up(t—=1)]+ (=t +2)[ug(t—1) —uy(t—2)]
= tug(t) —tug(t—1) —tupg(t—1) + 2up(t—1) + tuy(t—2) — 2uy(t-2)

and collecting like terms,

f(1) = tug(t) — 2(t— 1)ug(t—1) + (t— 2)uy(t—2)
From Table 4.1,
f(t—a)ug(t—a) < e "F(s)

and from Table 4.2,

tug(t) <:>l2
S

Then,

1 =<1 251
tuo(t)—z(t—l)uo(t—1)+(t—2)uo(t—2)<:>s—2—2e 3 55—2

or
2s

tUO(t)_Z(t—l)Uo(t—1)+(t_Z)UO(t_z)Q%(l_Ze,s*—e, )
S

Therefore, the Laplace transform of the triangular waveform of Figure 4.3 is

fr(h) o =1-¢%) (4.69)
S
Example 4.15
Find the Laplace transform for the rectangular periodic waveform fg(t) of Figure 4.6.
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fr(t)
A
. . . !
0 a 2a ' 3a
-Al- - — i

Figure 4.6. Waveform for Example 4.15

Solution:

This is a periodic waveform with period T = 2a, and thus we can apply the time periodicity prop-
erty

4 S
f(t)e " "dt

L {f(1)} =
l1-e

where the denominator represents the periodicity of f(t). For this example,

2a a a
L {fa(1)} 172as j fo(He ldt = 12“[ j Ae_Stdt+J2 (—A)e_Stdt}
l-e 0 l-e 0 a

A { et * }
a
as —as)

1 -2as S
2
rl+e®_e

a st

L
S

or
A—Zas (= e’
s(l-e ™)
—as
_ A_zas (1_2e—as+e—2as) _ A(l-e ™)
s(1-e %) s(L+e %) (1-e)

(é(l _ e—as) _ é(eas/ze—as/z _ e—as/ze—as/zJj

—as, as/2 _-as/2 —as/2 -as/2
S(1+e ™) Sle™ ‘% +e e

<L {fr(D}

2

_A _aS/z[eaS/Z—e_aS/zJ Asinh(as/2)
s

e
efas/z eas/2 + efas/z s cosh(as/2)

or

fo (1) & %tanh@;) (4.70)
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Example 4.16

Find the Laplace transform for the half-rectified sine wave f,,(t) of Figure 4.7.

N _ frw (D

Figure 4.7. Waveform for Example 4.16

Solution:

This is a periodic waveform with period T = 2. We will apply the time periodicity property

ITf(t)eSTdr

L)} =
l1-e

where the denominator represents the periodicity of f(t). For this example,

-27s

L (w0} = — jj f(te dt =

& st
J. sinte ~dt
1-e 0

1-¢

1 {e‘“(ssint—cost)} __ 1 (1+e™
1-e7%™ s+ 1 NGRS IE R

S

1 1+e"
L {0} = ——— R
(s"+1)(1+e H)(1-e )
or
1
(D) < — — @.71)
(s"+1)(1-e ™)
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4.5 Summary
e The two-sided or bilateral Laplace Transform pair is defined as
<L {f(t)}= F(s) = j f(t)e*'dt
) 3 3 L o +j0) st
LHRE)= 0 = 5 L_,—m F(s)e’'ds
where < {f(t)} denotes the Laplace transform of the time function f(t), <£ _1{ F(s)} denotes

the Inverse Laplace transform, and s is a complex variable whose real part is ¢, and imaginary
part @, thatis, S = o+ jo.

e The unilateral or one-sided Laplace transform defined as
L {f(t)}= F(s) = j f(tye™'dt = j f(t)e*'dt
t 0

e We denote transformation from the time domain to the complex frequency domain, and vice
versa, as

f(t) < F(s)
e The linearity property states that

c i +c, fHr()+... + Ch fn(t) < c Fi(s)+cy Fy(s)+... + ch Fn(s)
e The time shifting property states that
f(t—a)uy(t—a) < e °F(s)
e The frequency shifting property states that

—at

e f)eF(s+a)

e The scaling property states that
)
f(at) o aF 3
e The differentiation in time domain property states that

f'(t) = dﬂt f(t) < sF(s)—f(0)
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3—22 f(t) < s2F(s) - sf(07) - f'(0")
t

d? 3 e
— f(t) & s°F(s)-s f(0)-sf'(0)-f"(0)
dt
and in general
%f(t)asnF(s)—sn1f(0)—sn2f'(0)—...—fn1(0)
t

where the terms f(0), f'(07), f"(0), and so on, represent the initial conditions.

e The differentiation in complex frequency domain property states that

d
t(t) & —-F(s)

and in general,

t"f(t) < (—1)”d—nF(s)
ds

e The integration in time domain property states that

It f(t)dt < —F—(Si) + 1)

S

—00

e The integration in complex frequency domain property states that

KtD@ L F(s)ds

provided that the limit lim fitD exists.
t—>0

e The time periodicity property states that

T —st
j f(tye'dt

0
f(t+nT) < =
e The initial value theorem states that

limf(t) = limsF(s) = f(0)

t—>0 §—>®
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e The final value theorem states that

lim f(t) = IimosF(s) = ()

t>w

e Convolution in the time domain corresponds to multiplication in the complex frequency domain,
that is,

f(D)*F,(1) < Fi(s)F,(9)

e Convolution in the complex frequency domain divided by 1/2nj, corresponds to multiplication
in the time domain. That is,

1
f1(Df(D) < 27 F1(8)*F(s)
¢ The Laplace transforms of some common functions of time are shown below.

Up(ty & 1/s

te1/8°

n n!
t uo(t)c>sn+l

()<= 1

—at 1
e? Ug(t) < sra
te *uy(t) < L >
(s+a)
!
t%e Ug(t) < 2 3
(s+a)
-at !
t"e " uy(t) & ——
n+1
(s+a)

. ®
sinot Ugt < —
S +o

s
cosot Ugt < —
s+
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e sinot uy(t) < o

2 2
(s+a) +m

—-at S+a
e~ cosot Uy(t) <

2. 2
(s+a) +m

e The Laplace transforms of some common waveforms are shown below:.

fo(t)
A
t
0 a
Alug(t) —Uy(t—a)] %_e‘“% = %(1 —e ™)
fL(t)
]_ - |
; t
0! 1 2
1

(t=Dup(t-1) e 3

fr(h) o=1-e*)
S

fr(t)
A
| t
0 a 2a  '3a
_A - — — I
A (a_s)
fr(t) = S tanh >
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Ly e sint fHW(t)
T 2n 3n 4n
1
faw( <

(P+1)(1-eT)

Circuit Analysis 11 with MATLAB Applications 4-33
Orchard Publications



Chapter 4 The Laplace Transformation

4.6 Exercises

1. Find the Laplace transform of the following time domain functions:

a.

b.

€.

12
6U,(t)
24uq(t-12)

5tu,(t)

4t°uy(t)

2. Find the Laplace transform of the following time domain functions:

a.

b.

C.

d.

c.

i8

j5./-90°
-5t

5e " ug(t)

8t’e>tuy(t)

155(t— 4)

3. Find the Laplace transform of the following time domain functions:

a.

c.

(t2 43t + 4t + 3)uy(t)
3(2t-3)8(t-3)
(3sin5t)uy(t)

(5cos3t)uy(t)

(2tan4t)uy(t) Be careful with this! Comment and skip derivation.

4. Find the Laplace transform of the following time domain functions:

a.

b.

C.

3t(sin5t)ug(t)
2t%(cos3t)ugy(t)

2e "'sin5t
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d. 8e*'cos4t
e. (cost)d(t—mn/4)
5. Find the Laplace transform of the following time domain functions:

a. 5tug(t-3)

b. (2t>—5t+4)u,(t-3)
. (t-3)elug(t—2)

d. (2t-4)e* Py, (t-3)

e. 4te*'(cos2t)uy(t)

0. Find the Laplace transform of the following time domain functions:

d. .
. —(sin3t
a dt( )
d o4t
b. =(3e
dt( )
d, .2
. —(t"cos2t
c dt( )
d. i(efztsinZt)
dt
d, 2 -2t
. —(t7e
e gte )

7. Find the Laplace transform of the following time domain functions:

o Sint
’ t
tsint
b —dt
0 T
sinat
t
* cost
d —d
)
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oo —T
e

e. I—dt
LT

8. Find the Laplace transform for the sawtooth waveform fg; (t) of Figure 4.8.

d 2-a 3&

Figure 4.8. Waveform for Exercise 8.

9. Find the Laplace transform for the full rectification waveform frg(t) of Figure 4.9.

feg(t)  Full Rectified Waveform
sint
1 ........... Z
a 2a 3a 4a

Figure 4.9. Waveform for Exercise 9
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4.7 Solutions to Exercises
1. From the definition of the Laplace transform or from Table 4.2 we get:
5!

G
s

-12s 24

a.12/s b.6/s c e d.5/5° ¢ 4

2. From the definition of the Laplace transform or from Table 4.2 we get:

! -
2.j8/s b.5/s ¢ == d.8.-—— c 15¢™"
S+5 (s+5)
3.
a. From Table 4.2 and the linearity property :% + §—>33—2—' + -45 + g
S S S

b. 3(2t—3)3(t-3) = 3(2t-3)| _,8(t-3) = 95(t-3) and 95(t—3) <> 9™

: .
c 3 25 - d. 5 e.2tan4t=2-§-m——‘u<:>2-4—/i§2—%l=§
S +5 s +3 cos4t s/(s2+2) S

picious because 8/s <> 8u,(t) and the Laplace transform is unilateral, that is, there is one-to-

. This answer looks sus-

one correspondence between the time domain and the complex frequency domain. The fallacy
with this procedure is that if we assume that f;(t) < F;(s) and f,(t) < F,(S), we cannot con-

f(t)  Fy(s)
clude that f—z-(—t—) < F,6)"

multiplication in the time domain corresponds to convolution in the complex frequency

For this exercise fi(t) - fo(t) = sin4t- and as we’ve learned

cos4t

domain. Accordingly, we must use the Laplace transform definition j (2tan4t)e *'dt and this
0

requires integration by parts. We skip this analytical derivation. The interested reader may try
to find the answer with the MATLAB code syms s t; 2*laplace(sin(4*t)/cos(4*t))

4. From (4.22)

t"f(t) < (—1)”d—nn|:(s)
ds

Then

ol

3(_1)1(12(%) _ _3[—5%23)} _ _30s

s\s245 (2425 (524 25)
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b.
2 2 2 2
2(_1)2d_2( 2s 2) _ Zd%{s +:z —5225} _ ngs[—zs +92J
ds"*s"+3 (s°+9) (s°+9)
2 2 2 2
_ o, (8549)(=29) - 2(s" + 9)(25)(= 5" +9)
s>+ 9)"
2 2 3 3
_ 2_(3 +9)(=25) —4s(-5 +9):2.—25 —18s + 4s™ — 365
(s2+9) (s2+9)
_, 25> _54s ) 2s(s*=27) _ 4s(s>—27)
= 2. =2. 0
(s24+9) (s249)  (s2+9)
C.
2x5 10
2 2 2
(s+5)"+5 (s+5)"+25
d.
8(s+3) _ _8(s+3)
(s+3)°+4%  (s+3)°+16
c.
cost|_,8(t-n/4) = (J2/2)8(t—n/4) and (J2/2)8(t-n/4) & (J2/2)e” ™D
5.
a.
Stug(t—3) = [5(t-3) + 15]u0(t—3)<:>e_33(-5§+ 155) _ ge‘“(% +3)
S
b,
(2t% —5t+ 4)ug(t—3) = [2(t—3)> + 12t — 18 — 5t + 4]uy(t - 3)
= [2(t=3)%+ Tt — 14]uy(t - 3)
= [2(t-3)° + 7(t-3) + 21— 14]uy(t - 3)
2 3s(2x2! 7 7
= [2(t=3) +7(t=3) + T]uy(t-3) =e S(—-;%—+;5+g)
C.
(t-3)e Puy(t-2) = [(t-2)-1]e 272 e uy(t-2)
<:>e_4-e_25[ 1 = 1 }: e_4~e_25[_gs+1ﬂ
(s+2)° (5+2) (s +2)
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d.
(2t-4)e® Py (t-3) = [2(t-3)+6-41e "V . e Py (t-3)
@e_z_e—ss[ 2 -+ 2 J:Ze_z-e_ss[ s+42J
(s+3)% (8+3) (s+3)
c.

ate ! (cos2tug() & A1) | P ][ o2 ]
dsl(s+3)2+2 dsls? 1 6s+9+4

@_4g[ s+3 }:_4{52+65+13—(s+3)(23+6)}

dsls? 4 65+ 13 (s2+ 65+ 13)°

@_4{52+63+13—252—65—65—18} _ 4(s° +65+5)
. _
(s2 + 65+ 13) (s2 + 65 +13)

6.
a.
. d - -
sindte —=— i) < sF(s)-f(0)  f(0) = sin3t|,_, =0
s +3
d, . 3 3s
—(sin3t) < s -0=
dt 2+ 3 s?+9
b.
-4t 3 d - -\ _ qa74t _
3¢ e = G f(0 = SF(s)—f(0) f(07) =3¢ _,=3
i(3e_4t)<:>s 3 3= 3s _3(s+4)_-12
dt s+4 s+4 s+4 S+4
C.
S 2 2d%T s
cos2t & T tcos2t < (-1) —Z[Z—J
s+ 2 ds"Ls"+4
_d{sz+4—s(252} B _d{—sz+4} (P 8) (<25) — (=57 + 4)(52 + 4)2(25)
2 - 2|~
ds| (14 ds| (% 4 4 (s2+4)°
C(SP 4+ 4)(=25) — (=s® + 4)(4s) _ —25°_8s+4s® 165 _ 2s(s’—12)
= > 3 - R 2 .3
(s“+4) (s"+4) (s +4)
Thus,
2
t%cos2t < 256 —12)
2 3
(s"+4)
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and
%(t ?cos2t) <> sF(s) — f(07)

2 2.2
<:>S2sgs —12!_022515 -12)

3
(s2+4) (s2+4)°
d.
sin2t < — 2 > e 2'sin2t & —-—-—2-2—-— g-f(t) < sF(s)-1(0)
) (s+2)°+4 dt
i(e_ZtsinZt) = 22 -0= 232
dt (s+2) +4 (s+2)" +4
e.
! -2 ! _
e o2 Lypesrs)-i0)
s (s+2) dt
-2 !
i(tze t)<:>s 2! —O -2 3
dt (s+2)° (s+2)
7.
a.
. sint . .o.osint . .
sint < — but to find ¥« { } we must show that the limit lim =— exists. Since
sT+1 t t->0
lim sinx _ 1 this condition is satisfied and thus =— sint = I L ds. From tables of integrals
x>0 X t s s+ 1
I > dX = ltan (x/a)+ C. Then, I 21 ds = tan_l(l/s) + C and the constant of inte-
x° +a° s +1
gration C is evaluated from the final value theorem. Thus,
lim f(t) = lim sF(s) = lims[tan"%(1/5)+C] = 0 and 3™ & tan~Y(1/s)
tow s—>0 s—>0 t
b.
. t -
From (a) above %nt =S tan_l(l/s) and since I f(t)dt < ﬂsﬂ + HS—) , it follows that
j ST o 2 tan Y(1/5)
4-40
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From (a) above %nt = tan_l(l/s) and since f(at) < %IF(SJ , it follows that

sinat 1 *1(1/5) sinat
sinat 1/s) |, sinat

< =tan S tan_l(a/s)
at a

S cost@fo S
2 2
sT+1 t sS +1

cost < ds, and from tables of integrals

>—ds = lIn(s2 + 1)+ C and the constant of inte-
sT+1 2

gration C is evaluated from the final value theorem. Thus,

X 1 2 2
dx = ZIn(x"+a") + C. Then,
'[x2+a2 2 I

t —
lim f(t) = lim sF(s) = lim s[lln(52+1)+CJ = 0 and using | f(r)dt e F8) L 1O (o
t— o s—0 s—0 L2 _w S S

* coST 1 2
getjt . drc>2$|n(s +1)

N 1 e_
s+1°

j —-J;— , and from tables of integrals
t s 1

1 1 1 : .
.[ax n bdx =5 In(ax+b). Then, IS n 1dS = In(s+ 1) + C and the constant of integration C

is evaluated from the final value theorem. Thus,

t —
lim f(t) = lim sF(s) = lims[In(s+1)+C] = 0 and using | f(r)dt e F&) 1O (o
t— o s—0 s—0 % S S

“e " 1
getj; . dr<:>SIn(s+1)

a 2a 3a

This is a periodic waveform with period T = a and its Laplace transform is
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te‘s‘dt - — A (et
—as

a(l-e )

F(s) =

and from (4.40) of Example 4.2 and limits of integration 0 to a we get

ot tefst efst a tefst efst 0
ft67 dt = |:————2i| = |:—+—2i|
S s S s
0 a

<% {t}];

—as —as
- {l _ae e—} = li-vase™

Adding and subtracting as we get

as

L {t}]o = S%[(l+as)-(1+as)e‘ ~as] = %[(1+as)(1—e‘as)—as]

S

By substitution into (1) we get

F(s) = Lﬁ : 12[(1 +as)(l-e *)-as] = ﬁ [(1+as)(1-e *)-as]
a(l-e ™) s as’(1-e ™)
_A(l+as) Aa :A[(1+as)_ a J
as’ as(1-e®%) asL s (1-e™)

9.

This is a periodic waveform with period T = a = m and its Laplace transform is

4 st 1 . st
F(s) = - f(He “dt = — Jﬂ sinte ~dt
l-e " "0 (l-e )"0
From tables of integrals
ax -
Isinbxeaxdx _ € (asinbx —bcosbx)
2 2
a +b
Then,
1 e (ssint—cost)| 1 1+e™
F(S) = _ns ( 2 ) - s 2
1-e sT+1 o 1l-e s +1
—TtS
_ 21 . 1+e_ns _ 21 coth(%s)
sT+1 1-e S +1
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Chapter 5

The Inverse Laplace Transformation

his chapter is a continuation to the Laplace transformation topic of the previous chapter and
presents several methods of finding the Inverse Laplace Transformation. The partial fraction
expansion method is explained thoroughly and it is illustrated with several examples.

5.1 The Inverse Laplace Transform Integral

The Inverse Laplace Transform Integral was stated in the previous chapter; it is repeated here for con-
venience.

< HF(s))= f(t) = %ﬂjcfij(s)e“ds 5.1)
c-jo

This integral is difficult to evaluate because it requires contour integration using complex variables
theory. Fortunately, for most engineering problems we can refer to Tables of Properties, and Com-
mon Laplace transform pairs to lookup the Inverse Laplace transform.

5.2 Partial Fraction Expansion

Quite often the Laplace transform expressions are not in recognizable form, but in most cases appear
in a rational form of S, that is,

FO) = 5 (5.2)

where N(s) and D(s) are polynomials, and thus (5.2) can be expressed as

_N(s) _ bmsm+bm_lsm_1+bm_zsm_2

n n-1 n-2
D) as"+a, ;5" t+a, 8" i+ . +as+a,

+...+b;s+by

F(s) (5.3)
The coefficients a, and by are real numbers for kK = 1,2, ..., n, and if the highest power m of N(s)

is less than the highest power n of D(S), i.e,, m<n, F(s) is said to be expressed as a proper rational
function. If m>n, F(s) is an improper rational function.

In a proper rational function, the roots of N(s) in (5.3) are found by setting N(S) = 0; these are
called the zeros of F(s). The roots of D(s), found by setting D(s) = 0, are called the poles of F(s).

We assume that F(s) in (5.3) is a proper rational function. Then, it is customary and very convenient
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. n . .
to make the coefficient of s unity; thus, we rewrite F(S) as

al(bmsm+bm_1smfl+bm_zsm72+...+bls+b0)
F) = 38 == a a a (5.4)
_ . a
o et 22y s 20
n a'n a'n an

The zeros and poles of (5.4) can be real and distinct, or repeated, or complex conjugates, or combina-
tions of real and complex conjugates. However, we are mostly interested in the nature of the poles, so
we will consider each case separately.

Case I: Distinct Poles

If all the poles py, Py, P3, ---, P, of F(s) are distinct (different from each another), we can factor the

denominator of F(S) in the form

. N(S)
F = 5.5
) = o) =P - (5=py) - Gpn) ©-)

where p, is distinct from all other poles. Next, using the partial fraction expansion method, “we can

express (5.5) as
S L ¢ N I
(8-P1) (5-P2) (5—Pa) (S—Pn)

where Iy, I, 5, ..., I, are the residues, and p;, Py, P3, ..., P, are the poles of F(s).

F(s) (5.6)

To evaluate the residue ry, we multiply both sides of (5.6) by (s — py) ; then, we let s — p,, that is,
re = lim (s—p)F(s) = (s—pk)F(s)| B 5.7
S — Py S = Py

Example 5.1

Use the partial fraction expansion method to simplify F;(s) of (5.8) below, and find the time domain
function f;(t) corresponding to F;(S).
Fi(s) = =22 (5.8)

52+35+2

* The partial fraction expansion method applies only to proper rational functions. It is used extensively in integra-
tion, and in finding the inverses of the Laplace transform, the Fourier transform, and the z-transform. This
method allows us to decompose a rational polynomial into smaller rational polynomials with simpler denomina-
tors from which we can easily recognize their integrals and inverse transformations. This method is also being
taught in intermediate algebra and introductory calculus courses.
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Solution:

Using (5.6), we get

3s+2 3s+2 - n P

F.(s) = = = + (5.9
! 2413542 (S+1)(s+2) (s+1) (s+2)
The residues are
. 3s+2
= | 1)F(s) = —=—= =-1 5.10
= fim s+ DR = S (5.10)
and
. 3s+2
- 2)E(s) = =2T< =4 5.11
= lim 6+ 2F@) = (5 (5.11)
Therefore, we express (5.9) as
3s+2 -1 4
F.(s) = = + (5.12)
' i35+ (5+1) (s+2)
and from Table 4.2 of Chapter 4
ey (1) o —— (5.13)
0 s+a
Then,
1 4 o, ot
Fi(s) = + < (e +4e T )ug(t) =fi(t) (5.14)

(s+1) (s+2)

The residues and poles of a rational function of polynomials such as (5.8), can be found easily using
the MATLAB residue(a,b) function. For this example, we use the code

Ns = [3, 2]; Ds = [1, 3, 2]; [, p, k] = residue(Ns, Ds)
and MATLAB returns the values

r =
4
-1
p =
-2
-1
k =
[]
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For this MATLAB code, we defined Ns and Ds as two vectors that contain the numerator and
denominator coefficients of F(s). When this code is executed, MATLAB displays the r and p vec-
tors that represent the residues and poles respectively. The first value of the vector r is associated
with the first value of the vector p, the second value of r is associated with the second value of p,
and so on.

The vector k is referred to as the direct term and it is always empty (has no value) whenever F(S) is
a proper rational function, that is, when the highest degree of the denominator is larger than that of

the numerator. For this example, we observe that the highest power of the denominator is s?,

whereas the highest power of the numerator is § and therefore the direct term is empty.

We can also use the MATLAB ilaplace(f) function to obtain the time domain function directly from
F(s). This is done with the code that follows.

syms s t; Fs=(3*s+2)/(s ~ 2+3*s+2); ft=ilaplace(Fs); pretty(ft)
When this code is executed, MATLAB displays the expression

4 exp(-2 t)- exp(-t)
Example 5.2

Use the partial fraction expansion method to simplify F,(s) of (5.15) below, and find the time

domain function f,(t) corresponding to F,(S).

332+25+5

3 2
S"+12s +44s+48

F,(s) = (5.15)

Solution:

First, we use the MATLAB factor(s) symbolic function to express the denominator polynomial of
F,(s) in factored form. For this example,

syms s; factor(s ~3 + 12*s ™2 + 44*s + 48)

ans =
(s+2) *(s+4) * (s+6)
Then,
2 2
F,(s) = 3s"+2s+5 _ 3s"+25+5 __n + r + rs (5.16)
31052 dassag (ST +A(s+6)  (s+2) (s+4) (s+6)

The residues are
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2
r = 3s"+25+5 _9 (5.17)
(s+4)(s+6)|,_, 8
2
3s"+2s+5 _ 37 (5.18)

*T s+2)(5+6),_, 4

2
s = 3s"+2s+5 _ 89 (5.19)
(S+2)(S+4)S=_6 8
Then, by substitution into (5.16) we get
2
Fols) = — 3522545 9/82 +—37/44+ 89/68 (5.20)
$+125° +445+48 (52 (5+4) (5+6)
From Table 2.2 of Chapter 2
-at 1
e uo(t)c>s+a (5.21)
Then,
9/8 , -37/4  89/8 (9 -2t 37 -4t 89 —Gt)
F,(s) = e " -=— —=e t) = f,(t 5.22
)= e T see) 88 T2® tge W=D (5.22)
Check with MATLAB:
symsst; Fs = (3*s™2 4+ 4*s + 5)/ (s~ 3 + 12*s ™2 + 44*s + 48); ft = ilaplace(Fs)
ft =

-37/4*%exp (-4*t)+9/8*exp (-2*t)+89/8*exp(-6*t)

Case II: Complex Poles

Quite often, the poles of F(s) are complex*, and since complex poles occur in complex conjugate
pairs, the number of complex poles is even. Thus, if p, is a complex root of D(S), then, its complex

conjugate pole, denoted as p,*, is also a root of D(S). The partial fraction expansion method can

also be used in this case, but it may be necessary to manipulate the terms of the expansion in order to
express them in a recognizable form. The procedure is illustrated with the following example.

Example 5.3

Use the partial fraction expansion method to simplify F5(s) of (5.23) below, and find the time

* A review of complex numbers is presented in Appendix B of Circuit Analysis | with MATLAB Applications.
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domain function f5(t) corresponding to F4(s).

Fyls) = 543 (5.23)
s +5s +125+8
Solution:

Let us first express the denominator in factored form to identify the poles of F5(s) using the MAT-
LLAB factor(s) function. Then,

syms s; factor(s ~3 + 5*s ™2 + 12*s + 8)

ans =
(s+1) *(s"2+4*s+8)

The factor(s) function did not factor the quadratic term. We will use the roots(p) function.
p=[1 4 8]; roots_p=roots(p)

roots_p =
-2.0000 + 2.00001
-2.0000 - 2.00001

Then,

S+ 3 _ S+ 3
(+D)(s+2+j2)(s+2-]j2)

Fi(s) = 3 2
SS+5s +125+8
or

Fa(s) = 343 = 1y E— rz*_ (5.24)
S5 412548 O+ (3+2+j2) (s+2-j2)

The residues are

S+ 3 2

R=-—3%¥3 | _2 (5.25)
¥+4S+8‘_ 5
s=-1
- s+3 O 1-j2 _ 1-j2
2 = " = " " = "
(s+1)(s+2-j2)|. _ . (-1-j2)(—-j4) -8+j4
_ ls=-2-)2 (5.26)
_(1-j2) (-8-j4) _-16+j12 _ 1 j3
(-8+j4)(-8-j4) 80 520
1. 3)*_ 1 j3
* — [_L = _=_ 27
vt = 572 5720 (5:27)
By substitution into (5.24),
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2/5 _1/5+i3/20 —1/5-j3/20
E.(s) - 5.28
) = o e 241D T (s+292) (5:28)

The last two terms on the right side of (5.28), do not resemble any Laplace transform pair that we
derived in Chapter 2. Therefore, we will express them in a different form. We combine them into a

single term , and now (5.28) is written as

2/5
(s+1)

(25 +1)
(s®+4s+8)

(5.29)

Fa(s) = :

For convenience, we denote the first term on the right side of (5.29) as F3;(s), and the second as

F3,(S). Then,

2 _
Fay(S) = (52:51) o Zet =ty (5.30)

Next, for F5,(S)
Fa(s) = 1 _@s+l) (5.31)

S (s2 +4s5+8)
and recalling that

—at . Q)]
e “sinotugt <

2. 2
(s+a) +o
s+a

(5.32)

—at
e cosotugt < -
(s+a) +o

we express F3,(S) as

1.3 3
F (5):_2 S-'-Z# =_2( S+2 4+ =3/2 )
¥ 5((s+2)2+2%)) 5

(s+2)2+2%) (s+2)°+2%

2 6/10 2 (5.33)
((5+52;2+22)) "2 ((s+2)2+22))

_2
5
2 2 3 2

_E( (s+52;_2+22))+1—0( (s+2)2+22))

* Here, we used MATLAB with simple((—1/5 +3j/20)/(s+2+2j)+(—1/5 —3j/20)/(s+2—-2j)). The simple func-
tion, after several simplification tools that were displayed on the screen, returned (-2*s-1)/
(5*s72+20*s+40)
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Addition of (5.30) with (5.33) yields

2/5 2 S+2 3 2
F3(s) = Fgy(8) + Fgy(S) = - )+——(———————
: N O ) 5((s+2)2+22) 10 (s+2)2+22))
2 t 2 -2t 3 ot . B

e -ge cos2t + 10° sin2t = f5(1)
Check with MATLAB:
symsastw; % Define several symbolic variables
Fs=(s + 3)/(s™3 + 5*s ™2 + 12*s + 8); ft=ilaplace(Fs)

ft =
2/5*exp(-t)-2/5*exp(-2*t) *cos (2*t)
+3/10%*exp (-2*t) *sin(2*t)

Case III: Multiple (Repeated) Poles

In this case, F(s) has simple poles, but one of the poles, say p; , has a multiplicity m. For this condi-

tion, we express it as

F(s) = o N2 (5.34)
(5=Pp1) (5=P2)...(S=Pn_1)(S=Pp)

Denoting the m residues corresponding to multiple pole p; as Iy, 1y, I3, ..., ['1y, the partial frac-

tion expansion of (5.34) is written as

F(s) = —1 —+ rlzm_1+ rlsm_2+...+(sr1“£))
S— S— S — — M1
(s-p1)  (s=Pp1) (s=p1) (5.35)
p—z T, T

(5=P2)  (s—p3) (s=pn)
For the simple poles py, Py, ..., P,,, we proceed as before, that is, we find the residues as
re = lim (s—p)F(s) = (s—pk)F(s)‘ B (5.36)
S > Py $ =Py

The residues Iy, I, I3, ..., [y corresponding to the repeated poles, are found by multiplication of

both sides of (5.35) by (s—p)" . Then,

(S_pl)mF(S) = r11+(5_p1)r12+(S_p1)2r13+ +(5—p1)m_1r1m

+(S—p1)m( r, rs r )) (5.37)

+ o+
(s=p2) (5—P3) (s—py
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Partial Fraction Expansion

Next, taking the limit as S — p; on both sides of (5.37), we get

lim (s—py)"F(s) = ryy+ lim [(5=py)rp+(5—py) T+ ... +(5=p)" Tip]
s—>p1 s—>pl

. I pl)m((s —rzpa s —rspe,) MRRET —rnpn>) ]

or
r, = lim (s=p;)"F(s) (5.38)
S—>pP;

and thus (5.38) yields the residue of the first repeated pole.

The residue ry, for the second repeated pole py, is found by differentiating (5.37) with respect to s

and again, we let S — p,, that is,
. d m
rip = lim S{(s-p,)"F(s)] (5.39)
s—p,dS
In general, the residue ry, can be found from

(s=p)"F(S) = Iy +Tp(S—py) +Fig(S—P1)’ + ... (5.40)

whose (m - 1)th derivative of both sides is

k-1
. 1 d
k—D!r, = lim
(k=D s—py(k— 1) ggk1

[(s—py)"F(s)] (5.41)

or

1 k-1

lim
s—>p1(k— 1)!dSk_1

[(s—p:)"F(5)] (5.42)

My =

Example 5.4

Use the partial fraction expansion method to simplify F,(s) of (5.43) below, and find the time

domain function f,(t) corresponding to F,(s).

Fo(s) = —323 (5.43)
(s+2)(s+1)
Solution:
We observe that there is a pole of multiplicity 2 at § = -1, and thus in partial fraction expansion

form, F,(s) is written as

Circuit Analysis Il with MATLAB Applications 5-9
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Chapter 5 The Inverse Laplace Transformation

Fus)= —3*¥38 -0, Ta , To (5.44)
* (S+2)(s+1)2 (s+2) (s+1)2 (s+1)

The residues are
S+ 3

r1= D) =1
(s+1)7_,
s+3
My = —— =2
S+25=_1
r =_d_(s+3) _(s+2)—-(s+3) -1
22 7 ds\s+2 22
s=-1 (S+ ) s=-1

The value of the residue ry, can also be found without differentiation as follows:
Substitution of the already known values of r; and r,; into (5.44), and letting s = 0 ", we get

s+3 __1
s+1)’s+2),_, (+2)

r
4+ —22
(s+1)

s=0

+ 2 >
s=0 (s+1)

s=0

or

3_1
§= §+2+r22

from which r,, = -1 as before. Finally,

s+3 - = 1 + 22+—1
(s+2)(s+1)* (+2) (s+1)2 (5+1)
Check with MATLAB:
syms s t; Fs=(s+3)/((s+2)*(s+1) ™ 2); ft=ilaplace(Fs)

Fa(s)=

ot 2e —e T =1f,(t) (5.45)

ft = exp(-2*t)+2*t*exp(-t)-exp(-t)
We can use the following code to check the partial fraction expansion.

syms s

Ns =[1 3]; % Coefficients of the numerator N(s) of F(s)

expand((s + 1) ™ 2); % Expands (s + 1) "2tos ™2 + 2*s + 1;

di=1[12 1], % Coefficients of (s + 1) 2 =s72 + 2*s + 1 term in D(s)
d2=1[0 1 2]; % Coefficients of (s + 2) term in D(s)

* This is permissible since (5.44) is an identity.
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Ds=conv(d1,d2); % Multiplies polynomials d1 and d2 to express the
% denominator D(s) of F(s) as a polynomial
[r,p,k]=residue(Ns,Ds)

r =
1.0000
-1.0000
2.0000
p =
-2.0000
-1.0000
-1.0000
k =
[]
Example 5.5

Use the partial fraction expansion method to simplify Fg(s) of (5.46) below, and find the time

domain function f5(t) corresponding to the given Fg(8).
s“+3s+1
Fs(s) = ———— (5.46)
(s+1)°(s+2)
Solution:

We observe that there is a pole of multiplicity 3 at S = -1, and a pole of multiplicity 2 at s = -2.

Then, in partial fraction expansion form, F(S) is written as

r r r r r
F (S) — 11 + 12 + 13 + 21 + 22 (5‘47)
’ (s+1)° (s+1)® G+D (5427 (+2)

The residues are

2
ry = s +35+21 1
s+27 |,
- g[sz+3s+1j
12 —
sl (s+2)°
s=-1
_ (s+2)%(25+3)-2(s+2)(s’ +3s5+1) _ s+4 _3
4 3
(s+2) eoq (+2)7_
Circuit Analysis Il with MATLAB Applications 5-11
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Chapter 5 The Inverse Laplace Transformation

_ ld_2[52+3s+1j
214s?\ (s+2)°

_1ld|d s“+3s+1
_ZdS ds (S+2)2
s=-1 s =—

_ 1{(5 +2)°-3(s+2)°(s + 4)}
. 2 (s+2)°

) %(%((:::)3)

=-1
_ —-S§-5

_ 1(s+2—35—12)
L (s+2)

=4
2V (s+2)!

s=-1

S =

Next, for the pole at s = -2

_ s+ 3s5+1
(s+1)°

s=-2
and

_ (s+1)°(2s+3)-3(s+ 1)’ +3s+ 1)

- d s“+3s+1
27 ds\ (54 1)

L (s+1)° o
_ (s+1)(25+3)-3(s°+35+1) _—s’—4s 4
(s+1)" o, s+
By substitution of the residues into (5.47), we get
1 3 4 1 4

Fo(S) = —=— +

+ + + (5.48)
(s+1)° (s+1)? G+1) (5422 (5+2)

We will check the values of these residues with the MATLAB code below.

symss; % The function collect(s) below multiplies (s+1) ~ 3 by (s+2) "~ 2
% and we use it to express the denominator D(s) as a polynomial so that we can
% we can use the coefficients of the resulting polynomial with the residue function
Ds=collect(((s+1) ~3)*((s+2) "~ 2))

Ds =
s"5+7*s"4+19*s"3+25*s"2+16*s+4

Ns=[131]; Ds=[17 19 25 16 4]; [r,p,k]=residue(Ns,Ds)

r =
4.0000
1.0000
-4.0000
3.0000
-1.0000
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p =
-2.0000
-2.0000
-1.0000
-1.0000
-1.0000

k =

[]
From Table 2.2 of Chapter 2

_ _ 1 _ — |
eatc> 1 te at<::> 1 . (" 1e at@!n 1!r.‘
s+a (s+a) (s+a)

and with these, we derive f5(t) from (5.48) as

f5(t) = —%tze_t +3te " — 4o+ te 4 46 (5.49)

We can verify (5.49) with MATLAB as follows:

syms st; Fs=—1/((s+1) ~3) + 3/((s+1) ~2) —4/(s+1) + 1/((s+2) "~ 2) + 4/(s+2);
ft=ilaplace(Fs)

ft = -1/2*t"2%exp(-t)+3*t*exp(-t)-4*exp(-t)
+t*exp (-2*t)+4*exp (-2*t)
5.3 Caseform>n

Our discussion thus far, was based on the condition that F(S) is a proper rational function. However,
if F(s) is an improper rational function, that is, if m > n, we must first divide the numerator N(s) by

the denominator D(S) to obtain an expression of the form

F(s) = k0+kls+k252+...+km_nsm_”+[N)J(% (5.50)

where N(s)/D(s) is a proper rational function.
Example 5.6
Derive the Inverse Laplace transform fg(t) of

2
Fo(s) = S22 fsl’“ 2 (5.51)

Circuit Analysis Il with MATLAB Applications 5-13
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Solution:

For this example, Fg(S) is an improper rational function. Therefore, we must express it in the form

of (5.50) before we use the partial fraction expansion method.

By long division, we get

2
Fe(s) = s +2s+2 _ 1 +1+s
s+1 s+1
Now, we recognize that
L N
s+1
and
1< 38(1)
but
s ?
To answer that question, we recall that
Ug(®) = 3(1)
and
Ug"(t) = &'(t)

where 8'(t) is the doublet of the delta function. Also, by the time differentiation property

Ug"(t) = 8'(t) < s°F(s) - sf(0)-f' (0) = s°F(s) = s°- % =s
Therefore, we have the new transform pair
s < 8'(1) (5.52)
and thus,
2
S +25+2 1 -t '
Fe(s) = or 1 =S+1+l+s<:>e + () +8'(t) = fg(t) (5.53)
In general,
d’ n
L5ty s (5.54)
dt
We verify (5.53) with MATLAB as follows:
Ns =1[1 2 2]; Ds = [1 1]; [, p, kK] = residue(Ns, Ds)
r =
1
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-1

1 1

Here, the direct terms k= [1 1] are the coefficients of (t) and &'(t) respectively.

5.4 Alternate Method of Partial Fraction Expansion

Partial fraction expansion can also be performed with the method of clearing the fractions, that is,
making the denominators of both sides the same, then equating the numerators. As before, we
assume that F(S) is a proper rational function. If not, we first perform a long division, and then work
with the quotient and the remainder as we did in Example 5.6. We also assume that the denominator
D(s) can be expressed as a product of real linear and quadratic factors. If these assumptions prevail,

we let (s—a) be a linear factor of D(s), and we assume that (s —a)" is the highest power of (s —a)
that divides D(s). Then, we can express F(S) as

N(S) r r M
F = = + + ... 5.55
) D(s) s-a (s_a)? (s—a) (5-59)

Let s* +as + B be a quadratic factor of D(s), and suppose that (S2 + oS+ B)n is the highest power
of this factor that divides D(s). Now, we perform the following steps:

1. To this factor, we assign the sum of n partial fractions, that is,

ris+ky r,s+k, r.S+Kk,
+ +ot

s’ +oas+p (s.2+ocs+[3)2 (s +as+p)
2. We repeat step 1 for each of the distinct linear and quadratic factors of D(s)
3. We set the given F(S) equal to the sum of these partial fractions
4. We clear the resulting expression of fractions and arrange the terms in decreasing powers of S
5. We equate the coefficients of corresponding powers of S
6. We solve the resulting equations for the residues
Example 5.7

Express F,(s) of (5.56) below as a sum of partial fractions using the method of clearing the fractions.

Fo(s) = 2—25+4 a (5.56)
(s"+1)(s-1)
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Solution:

Using Steps 1 through 3 above, we get

Fo(s) = 2—25+4 = r125+A+ i -+ P (5.57)
s“+1)(s-1)° (s°+1) (s-1)° (=1
With Step 4,
_25+4 = (1S +A)(S—1)° + Iy (s°+ 1) + (s —1)(s° + 1) (5.58)

and with Step 5,

S2544 = (1 +12)8° + (= 2F + A= Ty +)S” (5.59)
+(ri—2A+r,)s+(A-ry+r1y) |

Relation (5.59) will be an identity is s if each power of s is the same on both sides of this relation.

Therefore, we equate like powers of s and we get

0=-2r;+A-ryp+r
1 22 21 (560)
Subtracting the second equation of (5.60) from the fourth, we get
or
ry =2 (5.61)
By substitution of (5.61) into the first equation of (5.60), we get
or
Next, substitution of (5.61) and (5.62) into the third equation of (5.60) yields
-2 =2-2A-2
or
A=1 (5.63)
Finally by substitution of (5.61), (5.62), and (5.63) into the fourth equation of (5.60), we get
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4 =14+2+r1y

or
rp =1 (5.64)
Substitution of these values into (5.57) yields

“2s+4  _ 2541, 1 2
s+ 1)(s-1)° (s*+1) (s—-1)® -1

Fi(s) = (5.65)

Example 5.8

Use partial fraction expansion to simplify Fg(s) of (5.66) below, and find the time domain function

fg(t) corresponding to Fg(s).

Fo(s) = — 52+3 (5.66)
s+5s +125+8

Solution:

This is the same transform as in Example 5.3, where we found that the denominator D(S) can be

expressed in factored form of a linear term and a quadratic. Thus, we write Fg(s) as

Fy(s) = S;r3 (5.67)
(s+1)(s"+4s+8)

and using the method of clearing the fractions, we rewrite (5.67) as

r r,S+r
Fe(s) = 243 - ey (5.68)
(s+1)(s"+4s+8) St<1 s°+4s+8

As in Example 5.3,

S+ 3

=% | ¢ (5.69)
S"+4s5+8 N 5
Next, to compute I, and Iy, we follow the procedure of this section and we get
(5+3) = ry(s°+45+8)+(,5+rg)(s+1) (5.70)

Since r, is already known, we only need two equations in r, and ry. Equating the coefficient of s2

on the left side, which is zero, with the coefficients of s? on the right side of (5.70), we get

O=r;+r1, (5.71)
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and since r; = 2/5,then r, = -2/5.

To obtain the third residue ry, we equate the constant terms of (5.70). Then, 3 = 8r; +r; or
3 =8x2/5+r3,0r r; = -1/5. Then, by substitution into (5.68), we get

2/5 1 _(2s+1)

") T D 5 (P s

(5.72)

as before.

The remaining steps are the same as in Example 5.3, and thus fg(t) is the same as f5(t), that is,

_ _ (2.t 2 -2t 3 -t . )
fg(t)= f5(t)= (Se 5e cos2t + 10e sin2t ) uy(t)
5.5 Summary
e The Inverse Laplace Transform Integral defined as
1 3 3 -}— (5+j0) st
RO} 10 = 52 L_jm F(s)e"'ds

is difficult to evaluate because it requires contour integration using complex variables theory.

e For most engineering problems we can refer to Tables of Properties, and Common Laplace trans-
form pairs to lookup the Inverse Laplace transform.

e The partial fraction expansion method offers a convenient means of expressing Laplace trans-
forms in a recognizable form from which we can obtain the equivalent time-domain functions.

e If the highest power m of the numerator N(S) is less than the highest power n of the denomina-

tor D(s), e, m<n, F(s) is said to be expressed as a proper rational function. If m>n, F(s) is
an improper rational function.

e The Laplace transform F(S) must be expressed as a proper rational function before applying the
partial fraction expansion. If F(S) is an improper rational function, that is, if m > n, we must first

divide the numerator N(S) by the denominator D(S) to obtain an expression of the form

2 -n_ N(s
F(s) = kg+kyS+Kys" + ... + Ky _ 8" n+-D—%§%

e In a proper rational function, the roots of numerator N(S) are called the zeros of F(s) and the

roots of the denominator D(S) are called the poles of F(s).
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e The partial fraction expansion method can be applied whether the poles of F(S) are distinct, com-
plex conjugates, repeated, or a combination of these.

e When F(s) is expressed as

r I I3 + 'n

F(s) = L+ + + ...
(s=p1) (s—p2) (5—P3) (s—pp)

ry, Iy, I3, ..., I, are called the residues and py, Py, Ps, ..., P, are the poles of F(S).

e The residues and poles of a rational function of polynomials can be found easily using the MAT-
LAB residue(a,b) function. The direct term is always empty (has no value) whenever F(S) is a
proper rational function.

e We can use the MATLAB factor(s) symbolic function to convert the denominator polynomial
form of F,(s) into a factored form.

e We can use the MATLAB collect(s) and expand(s) symbolic functions to convert the denomi-
nator factored form of F,(s) into a polynomial form.

e In this chapter we developed the new transform pair

s<d'(1)
and in general,

n
d—né‘)(t) o'
dt

e The method of clearing the fractions is an alternate method of partial fraction expansion.
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5.6 Exercises
1. Find the Inverse Laplace transform of the following:

A
" s+3

4
(s +3)°

4
(s+3)

4

3s+4
(s+3)°

52 +6S+3
e T
(s+3)
2. Find the Inverse Laplace transform of the following:
3s+4

" s?4+45+85

4s+5

L a——
s"+5s5+185

32+3s+2
s> +55°+10.55+9

s2_16

d.
s>+ 85 + 245 + 32

s+1
s +6s°+115+6

3. Find the Inverse Laplace transform of the following:
35+ 2
s?+ 25
55% + 3

(s2+4)

b (See hint on next page)
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2
S

2
(s?+ o)

%(sinoct—octcosm)a L
2 2.2
20 (s“+a)

1 .

—(sinat + atcosat) <

20c( at+a at)
Hint:

25+ 3
s +4.255+1

3+ 852 + 245 + 32

32+65+8

d.

=23 3

e € 3
(2s+3)
4. Use the Initial Value Theorem to find f(0) given that the Laplace transform of f(t) is

2s+3
s +4.255+1

Compare your answer with that of Exercise 3(c).

5. It is known that the Laplace transform F(S) has two distinct poles, one at s = 0, the other at
s = —1. It also has a single zero at s = 1, and we know that lim f(t) = 10. Find F(s) and f(t).

to>w
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5.7 Solutions to Exercises

1.
a.
A e p 2 2<:>4te_3t o 4 4<:>i't3e_3t=2t3 3
s+3 (s+3) (s+3)" 3 3
d.
35+44 _ 3(s+4/3+5/3-5/3) _ 5 (5+3)-5/3 _, 1 . _1
(s+3)° (s+3)° (s+3)° s+3)”  (s+3)°
3.3.-3t 5.4 —3t_l(3 -3t 5.4 —St)
o ate” - 2tfe” = e - St'e
c.
2 2 2
S +6s+3 _s"+6s+9-6 _(s+3)° _ 6 _ _1 o 1
(s+3)° (s+3)° (s+3)° (5+3)° (5+3°  (s+3)
lzfm_§44m_1(2fa_14ff
o ste” - atle = e -2t
2,
a.
3544 _ 3(s+4/3+2/3-2/3) _ 5 (s+2)-2/3 _ 5 _(s+2) 1 _ 2x9
s?+4s+85 (s +2)°+81 (s+2)° +9° (s+2)%+9% 9 (s+2)°+9°
=3- (s+22) 2—2- 92 <:>3e_2tcos9t—ge_2tsin9t
(s+2)°+9° 9 (s+2)°+9
b,
45+ 5 _ 4s+5 _ 45+ 5 - 4. s+5/4
s?+55+185 s?+55+625+12.25 (s+25)°+35° (s+25)°+35°
s+10/4-10/4+5/4 s+25 1 5x 3.5
=4 2 a2 o4 S 238 ez oo
(s+25)"+35 (s+25)"+35 2 (s+25)+35
_ 4. (s+25) 10 35 10 2

> 2T > s 467> cos3.5t - =€ 'sin3.5t
(s+25)"+35 (s+25)"+35
c. Using the MATLAB factor(s) function we get:

syms s; factor(s ~ 2+3*s+2), factor(s ~ 3+5*s "~ 2+10.5*s+9)

ans = (s+2)*(s+1)

ans = 1/2*(s+2)*(2*s"2+6*s+9)
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Then,
43542  _ _ (s+1)(5+2)  _ _ (5+1)  _ s+1
$2+552+1055+9  (s+2)(s°+3s+45) (s?+3s+45) s°+35+225-225+45
_ S+15-15+1 _ s+15 1 05x15
(s+15)2+(15)7% (s+15)°+(15)?2 19 (s+15)%+(15)°
= S +21‘5 5~ % . 1'3 s e 'cos1.5t - %e_“—’tsin 1.5t
(s +1.5)%+(15) (s+25)°+35
d.
s?_16 __(s+M)(5-4) _ _(s-4) _s+2-2-4

$?485%+245+32  (s+4)(sP+4s+8) (s+2)°+2°  (s+2)2+2°
_ s+2 1 6x2
(s+2)242% 2 (s+2)°+2°

= S+22 2—3- 22 2<:>e_Ztcoszt—Se_ZtsinZt
(s+2) +2 (s+2) +2
c.
sS+1 _ (s+1) _ 1
Pipsli11s+ 6  (S+L(s+2)(s+3)  (s+2)(s+3)
r r
= 1 = 1 + 2 I'l:—-l-— = rzz—l— =-1
(s+2)(s+3) s+2 s+3 s+ 3| _ S+2
s=-2 s=-3
_ 1 :[ 1 1 :|<:>e—2t_e—3t
(s+2)(s+3) Ls+2 s+3
3.
a.
325+2 = 235 2+l- §X52=3. 25 2+2- 25 2<:>30055t+2sin5t
sT+25 s+55s+5 s°+5° O §°45 5
b.
5s5°+3 5s° 3 1 1
= + <5 ——=(sin2t + 2tcos2t) + 3 - ——=(sin2t — 2tcos2t)
2 2 2 2.2 2 42,2 2x2 2x8
(s"+4) ("+2%) (s°+29)
@(5 + %)sin2t+ (5 - %)Ztcosm = gsin2t+ gtcosZt
4 1 4 1 16 8
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2s+3 _ 2s+3 _ o, 5
s2+4255+1 (s+4)(s+1/4) s+4 s+1/4
_ 25+3 __=5 _14 [ 25+3 _5/2 _2
v - - 2= R
s+1/4| __, -15/4 3 s+4| _,, 15/47 3

4/3 , _2/3 <:>2(2e74t+eft/4)
s+4 s+1/4 3

d.
$?+85°+245+32 _ (s+4)(s°+45+8) (s +4s+8
+ + +32 _(s+4)(s +45+8) _(s +4s5+8) and by long division
16s+8 (s+2)(s+4) (s+2)
2
S 44548 _ o oL 4 sty +25(t) + de
S+2 S+2
c.
e‘zs% e 2°F(s) < f(t— 2)uy(t—2)
(2s+3)
3
F(s)= 3 = 3/23 = 3/8 - 3/8 3@2(517,[2(9—(3/2)? =1_3ét2e-(3/2)t
(2s+3)°  (25+3)°/2°  [(2s+3)/2]° (s+3/2) !

e_ZSF(s)z e—25 3 - é(t 3 2)2(3-(3/2)0-2)

Ug(t-2)
(25+3)3 16 °
4. The initial value theotem states that lim f(t) = lim sF(s). Then,
t—>0 S —
2
f(0) = lim 3225—+3 — lim —25_ +3s

s> g” 1 4255+1 S—°g? 1425541

2,2 2
lim a gs /S +352/s = lim 2+3/5s 2:2
$2* 8% /8" +425s/s " +1/s" S7*1+4.25/s+1/s

The value f(0) = 2 is the same as in the time domain expression that we found in Exercise 3(c).

5. We ate given that F(s) = 28=1) 204 limf(t) = lim sF(s) = 10. Then,
s(s+1) $s—>0

t>x©
lim s2G=1) _ A jjm =1 _

= = —A = 10. Therefore,
s>0 S(s+1) s>0(s+1)

_ _ r r
Fo)==06-1) 1, = _10_ 20

= = 10 — 20 “)uy(t), that
s(s+1) s s+1 s s+1¢ JUo(1), that is,

f(t) = (10- 20e_t)u0(t) and we see that lim f(t) = 10

t>w
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Chapter 6

Circuit Analysis with Laplace Transforms

his chapter presents applications of the Laplace transform. Several examples are given to illus-
trate how the Laplace transformation is applied to circuit analysis. Complex impedance, com-

plex admittance, and transfer functions are also defined.

6.1 Circuit Transformation from Time to Complex Frequency

In this section we will derive the voltage-current relationships for the three elementary circuit

devices, i.e., resistors, inductors, and capacitors in the complex frequency domain.
a. Resistor

The time and complex frequency domains for purely resistive circuits are shown in Figure 6.1.

Time Domain Complex Frequency Domain
ig(t)  Va(D) = Rig(t) + ! Ve(s) = Rlg(s)
R ig(t) = VRT(t) Vr(s) lr(S) Io(s) = Ve(s)
R
R

Figure 6.1. Resistive circuit in time domain and complex frequency domain

b. Inductor

The time and complex frequency domains for purely inductive circuits is shown in Figure 6.2.

Time Domain Complex Frequency Domain
] l V() = i + l V,(s) = sLI_(s)—Li_(0")
dt sL .
i 1.(s) Vi(s) 1.(0)
L i, (t) L I _ L L
V(D) % L (0 = % J.t vt vi(s) L(8) ot
_ - Li (0")

Figure 6.2. Inductive circuit in time domain and complex frequency domain

c. Capacitor

The time and complex frequency domains for purely capacitive circuits is shown in Figure 6.3.
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Chapter 6 Circuit Analysis with Laplace Transforms

Time Domain

Complex Frequency Domain

E— d _
+ : i ic(t) = C—== dt SC l lc(s) = sCV¢(s)—Cvc(0)
+ ic(t) T le(s) 1.(s) Ve(0))
ve() /< Vo(t) = é J‘ i dt Vc(s) Ve(s) = (;_C+CT
- | N ve(0)
-1 s

Figure 6.3. Capacitive circuit in time domain and complex frequency domain
Note:

In the complex frequency domain, the terms sL and 1/sC are called complex inductive impedance,

and complex capacitive impedance respectively. Likewise, the terms and SC and 1/sL are called com-
plex capacitive admittance and complex inductive admittance respectively.

Example 6.1

Use the Laplace transform method to find the voltage V(t) across the capacitor for the circuit of

Figure 6.4, given that V(0 ) = 6 V.

R
Vg 1Q
9 s
T T va(t
12u,(t) V 1F| Ve®

Figure 6.4. Circuit for Example 6.1

Solution:

We apply KCL at node A as shown in Figure 6.5.

R iR%A

Vs 1Q c )
@ =
12uy(t) vV 1F| Vve(D

Figure 6.5. Application of KCL for the circuit of Example 6.1
Then,
ig+ic =0

or
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Circuit Transformation from Time to Complex Frequency
Ve(t) - dv
ve(h) - 12uq(t) | e _
1 dt
or
d—tc +Ve(t) = 12ug(t) (6.1)
The Laplace transform of (6.1) is
- 12
SVe(s) =V (0 ) +V(s) = .
or
(s+1)Ve(s) = 352- +6
or
6s + 12
Ve(s) =
c(s) s(s+1)
By partial fraction expansion,
V(s = 8s+12 _h, T
s(s+1) s (s+1)
6s
= +12 — 12
(s+1)|_,
6s
, = s +12 - _6
s
s=-1

6 o 12-6e" = (12-6euy(t) = ve(t)

Therefore,
12

Ve(s) = =—-

c®=3"71

Example 6.2
Use the Laplace transform method to find the current i¢(t) through the capacitor for the circuit of

Figure 6.0, given that V(0 ) = 6 V.
e AAA — l
v i (t
s 10 cls ic(t)
o
1F| Ve
12uy(t) vV

Figure 6.6. Circuit for Example 6.2

6-3
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Chapter 6 Circuit Analysis with Laplace Transforms

Solution:

This is the same circuit as in Example 6.1. We apply KVL for the loop shown in Figure 6.7.

R /1Q
V. 4/\/\/\/\/——<)>
Cl+
+
o 5,
12u,(t) V 1F ¢

Figure 6.7. Application of KVL for the circuit of Example 6.2
: 1.
Ric(t) + = j io(tdt = 12u(t)

andwith R = 1 and C = 1, we get
t
iC(t)+j io(tdt = 12u(t) (6.2)

—00

Next, taking the Laplace transform of both sides of (6.2), we get

|c(5)+Vc(07) _12

IC(S)+T S -
(1+§)|C(s) =289
(353 ) -

or
6 : -t
IC(S) = S+_1 < IC(t) = 6e Uo(t)

Check: From Example 6.1,
Ve(t)= (12— 6e )uy(t)
Then,

dve  dvg

io(t) = Cgf = =€ = %(12—6e*‘)uo(t) = 66 'Uy(t) + 65(t) (6.3)

The presence of the delta function in (6.3) is a result of the unit step that is applied at t = 0.
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Circuit Transformation from Time to Complex Frequency

Example 6.3

In the circuit of Figure 6.8, switch S; closes at t = 0, while at the same time, switch S, opens. Use

the Laplace transform method to find v, (t) for t>0.
(1)
t= : 2A
S

2
t=0 Ry L, 05H

" (o900
LF| Vg _/\é\gm i) $
cly T L1 05H
T B R2 Vout(t)
‘ Ve(0) =3V 1o L[ |

Figure 6.8. Circuit for Example 6.3

Solution:

Since the circuit contains a capacitor and an inductor, we must consider two initial conditions One
is given as Vc(07) = 3 V. The other initial condition is obtained by observing that there is an initial

current of 2 A in inductor L, ; this is provided by the 2 A current source just before switch S,

opens. Therefore, our second initial condition is i, 1(07) = 2 A.

For t> 0, we transform the circuit of Figure 6.8 into its s-domain  equivalent shown in Figure 6.9.

®
us [V o5 1V J{

g 1 0.55 8 V,u,(S)
3/s JL

Figure 6.9. Transformed circuit of Example 6.3

In Figure 6.9 the current in L; has been replaced by a voltage source of 1 V. This is found from the

relation

NI

Li,(0) =2x2=1V (6.4)

* Henceforth, for convenience, we will refer the time domain as t-domain and the complex frequency domain as s-
domain
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Chapter 6 Circuit Analysis with Laplace Transforms

The polarity of this voltage source is as shown in Figure 6.9 so that it is consistent with the direction
of the current i ;(t) in the circuit of Figure 6.8 just before switch S, opens.

The initial capacitor voltage is replaced by a voltage source equal to 3/5.
Applying KCL at node @, we get

Voul($) =1-3/5  Voul(®)  Voul®) _ 4

(6.5)
1/s+2+5s/2 1 S/2

and after simplification

Vouls) = — Zs(zs+3) (6.6)
ST +8s +10s+4

We will use MATLAB to factor the denominator D(s) of (6.6) into a linear and a quadratic factor.
p=[1 8 10 4]; r=roots(p) % Find the roots of D(s)

r =
-6.5708
-0.7146 + 0.31321
-0.7146 - 0.31321

y=expand((s + 0.7146 — 0.3132j)*(s + 0.7146 + 0.3132j))% Find quadratic form

y =
s”2+3573/2500*s+3043737/5000000

3573/2500 % Find coefficient of s

ans =
1.4292

3043737/5000000 % Find constant term

ans =
0.6087

Therefore,

2 2
Vou(s) = = s(zs +3) _ 52(3 +3) 6.7)
$T+8s"+10s+4 (s+6.57)(s"+1.43s+0.61)

Now, we perform partial fraction expansion.

2 3 r r,S+r
Voul®)= ) YT Al (6.8)
(s+657)(s2+143s+061) S+657 214354061
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Circuit Transformation from Time to Complex Frequency

25(s+ 3)

= - = 1.36 (6.9)
s"+1.43s+061| _ .,
The residues r, and r; are found from the equality
2s5(s+3) = rl(s2 +1.435 4+ 0.61) + (r, s+ r3)(s +6.57) (6.10)

Equating constant terms of (6.10), we get

and by substitution of the known value of r; from (6.9), we get

ry = —0.12

Similarly, equating coefficients of s?, we get

and using the known value of r;, we get
r, = 0.64 (6.11)
By substitution into (6.8),
1.36 0.64s - 0.12 1.36 0.64s +0.46 — 0.58 =
Vould) = 77657+ 2 65 2. 10
S+0.51 ¢"4+1435+061 St $°11435+051+0.1
or
1.36 s+0.715-0.91
Vout(8) = et (0.64) > 5
§+0. (s+0.715)" + (0.316)
1.36 0.64(s+0.715 0.58
= 657 { 2 ) >~ > > (6.12)
S+0. (s+0.715)" +(0.316)" (s+0.715)" + (0.316)
136, _ 064(s+0.715) 1.84 x 0.316

$+6.57  (540.715)°+(0.316)> (s+0.715)° + (0.316)°

Taking the Inverse Laplace of (6.12), we get

0.64s-0.12

* \We perform these steps to express the term >
s +1.43s+0.61

in a form that resembles the transform pairs

e cosotuy(t) & —>2 and e *'sinotuy(t) < 2 5. The remaining steps are carried out in
(s+a) +o (s+a) +o
(6.12).
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Chapter 6 Circuit Analysis with Laplace Transforms

—6.57t -0.715t —0.715t

Vout (1) = (1.36e + 0.64e €0s0.316t - 1.84e sin0.316t)u(t) (6.13)

6.2 Complex Impedance Z(s)

Consider the s-domain RLC series circuit of Figure 6.10, where the initial conditions are assumed to

be zero.
sL

+
7

I(s) 17 Voul®
V() sC J

Figure 6.10. Series RLC circuit in s-domain

For this circuit, the sum R + sSL + -1'6 represents the total opposition to current flow. Then,
S

_ V(s)
I(s) = R+sL+1/sC (6.14)

and defining the ratio V(s)/I(s) as Z(s), we get

_Vs(s) 1
Z(s)= i) - R+SL+S_C (6.15)
and thus, the s-domain current 1(S) can be found from
V<(S)
I(s) = == 6.16
) = 35 (6.16)
where
1
Z(s) = R+sL+—= 6.17
(5) = RsL+ = (6.17)

We recall that S = o +jo. Therefore, Z(S) is a complex quantity, and it is referred to as the complex
input impedance of an s-domain RLC series circuit. In other words, Z(S) is the ratio of the voltage
excitation V¢(S) to the current response I(S) under zero state (zero initial conditions).
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Complex Impedance Z(s)

Example 6.4
Find Z(s) for the circuit of Figure 6.11. All values are in Q (ohms).
Ty —
T 1/s
Vs(s) > s
Figure 6.11. Circuit for Example 6.4
Solution:
First Method:

We will first find 1(s), and we will compute Z(S) from (6.15). We assign the voltage V,(S) at node

A as shown in Figure 6.12.
1 V4(s) <1/s
+
P — L

Vy(s) S s

b

Figure 6.12. Circuit for finding 1(s) in Example 6.4

By nodal analysis,
VA(S) = Vs(5)  Va(s) | Va(S)

1 S s+1/s
1 1 )
1+= Va(S) = V(s
(+s+s+1/s A(S) s(8)
3
s +1
Va(S) = 57— Vs(5)

2
ST+25 +s+1

The current 1(S) is now found as

2
I(s) = O Ta®) (1_—53” ]vs(s) SRS AT

1 P25’ +s+1 P25’ +s+1
and thus,
Vs(s)  s+2s%+s+1
Z(s) = - (6.18)
1(s) 25° +1
Circuit Analysis Il with MATLAB Applications 6-9
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Chapter 6 Circuit Analysis with Laplace Transforms

Second Method:

We can also compute Z(S) by successive combinations of series and parallel impedances, as it is
done with series and parallel resistances. For this example, we denote the network devices as
Z,,25,7Z5 and Z, shown in Figure 6.13.

1 1/s
a —
Zl 23

Z(s) — $g7, =

b

Figure 6.13. Computation of the impedance of Example 6.4 by series — parallel combinations

To find the equivalent impedance Z(S), looking to the right of terminals a and b, we start on the
right side of the network and we proceed to the left combining impedances as we combine resis-
tances. Then,

Z(s) = [(Z3+Zy) || Z,]1+ 24

2 3 3 2
Z(S)=M+1=52—+1+1=52_+5+1=5$+5+1 (6.19)
s+s+1/s (2s°+1)/s 2s°+1 25°+1

We observe that (6.19) is the same as (6.18).

6.3 Complex Admittance Y(s)
Consider the s-domain GLC parallel circuit of Figure 6.14 where the initial conditions are zero.
+
hos o1 |
V(s) G< = =
sL
I5(s) l, sC

Figure 6.14. Parallel GLC circuit in s-domain

For this circuit,

GV(s) + SLLV(S) +sCV(s) = I(s)

(G 4 le + SC)(V(S)) = 1(s)

Defining the ratio l5(s)/V(s) as Y(s), we get
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Orchard Publications



Complex Admittance Y(s)

1s) _ 1
Y(s)= V(s) =G+ L+SC 25) (6.20)

and thus the s-domain voltage V(S) can be found from

_Is(s)
V(s) = _—Y(s) (6.21)
where
_ 1
Y(s) = G+ i +sC (6.22)

We recall that s = 6 + joo . Therefore, Y(S) is a complex quantity, and it is referred to as the complex
input admittance of an s-domain GLC parallel circuit. In other words, Y(S) is the ratio of the cur-
rent excitation Ig(S) to the voltage response V(S) under zero state (zero initial conditions).

Example 6.5

Compute Z(s) and Y(s) for the circuit of Figure 6.15. All values are in Q (ohms). Verify your
answers with MATLAB.

S |
8/s 10 20
Z(s) —
Y(s) — 5 =

16/s

Figure 6.15. Circuit for Example 6.5

Solution:

It is convenient to represent the given circuit as shown in Figure 6.16.

0721

Z(s), Y(s) = Z, Z3

Figure 6.16. Simplified circuit for Example 6.5

Circuit Analysis Il with MATLAB Applications 6-11
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where

2
Z, = 13s+8 = 135 +8
S S

Z, = 10 +5s

Z, = 00+ 16 _ 4(5s+4)
S S
Then,

2,23 13s° + 8

1t =
Zy+ 23 s 10+5s+ﬂ555—+4)

(10 + 55)(@)
Z(s)

2

) (10 + 5s)(ﬂ51—+4))

13s° + 8 _135°+8 .\ 20(5s° + 14s + 8)

s 55° + 10s + 4(5s + 4) s 5% + 30s + 16
S

655" + 490s° + 5285 + 4005 + 128
s(5s° + 30s + 16)

Check with MATLAB:
syms s; z1 = 13*s + 8/s;z2 = 5*s + 10; z83 = 20 + 16/s;z = z1 + z2 * 28 / (z2+23)

7z =

13*s+8/s+(5*s+10) * (20+16/s)/ (5*s+30+16/s)
z10 = simplify(z)

z10 =
(65*s™4+490*s"3+528*s72+400*s+128) /s/ (5*s"2+30*s+16)

pretty(z10)

65 s + 490 s + 528 s + 400 s + 128

s (5 s + 30 s + 16)

The complex input admittance Y(S) is found by taking the reciprocal of Z(s), that is,

2
R Sp— S CEL ) 6.23)
() 655"+ 490s° + 5285” + 400s + 128
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Transfer Functions

6.4 Transfer Functions

In an s-domain circuit, the ratio of the output voltage V,(S) to the input voltage V; (s) under

zero state conditions, is of great interest in network analysis. This ratio is referred to as the voltage
transfer function and it is denoted as G(S), that is,

Vou(s)

Gu(9)= 4

(6.24)

Similarly, the ratio of the output current I, ,(S) to the input current l;,(s) under zero state condi-
tions, is called the current transfer function denoted as G;(s), that is,

|
Gi(s)= |0.Ut((58))

The current transfer function of (6.25) is rarely used; therefore, from now on, the transfer function
will have the meaning of the voltage transfer function, i.e.,

(6.25)

Voul(s)

G =7 )

(6.26)

Example 6.6

Derive an expression for the transfer function G(s) for the circuit of Figure 6.17, where R, repre-
sents the internal resistance of the applied (source) voltage Vg, and R| represents the resistance of

the load that consists of R, L, and C.

/|

Figure 6.17. Circuit for Example 6.6

Solution:

No initial conditions are given, and even if they were, we would disregard them since the transfer
function was defined as the ratio of the output voltage V,(S) to the input voltage V;,(s) under
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zero initial conditions. The s-domain circuit is shown in Figure 6.18.

+
RL

SLE Voul®)

Vin(s)

~

Figure 6.18. The s-domain circuit for Example 6.6

The transfer function G(S) is readily found by application of the voltage division expression of the
s -domain circuit of Figure 6.18, i.e.,

v R +sL+1/sC Y
oul®) = RS R +sL+1/5c" (™
Then,
Vout(s R .+Ls+1/sC
G(s)= VO‘”( ) _ L (6.27)
in(s)  Ry+R_ +Ls+1/sC
Example 6.7

Compute the transfer function G(S) for the circuit of Figure 6.19 in terms of the circuit constants

R;, Ry, R3, Cy,and C, Then, replace the complex variable s with jo, and the circuit constants with

their numerical values and plot the magnitude [G(S)| = V,(S)/Vn(S) versus radian frequency .

Cal 10 nF
Ry < 40K =<
— AN
T 200K 50K ‘

L

Vin C/—\ Vout
i 1 |25nF

Figure 6.19. Circuit for Example 6.7

Solution:

The s-domain equivalent circuit is shown in Figure 6.20.
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—

|

Vout (5)

l

Figure 6.20. The s-domain circuit for Example 6.7

Next, we write nodal equations at nodes 1 and 2.

At node 1,
Vi(s)-V. (s Vi(s)-V S —
1(8) = Vin(s) LV 1(8) = Vo ue(s) Vi) =Vo(s) _ 6.28)
R, 1/sC, R, Rs
At node 2,
- (e
Va(9) = Vi(s) _ Voul®) 629
R, 1/sC,
Since V,(s) = 0 (virtual ground), we express (6.29) as
Vi(8) = (~SRoCo)V gy (9) (6.30)
and by substitution of (6.30) into (6.28), rearranging, and collecting like terms, we get:
1,11 ) 1 1
=+ =+ = —SR -=1V = =V.
(F+ 50 )R = 2L Vou(®) = g Vin(®)
or
(e
G(s)= V"“t( ) _ 1 (6.31)
in(®) R, [( 1,11 s, )(sR3c2) L1 J
R; Ry Rj R,
By substitution of s with jo and the given values for resistors and capacitors, we get
. =1
CUw) = 5 1 : -8 . 4 -8 1
2x10 K 3+12.5><10 m)(ijlO x10 ") + 4}
20 x 10 4 %10
or
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v
G(jo)= 2t _ T . (6.32)
Vino)  25x10%0*-j5x 10 %0 +5

We use MATLAB to plot the magnitude of (6.32) on a semilog scale with the following code:

w=1:10:10000; Gs=-1./(2.5.*10. ™ (-6).*w. ~ 2-5.*].*10. ~ (-3).*w+5);

semilogx(w,abs(Gs)); grid; hold on

xlabel('Radian Frequency w'); ylabel('| Vout/Vin|');

title('Magnitude Vout/Vin vs. Radian Frequency')

The plot is shown in Figure 6.21. We observe that the given op amp circuit is a second order low-
pass filter whose cutoff frequency (-3 dB) occurs at about 700 r/s.

Magnitude VoutVvin vs. Radian Frequency
0.2 — —
o.18
018
0.14

012

|outsin|
o

o.0s

0.06

0.04

0.02

]
10°
Radian Frequency w

Figure 6.21. |G(jo)| versus o for the circuit of Example 6.7
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6.5 Summary

e The Laplace transformation provides a convenient method of analyzing electric circuits since
integrodifferential equations in the t-domain are transformed to algebraic equations in the s-
domain.

e In the s-domain the terms sL and 1/sC are called complex inductive impedance, and complex

capacitive impedance respectively. Likewise, the terms and sC and 1/sL are called complex
capacitive admittance and complex inductive admittance respectively.

e The expression
Z(s) = R+sL+ -
sC

is a complex quantity, and it is referred to as the complex input impedance of an s-domain RLC
series circuit.

o In the S-domain the current 1(S) can be found from
V(s
I(s) = ﬁ
Z(s)

e The expression

Y(s) = G+ L 4sC
sL

is a complex quantity, and it is referred to as the complex input admittance of an s-domain GLC
parallel circuit.

e In the s-domain the voltage V(S) can be found from

I

e In an s-domain circuit, the ratio of the output voltage V,,;(S) to the input voltage V;,(s) under

zero state conditions is referred to as the voltage transfer function and it is denoted as G(S), that
is

bl

Vouls)

MRE)
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Chapter 6 Circuit Analysis with Laplace Transforms

6.6 Exercises

1. In the circuit of Figure 6.22, switch S has been closed for a long time, and opens at t = 0. Use
the Laplace transform method to compute i, (t) for t>0.

t=0 R,
e
S 10Q
L
200
R § ‘ %]mH t
220w C)gz v

Figure 6.22. Circuit for Exercise 1

2. In the circuit of Figure 6.23, switch S has been closed for a long time, and opens at t = 0. Use
the Laplace transform method to compute v (t) for t>0.

Figure 6.23. Circuit for Exercise 2

3. Use mesh analysis and the Laplace transform method, to compute i,(t) and i,(t) for the circuit

of Figure 6.24, given that i, (0 ) = 0 and v¢(0 ) = 0.

L, R,
000000 .
Rigio L, 81H
® )4
vi(t) = ug(t) (1) . F/F (1)
‘ Vo(t) = 2up(t)

Figure 6.24. Circuit for Exercise 3
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4. For the s-domain circuit of Figure 6.25,
a. compute the admittance Y(s) = 1,(8)/V(s)

b. compute the t-domain value of i;(t) when vy(t) = uy(t), and all initial conditions are zero.

l1(s) Ve(s)

—valv—’fK— N
AN
1Q 46 30
©  wie
Vi(s) Ry 20 V,(s) = 2Vc(s)
: ANA—

Figure 6.25. Circuit for Exercise 4

5. Derive the transfer functions for the networks (a) and (b) of Figure 6.26.

R L
ek VAYAYA Summ— Qg
+ + + +
C
Vin(s) ;j< Vout(s) Vin(s) R Vout(s)
(@ : . () -

Figure 6.26. Networks for Exercise 5

6. Derive the transfer functions for the networks (a) and (b) of Figure 6.27.

C R
— VWV
+ < + " +
Vin(s) R Z Vou(s) V,.(s) L g V,(5)
_ (a) _ B (b) _

Figure 6.27. Networks for Exercise 6

7. Derive the transfer functions for the networks (a) and (b) of Figure 6.28.
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TWGULWL‘CK— +

Vin(s) R >V, ,(9) Vi, (5)

—+

(a) (b)

Figure 6.28. Networks for Exercise 7

8. Derive the transfer function for the networks (a) and (b) of Figure 6.29.

i Ry
R, TR Ry ¢
}ﬂfw—— B Frvar—K— :
Vin(s) i Vin(s) Vour(s)
l/ Vout(s) Ii out
- @ ©)

Figure 6.29. Networks for Exercise 8

9. Detive the transfer function for the network of Figure 6.30. Using MATLAB, plot |G(s)| vetsus
frequency in Hertz, on a semilog scale.

Ry R, =11.3 kO
— AN
R, = 22.6 kQ

Cl:C2 = 0.01 ,UF

7EJ\;Si/\rji———Jxﬁsi/»—:]::/;j;////////e______TT

Vout(s)

- <—
I+ <

Figure 6.30. Network for Exercise 9
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6.7 Solutions to Exercises

1. Att = 0 the t-domain circuit is as shown below and the 20 Q resistor is shorted out by the

inductor.
AN
N 100
L
§m | § 1o ©
i (1) 32V
Then,
. 32
i (1) =22 =-32A
S T

and thus the initial condition has been established as i, (0 ) = 3.2 A

For all t >0 the t-domain and s-domain circuits are as shown below.

|
200 %iL(O ) =32A 200

1 mH

Li (0 ) =32x10°V

From the s-domain circuit above we get

—20000t

32x10° _ 32
20 + 10—35 s+ 20000

1.(s) = < 3.2e ug(t) = i (1)

2.Att = 0 the t-domain circuit is as shown below.

— + 20KQ
(O ‘iz(t)
@) 60 KQ ve(t) 10 KQ§
2V
l
Then,
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72V __ 72V _ 72V
6 KQ+60 KQ[[60 KQ ~ 6 KQ+30 KQ ~ 36 KQ

ir(0 ) = = 2 mA

and

i,(0 )= %iT(O ) =1mA
Therefore, the initial condition is

Ve(0 ) = (20 KQ+10 KQ) - ip(0 ) = (30 KQ)- (1 mA) = 30 V

For all t >0 the s-domain circuit is as shown below.

30 KQ 20 KQ Fe = — = Vg = Vc(9)
9x10
—1 VC(S) | 'TO"'— | +
60KQ [ 40/9x107°s S10KQ T A0S
| | Ve S 225KQ
30/s SE— I~
L 30/

(60 KQ +30 KQ) || (20 KQ + 10 KQ) = 22.5 KQ

Vo - 225 x 10° 30~ 30x225x10°
R — ’ -
9x10%/405+225x10° S 9x10%/40+ 225 x 10%s

_ (30x225x10%)/(225 x 10°) _ 30 _ 30
9x10°/(40x 225x10%) +s  9x10°/90x 10%+s 10+s

Ve(s)

Then,

Ve(s) = 30 301"

T, Uo(®) V = V(D)

3. The s-domain circuit is shown below where z; = 25,2, = 1+1/s,and z3 = S+ 3

~

1/s 1,(s) \/E/ 1,(s)
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Then,
(21 +25)14(8) —2,15(s) = 1/s

—Z,14(8) + (Z, +23)15(s) = -2/s

(21+2)) =z, | L) _ {1/5}
-2,  (Z,+13)| [1,(s) -2/5
Using MATLAB we get

Z=[z1+2z2 -z2; -z2 z2+2z3]; Vs=[1/s -2/s]'; Is=2\Vs; fprintf(' \n);...
disp(ls1 ="); pretty(Is(1)); disp(Is2 ="); pretty(Is(2))

and in matrix form

Isl =
2
2 s -1+ s
2 3
(6 s+ 3 +9 s + 2 s ) conj(s)
Is2 =
2
4 s + s + 1
2 3
(6 s +3 +9 s + 2 s ) conj(s)
Therefore,
2
1,(s) = 35 +§s-1 )
25" +9s " +65+3
4¥+s+1
12(8) = —— @)

25 +95% + 65+ 3

We express the denominator of (1) as a product of a linear and quadratic term using MATLAB.

p=[2 9 6 3]; r=roots(p); fprintf(' \n'); disp(‘root1 ='); disp(r(1));...
disp(root2 ='); disp(r(2)); disp('root3 ="); disp(r(3)); disp(root2+root3 ='); disp(r(2)+r(3));...
disp(‘root2 * root3 ='); disp(r(2)*r(3))

rootl =
-3.8170

root2 =
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-0.3415 + 0.52571
root3 =
-0.3415 - 0.52571

root2 + root3
-0.6830

root2 * root3d =
0.3930

and with these values (1) is written as

2
S 2s -1 r r,S+r
|l(S) = -; — 31817 + > 2 3 (3)
(s+3.817)- (s°+0.683s+0.393) (8+3817) (5?4 0.683s +0.393)
Multiplying every term by the denominator and equating numerators we get
s*+25—1 = ry(s°+0.6835 +0.393) + (r,s + I3)(s + 3.817)
.2
Equating s”, s, and constant terms we get
0.683r, +3.817r, +ry = 2
0.393r, +3.817ry = -1
We will use MATLAB to find these residues.
A=[1 1 0;0.683 3.817 1;0.393 0 3.817]; B=[1 2 —1]'; r=A\B; fprintf(' \n');...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f,r(3))
rl = 0.48 r2 = 0.52 r3 = -0.31
By substitution of these values into (3) we get
r r,S+r _
1,(s) = 1 2 3 _ 0.48 + 0.525-0.31 @

+ =
(s+3817) (s®10683s+0.393) (5+3817) (5?4 0.683s+0.393)
By inspection, the Inverse Laplace of first term on the right side of (4) is

0.48 -3.82t
5+382) < 0.48e 5)
The second term on the right side of (4) requires some manipulation. Therefore, we will use the
MATLARB ilaplace(s) function to find the Inverse Laplace as shown below.

syms st
IL=ilaplace((0.52*s-0.31)/(s ~ 2+0.68*s+0.39));
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pretty(IL)
1217 17 1/2 1/2
- ———— exp(- -- t) 14 sin(7/50 14 t)
4900 50
13 17 1/2
+ —— exp(- -- t) cos(7/50 14 t)
25 50
Thus,
i, (t) = 0.48e>%'~0.93¢ %**sin0.53t + 0.52¢ ***'c0s0.53t
Next, we will find 1,(s). We found earlier that
432 +s+1
5(8) = —— >
28" +9s"+6s+3
and following the same procedure we have
2
45" —s—-1 r rhS+r
Iy(s) = ; = et T ©)
(s+3.817) - (s" +0.683s + 0.393) (s+3.817) (s” +0.683s + 0.393)
Multiplying every term by the denominator and equating numerators we get
4% —s—1 = ry(s° +0.683s + 0.393) + (5 + I3)(s + 3.817)
.2
Equating s”, s, and constant terms we get
ri+r, =-4
0.683r; +3.817r,+r; = -1
0.393r; +3.817r; = -1
We will use MATLAB to find these residues.
A=[1 1 0;0.683 3.817 1;0.393 0 3.817]; B=[-4 —1 —1]'; r=A\B; fprintf(' \n");...
fprintf('r1 = %5.2f \t',r(1)); fprintf('r2 = %5.2f \t',r(2)); fprintf('r3 = %5.2f,r(3))
rl = -4.49 r2 = 0.49 r3 = 0.20
By substitution of these values into (6) we get
r rS+r _
1,(s) = 1 +— 25+ 13 _ 449 | _ 0.49s + 0.20 @
(s+3.817) (s*+0.683s+0393) (5+3817) (5?4 0.683s+0.393)
By inspection, the Inverse Laplace of first term on the right side of (7) is
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0.48

-3.82t
38 S AT ®)

The second term on the right side of (7) requires some manipulation. Therefore, we will use the
MATLAB ilaplace(s) function to find the Inverse Laplace as shown below.

syms s t
IL=ilaplace((0.49*s+0.20)/(s ™~ 2+0.68*s+0.39)); pretty(IL)
167 17 1/2 1/2
-——— exp(- -- t) 14 sin(7/50 14 t)
9800 50
49 17 1/2
+ ——— exp(- -- t) cos(7/50 14 £)
100 50
Thus,
i,(t) = —4.47¢ >%" 4 0.06e ***sin0.53t + 0.49¢ ***'c0s0.53t
4,
Ve(s)
AN A
I 15 3
® ! '
I,(s 15(s)
Vi(s)| A\ ) >3 V,(s) = 2V(s)
AN ——
a. Mesh 1:
(2+1/5) - 1,(5) - 1,(s) = Vy(s)
or
6(2+1/5) - 15(s)—6l,(s) = 6V,(s) (1)
Mesh 2:

—11(8) +615(s) = -Va(8) = —(2/9)1i(s) ()
Addition of (1) and (2) yields

(12+6/5) - 1,(5) +(2/5—-1) - 1,(S) = 6V,(s)

or

(11+8/s) - 1,(s) = 6V,(S)
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and thus
Y(S) - Il(s) - 6 — 65
Vi(s) 11+8/s 11s+8
b. With Vy(s) = 1/s we get
_ _ __6s 1_ 6 _ 6/11 6 _—8/1t _ .
(8 =) Vi) = T g s T Tlsv8 548,11 11° =L
5.
Circuit (a):
R
—AMAMN—
+ +
1/Cs L
Vin(s) T~ Vout(S)
1/Cs

VOUt(S) = R + 1/CS : Vln(s)

and
G(s) = You®) __1/Cs _ 1/Cs __ 1 _ _1/RC
Vin(s) R+1/Cs (RCs+1)/(Cs) RCs+1 s+1/RC
Circuit (b):
L
{00001
+ +
Vin(s) R 2 Vou(s)
R
Vout(s) = Ls+R Vin(s)
and
VourS) _ R _ R/L

G(s) = = =
) Vin(s)  Ls+R s+R/L

Both of these circuits are first-order low-pass filters.
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6.
Circuit (a):
c
i
Vin(s) R 2 Vou(s)
R
Vou(s) = 17T Vin(®)
and
G(s) = Vo _ R _ _RCs _ __ s
Vin(s)  1/Cs+R (RCs+1) s+1/RC
Circuit (b):
R
— A
+ +
Vin(s) L 8 Vou(s)
Ls
VOut(S) = R+ Ls ’ Vin(s)
and
G(S) — Vout(s) — Ls — S
Vin(s)  R+Ls s+R/L
Both of these circuits are first-order high-pass filters.
7.
Circuit (a):
(000001
+ L C < +
Vin(s) R >V, ,(s)
R
Voul® = [T7/cs R Vin®)
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and
Vour(s) _ R _ RCs _ (R/L)s
Vin(8)  Ls+1/Cs+R | cs?+1+RCs s*+(R/L)s+1/LC

G(s) =

This circuit is a second-order band-pass filter.

Circuit (b):
Ls+1/Cs
Voul®) = psv1/¢s Vin(®)
and
G(s) = Vou()  Ls+1/Cs _  LCs°+1 s°+1/LC

Vin(8)  R+Ls+1/Cs | cs®+RCs+1 s*+(R/L)s+1/LC
This circuit is a second-order band-elimination (band-reject) filter.

8.
Circuit (a):

[
c I\
| AVAVAV AV ey
R, Ry
‘—T:/\/\/\/\/—
_|_
Vin(s)
i Vour(s)
R,x1/Cs Vout(s z
Letz; = Ry and z, = T2~/ 2 ond since for inverting op-amp Your(S) = —2 for this circuit
R,+1/Cs Vin(s) Z;
G(s) = Vour(s)  —-[(R;x1/Cs)/(R,+1/Cs)]  —~(R,x1/Cs)  -R,C
CVi(s) R, " R;-(Ry,+1/Cs)  s+1/R,C
This circuit is a first-order active low-pass filter.
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Circuit (b):

Vin(s)

=

Ry
— A

_|_
Vou(s)

Vout(s
Let z; = Ry +1/Cs and z, = R, and since for inverting op-amp \/OL((S)) = —2—2 , for this circuit
in 1
G(s) = Vout(8) _ -R, _ —(R,/Ry)s
Vin(s)  R;+1/Cs s+1/R,C
This circuit is a first-order active high-pass filter.
9.
Ry R, =11.3KQ
— VYW
R, =22.6 KQ
Ry v, Ry;=R, = 68.1 KQ
R, ;“;ZW v, C,=C, = 0.01 uF
—ANVVY v / T
2
Vout(s)
o [ Te |
J = ., cC
|2
L I8 =
At Node V;:
V,(s) R Vi(s) = Vyu(s) _ 0
or
1 i) _ 1
(Rg + R, Vi(s) = R4Vout(5) 1)
At Node Vj:
Vs(8)=Vyl(s) | Va(s) _
R, 1/C;s
6-30
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and since V5(s) = V;(S) we express the last relation above as

BB Y0 L esvi(s) = 0
1

RZ
or
1 1
(h—2+c s) 1(s) = R—sz(s) @)
At Node V,:
Vy(s) = Vi (s) N V,y(s) - V() N Vo(8) = Vou(s)
R, R, 1/C,s
or
1,1 Vin(8) | Va(s)
(R—1+R—2+czs)v2(s) =Rt ;2 +C8Vou(s) ()
From (1)
Vy(s) = ) (5) = === Vou(s) (4
! (R3+R,)/R3R, Vou (R +Ry) o @
From (2)

V,(s) = Rz(Ri + cls)vl(s) = (1+R,C 5)V,(s)

2
and with (4)

 Ry(1+R,C;9)
VZ(S) - (R3+R4) VOUI(S) (5)

By substitution of (4) and (5) into (3) we get

R;(1+R,C,s) V. (9) R

1 1 ) 3 21 _ Vin 1 3

(Rl TR T T RARy)  oul) T TR TR Ry r Ry ou) F C2Vould)
or

R;(1+R,C.5s) R
1,1, cRlrRCs 1Ry _ 1,
|:(R1+ R2+ 2 (R3+ R4) RZ(R3+ R4) CZS:|Vout(S) - Rlvln(s)

and thus

Vouls) _ 1

Vin(s) R (i+l+c S)R3(1+R2C13)_—1_ R3 Cus
Y\R; "R, 2/ (Ry+R,)  Ry(Ry+R, 2

G(s) =

By substitution of the given values and after simplification we get
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[Woutin|

1.4

13

1.2

G(s) =

7.83x 10"

s +1.77 x 10%s + 5.87 x 10

w=1:10:10000; s=j.*w; Gs=7.83.*10.~ 7./(s. ~ 2+1.77.%10. ~ 4.*s+5.87.%10. ~ 7);...
semilogx(w,abs(Gs)); grid; hold on
xlabel('Radian Frequency w'); ylabel('| Vout/Vin|');
title('Magnitude Vout/Vin vs. Radian Frequency')

Magnitude “outMfin vs. Radian Frequency

11}--

------

______

......

------

______

_______

_______

_______

_______

_______

_______

10°
Radian Fraquency w

The plot above indicates that this circuit is a second-order low-pass filter.

6-32

Circuit Analysis 1l with MATLAB Applications

Orchard Publications



Chapter 7

Frequency Response and Bode Plots

his chapter discusses frequency response in terms of both amplitude and phase. This topic will

enable us to determine which frequencies are dominant and which frequencies are virtually

suppressed. The design of electric filters is based on the study of the frequency response. We
will also discuss the Bode method of linear system analysis using two separate plots; one for the mag-
nitude of the transfer function, and the other for the phase, both versus frequency. These plots reveal
valuable information about the frequency response behavior.

Note: Throughout this text, the common (base 10) logarithm of a number X will be denoted as
log(x) while its natural (base e) logarithm will be denoted as In(x) . However, we should remember
that in MATLAB the log(Xx) function displays the natural logarithm, and the common (base 10) log-
arithm is defined as log10(x).

7.1 Decibels

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
decibels (dB ). For instance, we say that an amplifier has 10 dB power gain or a transmission line
has a power loss of 7 dB (or gain —7 dB). If the gain (or loss) is 0 dB, the output is equal to the

input. We should remember that a negative voltage or current gain A, or A, indicates that there is a

180° phase difference between the input and the output waveforms. For instance, if an amplifier has
a gain of —100 (dimensionless number), it means that the output is 180° out-of-phase with the
input. For this reason we use absolute values of power, voltage and current when these are expressed
in dB terms to avoid misinterpretation of gain or loss.

By definition,

POUt

dB = 10log (7.1)

in

Therefore,

10 dB represents a power ratio of 10

10n dB represents a power ratio of 10"
20 dB represents a power ratio of 100
30 dB represents a power ratio of 1, 000

60 dB represents a power ratio of 1, 000, 000
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Also,

1 dB represents a power ratio of approximately 1.25
3 dB represents a power ratio of approximately 2

7 dB represents a power ratio of approximately 5

From these, we can estimate other values. For instance, 4 dB = 3 dB + 1 dB which is equivalent to a
power ratio of approximately 2 x 1.25 = 2.5. Likewise, 27 dB = 20 dB + 7 dB and this is equivalent
to a power ratio of approximately 100 x5 = 500.

Since y = |ng2 = 2logx and P = VZ/R = IZR,ifwe let R = 1 the dB values for the voltage and
current ratios become:

2
dB, = 10log|You|” = 2010g|Your (7.2)
in in
and
w2 lout
dB; = 10log|-2f| = 20log|-ou! (7.3)
in in
Example 7.1
Compute the gain in dBy, for the amplifier shown in Figure 7.1.
Pin IDout
1w 10 w
Figure 7.1. Amplifier for Example 7.1
Solution:
_ Pout _ 10 _ _ _
dBy, = 10log— = 10Iog—1— = 10log10 = 10 x1 = 10 dBy
in
Example 7.2
Compute the gain in dB,, for the amplifier shown in Figure 7.2 given that log2 = 0.3.
Vin Vout
lv 2v
Figure 7.2. Amplifier for Example 7.2.
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Solution:

v
0B, = 20log L2 = 20log% = 20l0g0.3 = 20x 0.3 = 6 dB,

n

7.2 Bandwidth and Frequency Response

Electric and electronic circuits, such as filters and amplifiers, exhibit a band of frequencies over
which the output remains nearly constant. Consider, for example, the magnitude of the output volt-

age |V, 4| of an electric or electronic circuit as a function of radian frequency @ as shown in Figure
7.3.
AV
1 Voud
0.707 - —

<— Bandwith ——— =

Figure 7.3. Definition of the bandwidth.

As shown in Figure 7.3, the bandwidth is BW = ®, - ®; where ®; and o, ate the lower and upper
Vout| = J2/2 = 0.707 and these two points
are known as the 3 dB down or half-power points. They detive their name from the fact that since

power p = V2/R = iZR, for R = 1 and for v = 0.707|V,,| or i = 0.707|l

that is, it is “halved”. Alternately, we can define the bandwidth as the frequency band between half-
power points.

cutoff frequencies respectively. At these frequencies,

| the power is 1/2,

out out|

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the
input as shown in Figure 7.4.

INPUT OUTPUT
GAIN AMPLIFIER
iL
FEEDBACK CIRCUIT

Figure 7.4. Amplifier with partial output feedback

Figure 7.5 shows an amplifier where the entire output is fed back to the input.
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INPUT,

@ GAIN AMPLIFIER

OUTPUT

+
T FEEDBACK PATH

Figure 7.5. Amplifier with entire output feedback

The symbol % (Greek capital letter sigma) inside the circle indicates the summing point where the
output signal, or portion of it, is combined with the input signal. This summing point may be also
indicated with a large plus (+) symbol inside the circle. The positive (+) sign below the summing
point implies positive feedback which means that the output, or portion of it, is added to the input.
On the other hand, the negative (-) sign implies negative feedback which means that the output, or
portion of it, is subtracted from the input. Practically, all amplifiers use used with negative feedback
since positive feedback causes circuit instability.

7.3 Octave and Decade

Let us consider two frequencies U; and U, defining the frequency interval U, — U, , and let

®2
1

If these frequencies are such that o, = 20, we say that these frequencies are separated by one

octave and if ®, = 10w, they are separated by one decade.

Let us now consider a transfer function G(s) whose magnitude is evaluated at s = [jo|, that is,

eeI=% =60l =< (1.5)

) 0
s = |jol

Taking the log of both sides of (7.5) and multiplying by 20, we get

or

|G(®)l4g = —20klog,,e + 20log,,C (7.6)

Relation (7.6) is an equation of a straight line in a semilog plot with abscissa log;q® where

dB
slope = -20k Jecads
and intercept = C dB shown in Figure 7.6.
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G ()|

|G(w)| axis intercept

-20 dB/decade = —6 dB/octave

logpe

1 10 100 1000

Figure 7.6. Straight line with slope —20 dB/decade = -6 dB/octave

With these concepts in mind, we can now proceed to discuss Bode Plots and Asymptotic Approxi-
mations.

7.4 Bode Plot Scales and Asymptotic Approximations

Bode plots are magnitude and phase plots where the abscissa (frequency axis) is a logarithmic (base
0

10) scale, and the radian frequency o is equally spaced between powers of 10 such as 107 , 107,
10" , 10% and so on.

The ordinate (dB axis) of the magnitude plot has a scale in dB units, and the ordinate of the phase
plot has a scale in degrees as shown in Figure 7.7.

20T 90°
2 10+ b 450
g P ]
Q O
E 0 i i EN( | :
50 1 10 100 < 1 10 100
‘E“ ~10+ Frequency o r/s % —45° Frequency o r/s
=
20+ —90°+
Bode Magnitude Plot Bode Phase Angle Plot
Figure 7.7. Magnitude and phase plots
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It is convenient to express the magnitude in dB so that a transfer function G(S), composed of prod-
ucts of terms can be computed by the sum of the dB magnitudes of the individual terms. For exam-

ple,

20-(1+£Oﬂ _
%% 0gm(1442) g+ L ap
l+jo 10 l+jo

and the Bode plots then can be approximated by straight lines called asymptotes.

7.5 Construction of Bode Plots when the Zeros and Poles are Real
Let us consider the transfer function

A-(s+2)-(S+2y)...-(S+1Zp)

(7.7)
S-(S+Py)-(S+Py)-(S+P3)-(S+Py)

G(s) =

where A is a real constant, and the zeros z; and poles p; are real numbers. We will consider complex

zeros and poles in the next section. Letting § = jo in (7.7) we get

A-(Jo+zy) (Jo+2zy)-...-(Jo+zp,)

G(j = - - - - -
U = S Go+p)-Go+py)- (o + pa) (o +py)

(7.8)

Next, we multiply and divide each numerator factor jo +z; by z; and each denominator factor

jo +p; by p; and we get:

A(1001) g (1240). g (124)
G(jo) = - l E Z& (7.9)
jm-pl(pl+1)-pz(p2+1)-...-pn( +1)

Pn

Letting

m
[1=
Az 2,-...-2 o1
= m=A|n (710)

P1-P2- ... Py Hpi

i=1

K

we can express (7.9) in dB magnitude and phase form,
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IG(w)| = 20log|K| +20|og(jzil’ + 1) +20|og(jziz’+ 1) o +20|og(jzin: + 1) (7.11)
—20Iog|joa|—20|og(j£+l) —20Iog(jp3:+1)—...—20Iog(j(—:+1)
/G(w) = LK+4@%+1)+4(J£+1)+...+4(jz(—:+1) (7.12)
—Ajm—é(jbg-i+1)—4(j£-+l)—...—L(ij:+l)

The constant K can be positive or negative. Its magnitude is |K| and its phase angle is 0° if K> 0,
and -180° if K < 0. The magnitude and phase plots for the constant K are shown in Figure 7.8.

= &

S 20l0g|K| S . K>0

E Ei

= < Frequency wr/s
S 0 2

S S K <0

= = -180°

Frequency w r/s

Figure 7.8. Magnitude and phase plots for the constant K

For a zeto of order n, that is, (jo)" at the origin, the Bode plots for the magnitude and phase are as

shown in Figures 7.9 and 7.10 respectively.

For a pole of order n, thatis, 1/ (jo)" = (jo)" at the origin, the Bode plots are as shown in Figures
7.11 and 7.12 respectively.

Next, we consider the term G(jo) = (a+jo)".

The magnitude of this term is

G(jo)| = J@ +0)) = @2+0)"? (7.13)

and taking the log of both sides and multiplying by 20 we get

20log|G(jw)| = 1Onlog(a2 + oaz) (7.14)

It is convenient to normalize (7.14) by letting
u=w/a (7.15)
Circuit Analysis Il with MATLAB Applications 7-7
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120
100 .

60 / /
o : %//
ae—"
ol o

-120
0.01 0.10 1.00 10.00 100.00

o (r/s)

Magnitude in dB
o

N\

Figure 7.9. Magnitude for zeros of Order n at the origin

360
S n=3
S 270
Q£ _
2 180 n=2
<
Q =
2 90 n=1
=
a

0 ‘

0.01 0.10 1.00 10.00  100.00

o (rad/s)

Figure 7.10. Phase for zeros of Order n at the origin

Then, (7.14) becomes

2 2
20l0g|G(ju)| = 10n|og[a2 : a%} = 10nloga® + 10nlog(1 + u?)
a (7.16)
= 10nlog(1 + uz) + 20nloga
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120
100 1
80 n=3
60 — =

0

20 n=1

N

-40

\
.60 i N
-80 : \\\
-100 : \

-120
0.01 0.10 1.00 10.00 100.00

o (r/s)

V///

Magnitude in dB
o
//]
/1 / II

Figure 7.11. Magnitude for poles of Order n at the origin

g o0

o =

s 90 n=1

§E’ -180 n=2

o 270 n=3

[%2]

T 360

& .01 0.10 1.00 10.00  100.00
o (rad/s)

Figure 7.12. Phase for poles of Order n at the origin

For u «1 the first term of (7.16) becomes 10nlogl = 0 dB. For u» 1, this term becomes approxi-

mately 10nlog u’ = 20nlogu and this has the same form as G(jo) = (jo)" which is shown in Fig-
ure 79 forn =1,n=2 ,and n = 3.

The frequency at which two aymptotes intersect each other forming a corner is referred to as the
corner frequency. Thus, the two lines defined by the first term of (7.16), one for U « 1 and the other

for u» 1 intersect at the corner frequency u = 1.

The second term of (7.10) represents the ordinate axis intercept defined by this straight line.
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The phase response for the term G(jo) = (a+ jo)" is found as follows:

We let
u=w/a (7.17)
and
o(u) = tan"u (7.18)
Then,
(a+jo) = a"(1+ju)" = a"(J1+u’stan ) = a"(1+u?)" Zeint® (7.19)

Figure 7.13 shows plots of the magnitude of (7.16) fora = 10,n = 1,n =2 ;and n = 3.

Order n for (a+jm)"
u= w/a, a=10

120
/ 7/
100 / /
Asymptotes / /
m
80 N
= 3
) n=3
g 60 ] /’
=
2 40 n=2 4/% /
=
n=1 E%
20 — <
™~ Corner Frequencies
0 ‘ ‘
0.01 0.10 1.00 10.00 100.00

Frequency u (r/s)

Figure 7.13. Magnitude for zeros of Order n for (a + jo)"

As shown in Figure 7.13, a quick sketch can be obtained by drawing the straight line asymptotes given

by 10logl = 0 and 10nlog u® for u«1 and u»1 respectively.

The phase angle of (7.19) is n¢(u) . Then, with (7.18) and letting

nd(u) = 0(u) = ntanu (7.20)

7-10 Circuit Analysis Il with MATLAB Applications
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we get
lim 8(u) = limntan"u = 0 (7.21)
u—>0 u—>0
and
lim O(u) = lim ntan 'u = 1Z (7.22)
uU— oo uU— oo 2

At the corner frequency U = a we get U = 1 and with (7.20)

0(1)

ntan 1 = %’" (7.23)

Figure 7.14 shows the phase angle plot for (7.19).

Order n for (a+jw)"
u= w/a, a=10
0(u) = n*arctan(u)*180/x

360
=) n=3
S 270 R
[}
= n=2
2 180 1
<
[ n=1
% ” Z
K /_
o
0 ‘
0.01 0.10 1.00 10.00 100.00

u (rad/s)

Figure 7.14. Phase for zeros of Order n for (a + jo)"

The magnitude and phase plots for G(jo) = 1/(a+ jo)" are similar to those of G(jo) = (a+jo)"
except for a minus sign. In this case (7.16) becomes

~20l0g|G(ju)| = —10nlog(1 + u?)-20nloga (7.24)
and (7.20) becomes
O(u) = _ntan'u (7.25)
The plots for (7.24) and (7.25) are shown in Figures 7.15 and 7.16 respectively.
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Order n for 1/(a+jo)"
u= w/a, a=10

Corner|Frequencies
n=1 q

-20 L <
e 7
) ™~ ~

AN

Magnitude in dB
&
o

-100 Asymptotes \\ N
N
-120 AN
0.01 0.10 1.00 10.00 100.00

Frequency u (r/s)

Figure 7.15. Magnitude for poles of Order nfor 1/(a + jo)"

Order n for 1/(a+jo)"
u= ol/a, a=10
6(u) = —n*arctan(u)*180/x

0 ‘
(@) —
€ 0 ‘X&
2L n=2
2 .180 R
<
) n=3
@ 270 :
o
[a
-360
0.01 0.10 1.00 10.00 100.00

u (rad/s)

Figure 7.16. Phase for poles of Order n for 1/(a + jw)"

7.6 Construction of Bode Plots when the Zeros and Poles are Complex

The final type of terms appearing in the transfer function G(S) are quadratic term of the form

2 . . .
as” + bs + ¢ whose roots are complex conjugates. In this case, we express the complex conjugate
roots as
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(s+a—jB)s+a+jB) = (s+a) +p 7.26)
2 2 52
=S +2a5+a +
and letting
a = Co, (7.27)
and
o+ = (7.28)
by substitution into (7.26) we get
s“+2as+o’+p° = 52+2ans+wﬁ (7.29)
Next, we let
G(s) = s? 20,5+ coﬁ (7.30)
Then,
G(jo) = (jo)’ +j20,0 + ]
. . (7.31)
= (0,— o) +]20,0
The magnitude of (7.31) is
. 2 2,2 2 22
IG(jo)| = J(mn—m ) +4C 0,0 (7.32)
and taking the log of both sides and multiplying by 20 we get
20l0g|G(jo)| = 10log[(0? - 0?) + 420 0?] (7.33)

As in the previous section, it is convenient to normalize (7.33) by dividing by 0),1' to yield a function
of the normalized frequency variable U such that
u=ow/o, (7.34)
Then, (7.33) is expressed as
20l0g|G(ju)| = 10log[(0’ - 0%)’ + 42w 0]

or
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032—(1) 2 2 (02—(0 2 2
10I09{mﬁ{ o ZJ +4Q20)ﬁ9)—2} = 10Iog{mﬁ( " zj +4C2mim—2}
® ® ® ® (7.35)

n n n n

20log|G(ju)|

10log [ {(1-u%)" +4C%u*}] = 10logep + 10log[(1 - u?)” + 4¢%u?]
The first term in (7.35) is a constant which represents the ordinate axis intercept defined by this

straight line. For the second term, if ut«1 , this term reduces to approximately 10logl = 0 dB and

if u’»1 , this term reduces to approximately 10log u* and this can be plotted as a straight line
increasing at 40 dB/decade. Using these two straight lines as asymptotes for the magnitude curve
we see that the asymptotes intersect at the corner frequency U = 1. The exact shape of the curve
depends on the value of { which is called the damping coefficient.

A plot of (7.35) for £ = 0.2, = 0.4 ,and £ = 0.707 is shown in Figure 7.17.

The phase shift associated with (mﬁ - 0)2) +j2m,0 is also simplified by the substitution U=®/®,
and thus

o(u) = tan (5L (7.36)

1—u2

The two asymptotic relations of (7.36) are

-1
lim 6(u) = lim tan [ 25%) = 0 (7.37)
u—0 u—0 1-u
and
-1
lim O(u) = lim tan (5L} = (7.38)
U— U— 1_u
At the corner frequency ® = o,, U = 1 and
-1
0(1) = lim tan (25L) = 1 (7.39)

A plot of the phase for { = 0.2, { = 0.4 ,and £ = 0.707 is shown in Figure 7.18.
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Zeros of (o, 2-02)+2Lomm
u=olo, o,=1

10logw,*+10log{(1-u?)*+4c2u?%}

20 ¢=0.707

Magnitude in dB
[
o

LA\ [\ & 1

A
4

£=0.4

0.01 0.10 1.00 10.00 100.00

Frequency u (r/s)

Figure 7.17. Magnitude for zeros of 10log co;l + 10log[(1 - u2)2 + 4Q2u2]

Zeros of (w>-02)+2Lwn
U= oo, o,=1
8(u) = (arctan(2¢u/(1-u?))*180/r

180
> £=0.707 ——>
Z
o =0.4
2 90
<
[}
(%2}
8 < ¢=0.2
a
0 ‘
0.01 0.10 1.00 10.00 100.00
u (rad/s)

Figure 7.18. Phase for zeros of 10log co;1 +10log[(1 - uz)2 + 4Q2u2]
The magnitude and phase plots for
1

G(jo) = 1
(0, —0")+]20,0
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are similar to those of
G(jo) = (0 - 0°) +j20,0

except for a minus sign. In this case, (7.35) becomes

2
~10(logwm)-10log[(1 - u?)” + 4¢%u’] (7.40)
and (7.36) becomes
1
B(u) = ~tan (5L (7.41)
1-u
A plot of (7.40) for £ = 0.2, = 0.4 ,and £ = 0.707 is shown in Figure 7.19.
Magnitude for Poles of 1/((cwn>-0°)+2{w0mw)
u=olo, o,=1
~10logw,*-10log{(1-u?)?+4c2u?}
20
¢=0.2
10 %
=04
3 | A
£ =
£ 10 N\
2 4=0.707
2 -20 ]
>
-30 1
-40
0.01 0.10 1.00 10.00 100.00
Frequency u (r/s)
2
Figure 7.19. Magnitude for poles of 1/10Iogoo;1 + 10log[(1 - u2) + 4§2u2]
A plot of the phase for { = 0.2, { = 0.4 ,and £ = 0.707 is shown in Figure 7.20.
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Phase for Poles of (on2-0%)+2Lwno
u=olo, o,=1
8(u) = —(arctan(2¢u/(1-u%))*180/x

0
=) _
) £=0.707 &4
Q
2 .90
<
& %
g ¢=0.2 —

-180

0.01 0.10 1.00 10.00 100.00
u (rad/s)

Figure 7.20. Phase for poles of 1/10log mﬁ +10log[(1 - u2)2 + 4§2u2]

Example 7.3

For the circuit shown in Figure 7.21

a. Compute the transfer function G(S).

b. Construct a straight line approximation for the magnitude of the Bode plot.

c. From the Bode plot obtain the values of 20log|G(jo)| at ® = 30 r/s and @ = 4000 r/s. Com-
pare these values with the actual values.

d. If v(t) = 10cos(5000t +60°), use the Bode plot to compute the output vV, (1) .

C L
,_K (IO

100 mH
100 uF

Vo (t
110 O out(V

VsUg(t)

Figure 7.21. Circuit for Example 7.3.
Solution:

a. We transform the given circuit to its equivalent in the s —domain shown in Figure 7.22.
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C L
,_}/ W0
4\ 0.1s
10 /s ' +
s R
G—) 110 §_V°“‘(S)
Vi (s)

Figure 7.22. Circuit for Example 7.3 in s —domain

and by the voltage division expression,

110

Vour(s) = 4 “Vin(s)
10" /s+0.1s + 110
Therefore, the transfer function is
\Y,
G(s) = Joul® _ : 110s = 1100s - = 1100s (7.42)
Vin()  0.15°+110s+10*  s*+1100s+10°  (s+100)(s +1000)
b. Letting S = jo we get
. 1100j
G(jo) = ~ 2
(o +100)(jo + 1000)
or in standard form
G(jo) = 001w (7.43)

(1+jo/100)(1 + j/1000)

Letting the magnitude of (7.43) be denoted as A, and expressing it in decibels we get

Agg = 20log|G(jw)| = 20l0og0.011 + 20log|jw| — 20log

(1 +j1%’)‘ _ 20log

(1+ %)‘ (7.44)

We observe that the first term on the right side of (7.44) is a constant whose value is
2010g0.011 = -39.17. The second term is a straight line with slope equal to 20 dB/decade. For
® <100 r/s the third term is approximately zero and for > 100 it decreases with slope equal to
—-20 dB/decade. Likewise, for @ <1000 r/s the fourth term is approximately zero and for
o > 1000 it also decreases with slope equal to —20 dB/decade.

For Bode plots we use semilog paper. Instructions to construct semilog paper with Microsoft
Excel are provided in Appendix D.
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In the Bode plot of Figure 7.23 the individual terms are shown with dotted lines and the sum of
these with a solid line.

80 —
60 | 20l0g g/l -7 g
\ _ =T 20l0g 4|1 + jool
40 | -
P g
20 -
-
- rl
-
0
/ = =~ ~ h =S ~
I~ AR
-20 - )
//—23|0g10|L+jm/10(0 ~~ TS
N~ N IS
-40 ————————-—————-—————-~—\—\———>§-
‘ —20log 14|l # jeoy 100 ~~
-60 ~ ~
20log ,,(0.011)
-80
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

Figure 7.23. Magnitude plot of (7.44)

c. The plot of Figure 7.23 shows that the magnitude of (7.43) at ® = 30 r/s is approximately
-9 dB and at ® = 4000 r/s is approximately —10 dB. The actual values are found as follows:

At o = 30 r/s, (7.43) becomes

0.011 x j30

G(j30) = (1+j0.3)(1+j0.03)

and using MATLAB we get

g30=0.011*30j/((1+0.3j)*(1+0.03j));...
fprintf(' \n'); fprintf(mag = %6.2f \t',abs(g30));...
fprintf('magdB = %6.2f dB',20*log10(abs(g30))); fprintf(' \n"); fprintf(' \n)

mag = 0.32 magdB = -10.01 dB
Therefore,

|G(j30) = 0.32
and

20l0og|G(j30)| = 20l0g0.32 ~-10 dB
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Likewise, at @ = 4000 r/s, (7.43) becomes

0.11(j4000)

©(j1000) = (1+40)(1 +j4)

and using MATLAB we get

g4000=0.011*4000j/((1+40j)*(1+4j));...
fprintf(' \n'); fprintf(mag = %6.2f \t',abs(g4000));...
fprintf('magdB = %6.2f dB',20*log10(abs(g4000))); fprintf(' \n'); fprintf(' \n')

mag = 0.27 magdB = -11.48 dB
Therefore,
|G(j4000)| = 0.27

and
20log|G(j4000)| = 20log0.27 = -11.48 dB

d. From the Bode plot of Figure7.23, we see that the value of Ayg at @ = 5000 r/s is approxi-

mately =12 dB. Then, since in general a5 = 20logb, and that y = logx implies x = 107, we

%

|Al = 10 = 0.25

have

and therefore

Vv = |Al[Vg| = 025x 10 = 25V

out max

If we wish to obtain a more accurate value, we substitute @ = 5000 into (7.43) and we get
g5000=0.011*5000j/((1+50j)*(1+5j));...

fprintf(' \n'); fprintf(mag = %6.2f \t',abs(g5000));...
fprintf('phase = %6.2f deg.',angle(g5000)*180/pi); fprintf(' \n'); fprintf(' \n')

mag = 0.22 phase = -77.54 deg.
G(j5000) = —20LLUS000) 625, 7754
(1+)50)(1+]5)
Then,
Y =|Alx10 = 0.22x10 = 2.2V

out max
and in the t—domain

Voui(t) = 2.2c0s(5000t — 77.54°)
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We can use the MATLAB function bode(sys) to draw the Bode plot of a Linear Time Invariant
(LTT) System where sys = tf(num,den) creates a continuous-time transfer function 8ys with
numerator num and denominator den, and tf creates a transfer function. With this function, the fre-
quency range and number of points are chosen automatically. The function
bode(sys,{wmin,wmax}) draws the Bode plot for frequencies between wmin and wmax (in radi-
ans/second) and the function bode(sys,w) uses the user-supplied vector W of frequencies, in radi-
ans/second, at which the Bode response is to be evaluated. To generate logarithmically spaced fre-
quency vectors, we use the command logspace(first_exponent,last_exponent,
number_of_values). For example, to generate plots for 100 logarithmically evenly spaced points

for the frequency interval 10 <0<10%r/s , we use the statement logspace(-1,2,100).

The bode(sys,w) function displays both magnitude and phase. If we want to display the magnitude
only, we can use the bodemag(sys,w) function.

MATLAB requires that we express the numerator and denominator of G(S) as polynomials of s in
descending powers.

Let us plot the transfer function of Example 7.3 using MATLAB.

From (7.42),
1100s
2 5
s”+1100s + 10

G(s) =

and the MATLAB code to generate the magnitude and phase plots is
num=[0 1100 0]; den=[1 1100 10 " 5]; w=Ilogspace(0,5,100); bode(num,den,w)
However, since for this example we are interested in the magnitude only, we will use the code

num=[0 1100 0]; den=[1 1100 10 ™ 5]; sys=tf(hum,den);...
w=logspace(0,5,100); bodemag(sys,w); grid

and upon execution, MATLAB displays the plot shown in Figure 7.24.

Example 7.4

For the circuit of Example 7.3

a. Draw a Bode phase plot.

b. Using the Bode phase plot estimate the frequency where the phase is zero degrees.

c. Compute the actual frequency where the phase is zero degrees.

d. Find v, (t) if v;,(t) = 10cos(wt+60°) and o is the value found in part (c).
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Bode Magnitude Diagram

Frequency [radisec)

Figure 7.24. Bode plot for Example 7.3.

Solution:

a. From (7.43) of Example 7.3

G(jo) = 0.011jo (7.45)
(1+]0/100)(1 + joo,/ 1000)

and in magnitude-phase form

0.011]jw|

GU®) = 17 50,/100)/((1 + jo 1000y < (* P~V
where
Zo = 90° /B = —tan (©/100) /-y = —tan ‘(®/1000)
For » = 100
/B = —tan"1 = —45°
For ® = 1000

/-y = —tan ‘1 = —45°

The straight-line phase angle approximations are shown in Figure 7.25.
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180

P(0) = a—P—y
135

90 1= == = - .

45 - ™~

45 =y = —1an'](03/1000)\ = ~ ]
—B = —tan 71((9/100) - L
-90 1 ]

-—— = ———

-135 A

-180
10 10 10° 10° 10* 10°

Figure 7.25. Bode plot for Example 7.4.
Figure 7.26 shows the magnitude and phase plots generated with the following MATLAB code:
num=[0 1100 0]; den=[1 1100 10 " 5]; w=logspace(0,5,100); bode(num,den,w)

b. From the Bode plot of Figure 7.25 we find that the phase is zero degrees at approximately
o =310r/s

c. From (7.45)

G(jo) = 0.011jo
(1+jo/100)(1 + jo/1000)

and in magnitude-phase form

Gjo) = 0.011®£90°
I(1+jo/100) Ztan " (®/100)|(1 + jo/1000)| Ltan “(w/1000)
The phase will be zero when

tan (®/100) + tan (/1000) = 90°
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Bode Diagram

o] IR
10°

Frequency [radisec)

Figure 7.26. Bode plots for Example 7.4 generated with MATLAB

This is a trigonometric equation and we will solve it for o with the solve(equ) MATLAB func-
tion as follows:

syms w; x=solve(atan(w/100) +atan(w/1000)—pi/2); combine(x)

ans =
316.2278

Therefore, ® = 316.23 r/s

d. Evaluating (7.45) at ® = 316.23 r/s we get:

0.011(j316.23) (7.46)

G(j316.23) = - -
(1+j316.23/100)(1 + j316.23/1000)
and with MATLAB

Gj316=0.011*316.23j/((1+316.23j/100)*(1+316.23j/1000)); fprintf(' \n');...
fprintf(magGj316 = %5.2f \t', abs(Gj316));...
fprintf(phaseGj316 = %5.2f deg.', angle(Gj316)*180/pi)

magGj316 = 1.00 phaseGj31l6 = -0.00 deg.

We are given that |V;,| = 10 V and with [G(j316.23)| = 1 we get
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v |G(j316.23)||V;;| = 1x 10 = 10 V

out| =
The phase angle of the input voltage is given as 0;, = 60° and with 0(j316.23) = 0° we find that

the phase angle of the output voltage is

eOut = ein + 9(131623) = 60° + 0° = 60°
and thus
Vour = 10£60°

or
Voui(t) = 10c0s(316.23t + 60°)

7.7 Corrected Amplitude Plots

The amplitude plots we have considered thus far are approximate. We can make the straight line
more accurate by drawing smooth curves connecting the points at one-half the corner frequency

o,/ 2, the corner frequency o, and twice the corner frequency 2o, as shown in Figure 7.27.

At the corner frequency o,,, the value of the amplitude A in dB is
Ags| = +20log|1 +j| = +20log./2 = +3 dB (7.47)
O =0,

where the plus (+) sign applies to a first order zero, and the minus (=) to a first order pole.

Similarly,

Aga| = +20log|1 +j/2| = iZOIOQﬁ = +0.97 dB ~ +1 dB (7.48)

0 =0,/2
and

Aga| = +20log|1 +j2| = +20log./5 = +6.99 dB ~+7 dB (7.49)

o =20,

As we can seen from Figure 7.27, the straight line approximations, shown by dotted lines, yield 0 dB
at half the corner frequency and at the corner frequency. At twice the corner frequency, the straight
line approximations yield +6 dB because , and 2w, are separated by one octave which is equiva-
lent to £3 dB per decade. Therefore, the corrections to be made are £1 dB at half the corner fre-
quency ®,/2, £3 dB at the corner frequency o, and £1 dB at twice the corner frequency 2m,,.

The corrected amplitude plots for a first order zero and first order pole are shown by solid lines in
Figure 7.27.
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The corrections for straight-line amplitude plots when we have complex poles and zeros require dif-

ferent type of correction because they depend on the damping coefficient {. Let us refer to the plot
of Figure 7.28.

Magnitude in dB

0,/2 O, »,/2 o

Figure 7.27. Corrections for magnitude Bode plots

We observe that as the damping coefficient { becomes smaller and smaller, larger and larger peaks in

the amplitude occur in the vicinity of the corner frequency o,. We also observe that when

£=0.707 , the amplitude at the corner frequency o, lies below the straight line approximation.

We can obtain a fairly accurate amplitude plot by computing the amplitude at four points near the

corner frequency o, as shown in Figure 7.28.
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The amplitude plot of Figure 7.28 is for complex poles. In analogy with (7.30), i.e.,

Magnitude for Poles of 1/((cn’-0?)+j2wmwm)
u=olo, o,=1
—10loge,*-10log{(1-u?)*+4c2u?}

20
=0,2
10 Pk
/ — | £=0.4

3 0 ‘ Jﬁ:‘k/ ;
£ 0
[} /
g 10 I
= ¢=0.707
2 20
=

-30 \

-40 \

0.01 0.10 1.00 10.00 100.00

Frequency u (r/s)

Figure 7.28. Magnitude Bode plots with complex poles
2 2
G(s) = s +20mw,s + o,

which was derived earlier for complex zeros, the transfer function for complex poles is

G(s) = (7.50)

2
"+ 20,5+ o,
where C is a constant.

Dividing each term of the denominator of (7.50) by o, we get

G(s) = < L

wi(s/o, ) +20(s/0,) +1

and letting C/mﬁ = K and s = jo , we get

G(jo) = - (7.51)
1-(o/0,) +j20n/o,

As before, we let ®/®, = u . Then (7.51) becomes
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K

G(ju) = — (7.52)
1-u"+j2Cu
and in polar form,
G(ju) = K (7.53)
l1-u?+j2culz0
The magnitude of (7.53) in dB is
Ay = 20log|G(ju)| = 20logK — 20Iog|(1 U+ j2(;u)|
> (7.54)
_ 20logK — 20l0g /(1 - u?)° + 4c2u? = 20logK — 10log[u® + 20%(2C% — 1) + 1]
and the phase is
-1
o(u) = ~tan 5L (7.55)

1-u

In (7.54) the term 20logK is constant and thus the amplitude Ayg, as a function of frequency, is

dependent only the second term on the right side. Also, from this expression, we observe that as
u—0,

~10logu’ + 2u%(2¢2 ~ 1)+ 1] > 0 (7.56)
and as U— o0,
~10log[u” + 2u%(2¢% — 1) + 1] — —40logu (7.57)

We are now ready to compute the values of Ayg at points 1, 2, 3, and 4 of the plot of Figure 7.29.

At point 1, the corner frequency o, corresponds to U = 1. Then, from (7.54)

Aga(®,/2) = AdB@) = ~10log[u® +2u*(2¢* - 1)+ 11|, _, ,
— _10log [Ilé +2. %(23;2 “1)+ 1} — _10log [Ilé . % + 1} (7.58)
= —10log(&? + 0.5625)
and for { = 0.4
Age(@y/2)| = ~10log(0.4° + 0.5625) = 1.41 dB
poin
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Point 3 at ® = o,

Point 2 at ® = 0,4 |

3 \ /

Point 1 at ® = /2

2 SRR /f
)4

l/

Point 4 at ® = g 4p

/

]

Figure 7.29. Corrections for magnitude Bode plots with complex poles when { = 0.4

!

!
0,/2 o @

max

|

0dB

To find the amplitude at point 2, in (7.54) we let K = 1 and we form the magnitude in dB. Then,

Ags| = 20log L (7.59)

point 2 1= (0/0,) +i2¢0/ o,

We now recall that the logarithmic function is a monotonically increasing function and therefore
(7.59 has a maximum when the absolute magnitude of this expression is maximum. Also, the square
of the absolute magnitude is maximum when the absolute magnitude is maximum.

The square of the absolute magnitude is

1
[1-(0/0,) +4(Co/o,)?

(7.60)

Circuit Analysis Il with MATLAB Applications 7-29
Orchard Publications



Chapter 7 Frequency Response and Bode Plots

or

1

2
1- 20)2/c0§ + oa4/coﬁ + 4(;20) /coﬁ

(7.61)

To find the maximum, we take the derivative with respect to @ and we set it equal to zero, that is,

2 3 4 2 2
do/oy—40 /o, -80w/0y o (7.62)

2

{[1 —(0/0n) + 4((@03)/@”)2}
The expression of (7.62) will be zero when the numerator is set to zero, that is,
(0/0)(4-40° /0> -8C%) = 0 (7.63)
Of course, we require that the value of ® must be a nonzero value. Then,

2,2 2
4-40"/0,-8C =0
or
2., 2 2
(4o")/ o, = 4-8C

from which
O = © = 04128 (7.64)

provided that 1-2¢°>0 or {<1/42 or <0.707 .

The dB value of the amplitude at point 2 is found by substitution of (7.64) into (7.54), that is,

Aga(@nay) = ~10log[u’ +20%(2¢° - 1) + 1] v
= —10Iog[(1—2(;2)2+2(1_2§2)(2C2_1)+1] (7.65)
= _10log[4C%(1 - )]
and for § = 0.4
Aga(®n) = —10l0g(4 x 0.4°(1-0.4%)) = 2.69 dB

The dB value of the amplitude at point 3 is found by substitution of ® = ®, = u = 1 into (7.54).
Then,

7-30 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Corrected Amplitude Plots

Ags(®,) = -10log[u +2u* (2"~ 1) + 11|, _,

~10log[1 +2(25° - 1) +1] (7.66)
~10log[4¢%] = —20log (2¢)

and for { = 0.4
Agg(o,) = —20log(2x0.4) = 1.94 dB

Finally, at point 4, the dB value of the amplitude crosses the 0 dB axis. Therefore, at this point we
are interested not in Ayg(®q gg) but in the location of ® yg in relation to the corner frequency o, .

at this point we must have from (7.57)
4 2,0,2
0 dB = -10log[u” +2u”(2¢" -1)+1]
and since logl = 0, it follows that
ut+2u?2cf -+l =1
ut+ 20?26 -1) = 0

vt +2(2c2-1)) = 0
or

u+2(2c2-1) = 0

Solving for U and making use of U = o/ ®, we get

g g5 = ®W2(1-26°)
From (7.67),

Opax = (’Jn‘Vl_ZCZ

therefore, if we already know the frequency at which the dB amplitude is maximum, we can compute

the frequency at point 4 from

W g = A/é(’“)max (7.67)
Example 7.5
For the circuit of Figure 7.30
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R L

+
™~ Vout(t)

Figure 7.30. Circuit for Example 7.5.
a. Compute the transfer function G(s)

b. Find the corner frequency o, from G(s).

c. Compute the damping coefficient C.
d. Construct a straight line approximation for the magnitude of the Bode plot.

e. Compute the amplitude in dB at one-half the corner frequency w,/2, at the frequency ®,, at
which the amplitude reaches its maximum value, at the corner frequency ®,, and at the frequency

®g 4g Where the dB amplitude is zero. Then, draw a smooth curve to connect these four points.

Solution:

a. We transform the given circuit to its equivalent in the s—domain shown in Figure 7.31 where
R =1,Ls = 0.05s,and 1/Cs = 125/s.

R L

+
~ Vout(s)

Vin(s)

Figure 7.31. Circuit for Example 7.5 in s —domain

and by the voltage division expression,

_ 25/s
Vou®) = 55700154 25,8

Vin(s)

Therefore, the transfer function is
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Vour(s) 25 _ 2500

G(s) = = = (7.68)

Vin() 0015 +025+25 5%+ 20s+ 2500

b. From (7.50)
G(s) = _____._'5__.____2 (7.69)
$"+ 20w, s+ o,
and from (7.68) and (7.69) (oﬁ = 2500 or

o, = 50 rad/s (7.70)

c. From (7.68) and (7.69) 2Cw, = 20 . Then, the damping coefficient { is
¢ = 20 _ _20 (7.71)

- - =02
20, 2x50

d. For ® <®, , the straight line approximation lies along the 0 dB axis, whereas for ® > o, the
straight line approximation has a slope of =40 dB . The corner frequency o, was found in part (b)

to be 50 rad/s The dB amplitude plot is shown in Figure 7.31.

e. From (7.61),
Aga(®,/2)= —10log(&’ + 0.5625)
where from (7.74) ¢ = 0.2 and thus ¢* = 0.04. Then,
Agg(®,/2)= —1010g(0.04 + 0.5625) = —10log(0.6025) = 2.2 dB

and this value is indicated as Point 1 on the plot of Figure 7.32.

Next, from (7.64)

Opa = 041 -28

Onax = 904/1-2x0.04 = 50,/0.92 = 47.96 rad/s
Therefore, from (7.65)

Then,

Aga(®n,) = —10l0g[4¢%(1 - ¢*)] = -10log[(0.16) x (0.96)] = 8.14 dB
and this value is indicated as Point 2 on the plot of Figure 7.32.

The dB amplitude at the corner frequency is found from (7.60), that is,
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Ags(y) = ~20l09(2¢)
Then,
Agg(o®,) = -20log(2x0.2) = 7.96 dB

and this value is indicated as Point 3 on the plot of Figure 7.32.

Finally, the frequency at which the amplitude plot crosses the 0 dB axis is found from (7.67), that
is,

®g g = ﬁmmax
or

™y qg = ~2x47.96 = 67.83 rad/s

This frequency is indicated as Point 4 on the plot of Figure 7.32.

20 -

1 Point 2 Point 3
15 ] 7 0A AR

] 8.14 dB r.ouub
lOé \ /

110 | N

Magnitude in dB

15 | N
20 1
25 1
-30 1

-35

a0 1 AN
10 ®,/2 = 25 L 100 1000
®q 4g ~ 68 ointls

Figure 7.32. Amplitude plot for Example 7.5

The amplitude plot of Figure 7.32 reveals that the given circuit behaves as a low pass filter.
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Using the transfer function of (7.68) with MATLAB, we get the Bode magnitude plot shown in Fig-
ure 7.33.

num=[0 0 2500]; den=[1 20 2500]; sys=tf(num,den); w=Ilogspace(0,5,100); bodemag(sys,w)

Bode Magnitude Diagram

M agnitude (dB)

Frequency (radisec)

Figure 7.33. Bode plot for Example 7.5 using MATLAB
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7.8 Summary

The decibel, denoted as dB, is a unit used to express the ratio between two amounts of power, gen-
erally Py,/Pj,. By definition, the number of dB is obtained from dB,, = 10log,,(P,,/P;j,). It

can also be used to express voltage and current ratios provided that the voltages and currents have
identical impedances. Then, for voltages we use the expression dB, = 20log,,(V,,/Vi,) , and for

currents we use the expression dB; = 20log (154 1i5)

The bandwidth, denoted as BW, is a term generally used with electronic amplifiers and filters. For
low-pass filters the bandwidth is the band of frequencies from zero frequency to the cutoff fre-
quency where the amplitude fall to 0.707 of its maximum value. For high-pass filters the band-
width is the band of frequencies from 0.707 of maximum amplitude to infinite frequency. For
amplifiers, band-pass, and band-elimination filters the bandwidth is the range of frequencies where
the maximum amplitude falls to 0.707 of its maximum value on either side of the frequency
response curve.

If two frequencies w; and o, are such that ®, = 2m,, we say that these frequencies are separated
by one octave and if ®, = 10w, , they are separated by one decade.
Frequency response is a term used to express the response of an amplifier or filter to input sinuso-

ids of different frequencies. The response of an amplifier or filter to a sinusoid of frequency ® is
completely described by the magnitude |G(jw)| and phase ZG(jw) of the transfer function.

Bode plots are frequency response diagrams of magnitude and phase versus frequency .
In Bode plots the 3-dB frequencies, denoted as ®,, are referred to as the corner frequencies.
In Bode plots, the transfer function is expressed in linear factors of the form jo + z; for the zero

(numerator) linear factors and jo + p; for the pole linear factors. When quadratic factors with

complex roots occur in addition to the linear factors, these quadratic factors are expressed in the

form (jo))2 +j20w,0 + mﬁ.

In magnitude Bode plots with quadratic factors the difference between the asymptotic plot and the
actual curves depends on the value of the damping factor ¢. But regardless of the value of ¢, the
actual curve approaches the asymptotes at both low and high frequencies.

In Bode plots the corner frequencies ®, are easily identified by expressing the linear terms as

Zi(Jo/z;+ 1) and p;(jo/p;+ 1) for the zeros and poles respectively. For quadratic factor the cor-

ner frequency o, appears in the expression (joo)2 +j2C00,0 + wﬁ or (j(x)/(x)n)z +j20w/ 0, +1
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e In both the magnitude and phase Bode plots the frequency (abscissa) scale is logarithmic. The
ordinate in the magnitude plot is expressed in dB and in the phase plot is expressed in degrees.

e In magnitude Bode plots, the asymptotes corresponding to the linear terms of the form
(Jo/z;+1) and (Jo/p;+ 1) have a slope +20 dB/decade where the positive slope applies to

zero (numerator) linear factors, and the negative slope applies to pole (denominator) linear factors.

e In magnitude Bode plots, the asymptotes corresponding to the quadratic terms of the form

(joa/oan)2 +j20w/ o, + 1 have a slope +40 dB/decade where the positive slope applies to zero

(numerator) quadratic factors, and the negative slope applies to pole (denominator) quadratic fac-
tors.

e In phase Bode plots with linear factors, for frequencies less than one tenth the corner frequency
we assume that the phase angle is zero. At the corner frequency the phase angle is £45°. For fre-
quencies ten times or greater than the corner frequency, the phase angle is approximately +90°

where the positive angle applies to zero (numerator) linear factors, and the negative angle applies
to pole (denominator) linear factors.

e In phase Bode plots with quadratic factors, the phase angle is zero for frequencies less than one
tenth the corner frequency. At the corner frequency the phase angle is £90°. For frequencies ten
times or greater than the corner frequency, the phase angle is approximately £180° where the pos-
itive angle applies to zero (numerator) quadratic factors, and the negative angle applies to pole
(denominator) quadratic factors.

e Bode plots can be easily constructed and verified with the MATLAB function bode(sys) func-
tion. With this function, the frequency range and number of points are chosen automatically. The
function bode(sys),{wmin,wmax}) draws the Bode plot for frequencies between wmin and
wmax (in radian/second) and the function bode(sys,w) uses the uset-supplied vector W of fre-
quencies, in radian/second, at which the Bode response is to be evaluated. To generate logarithmi-
cally spaced frequency vectors, we use the command logspace(first_exponent,last_exponent,
number_of_values).
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7.9 Exercises

1. For the transfer function

G(s) = 10°(s + 5)
(s +100)(s + 5000)

a. Draw the magnitude Bode plot and find the approximate maximum value of |G(jo)| in dB.
b. Find the value of ® where |G(jo)| = 1 for ®>57r/s
c. Check your plot with the plot generated with MATLAB.

2. For the transfer function of Exercise 1

a. Draw a Bode plot for the phase angle and find the approximate phase angle at ® = 30 r/s,
o =50r/s,m =100 r/s,and o = 5000 r/s

b. Compute the actual values of the phase angle at the frequencies specified in (a).

c. Check your magnitude plot of Exercise 1 and the phase plot of this exercise with the plots gen-
erated with MATLAB.

3. For the circuit of Figure 7.34

a. Compute the transfer function.
b. Draw the Bode amplitude plot for 20log|G(jw)|

c. From the plot of part (b) determine the type of filter represented by this circuit and estimate the
cutoff frequency.

d. Compute the actual cutoff frequency of this filter.
e. Draw a straight line phase angle plot of G(jo) .
f. Determine the value of 8(®) at the cutoff frequency from the plot of part (c).

g. Compute the actual value of 6(®) at the cutoff frequency.

L
(000001
025H L ¥
10
Vinuo(t) C TN l
4x10°F ‘ i)

Figure 7.34. Circuit for Exercise 3
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7.10 Answers to Exercises

1. a.
Gjo) = 10°(jo + 5) _ 10° x 5 x (1 + jo/5)
(jo + 100)(jo + 5000) 100 x (1 + jo/100) x 5000 x (1 + joo/5000)
(1+j0/5)

= (1+jo/100) - (1 +jo/5000)
20l0g|G(jw)| = 20log|1 + jo /5| — 20log|1 + je/100| — 20log|1 + jo./5000)

The corner frequencies are at ® = 5r/s, o = 100 r/s, and o = 5000 r/s. The asymptotes
are shown as solid lines.

40 ,

35 .
Olog|(1 +jo/5) sy 20log|G(jo)|

30 - /
25 / N

20 A \\
15 /

2]

[I=N
o
L

X
AN N
AN AN

N AN

AN
—-20log|(1 +|jo/100)] —=\ N\

N 120logl(1 +joy/100) —

Magnitude of G(jo) in dB

N s,

© o1 o & o w

| F F— L
/

.25 N\

-30 N\

-35 - N

10° 10* 10° 10 10 10°
o (r/s)

From this plot we observe that 20l0g|G(jo)| .. ~ 26 dB for the interval 10° < ® <5 x 10°

max
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b. By inspection, 2010g|G(jo)| = 0 dB at © = 9.85x 10" r/s

2. From the solution of Exercise 1

(1+jw/5)
(1+j®/100) - (1 + joo/5000)

G(jo) =

and in magnitude-phase form

(1+jo/5)
(1 +jo/100)| - |(1 + jo/5000)]

G(jo) = | Z(o=B-7v)

thatis, O(®) = o —P—7y where & = tan "©/5, —p = —tan /100, and —y = —tan "®/5000

The corner frequencies are at ® = 5r/s, ® = 100 r/s, and o = 5000 r/s where at those fre-

quencies o = 45°, —f = —-45° and —y = -45° respectively. The asymptotes are shown as solid
lines.

From the phase plot we observe that (30 r/s)~=60°, (50 r/s)~53°, 6(100 r/s)~ 38°, and
6(5000 r/s) =~ —-39°

90

& = tan "©/5

75 ~
60 |
] / 0(w
30 \
15 ]
0 . \
i AN
-15 1 N \
] ~ \
-30 - 1 N A\
1-B =|-tan "©/100 — \
45 - N
] N N
60

1 - = —tan "©,/5000 \\
-75 N N

Phase angle in degrees

-90 h
10° 10" 10° 10° 10* 10°
o (r/s)
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b. We use MATLAB for the computations.

theta_g30=(1+30j/5)/((1+30j/100)*(1+30j/5000));...
theta_g50=(1+50j/5)/((1+50j/100)*(1+50j/5000));...
theta_g100=(14100j/5)/((1+100j/100)*(1+100j/5000));...
theta_g5000=(1+5000j/5)/((1+5000j/100)*(1+5000j/5000));...
printf(' \n";...

fprintf(theta30r = %5.2f deg. \t', angle(theta_g30)*180/pi);...
fprintf(theta50r = %5.2f deg. ', angle(theta_g50)*180/pi);...
fprintf(' \n');...

fprintf(theta100r = %5.2f deg. \t', angle(theta_g100)*180/pi);...
fprintf(theta5000r = %5.2f deg. ', angle(theta_g5000)*180/pi);...
fprintf(' \n')

theta30r = 63.49 deg. thetab0r = 57.15 deg.
thetalO0r = 40.99 deg. theta5000r = -43.91 deg.

Thus, the actual values are

o (1+j30/5) B .
£6030) = £75367100) - (1.+30,5000) ~ 0o
L (1+j50/5) B .
£60%0) = £375507100) - (1 +j50,5000) ~ °

/G(j100) = ~ (1+]100/5) — 40.99°

(1+j100,/100) - (1 +j100,/5000)

(1 +j5000/5) _ 4301
(1+)5000,/100) - (1 +j5000/5000) ~

£G(j5000) = £

c. The Bode plot generated with MATLAB is shown below.
syms s; expand((s+100)*(s+5000))

ans =
s”2+5100*s+500000

num=[0 1075 5*1075]; den=[1 5.1*1073 5*1075]; w=logspace(0,5,10" 4);...
bode(num,den,w)
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Bode Diagram

30— AL A s e % LR
% Pl S I A PR i e G R
8 i
% 10 .................
% T
= e O I O A BB T S S NN I T B
a0 T
WEME. Lwn R ;
8 ' B
= B :
: | EERREH
Rerer S ::
_g[j_.-.i..'.l.:.LL:JL-.-l-.I-J.LLL:JL...J.-LJ.LLL!JI...J..L.:.LL:.E.H.-.- ]
1’ 10 107 107 1 10°
Frequency [radisec)
3. a. The equivalent s —domain circuit is shown below.
(000001
0.25s +
1
(@ Vout(s)
Vin() == \
25/5s ‘ il
By the voltage division expression
_ 1+25/s
Vourl®) = 52554 1+25,5 Vin(®
and
V(S
G(s) = Joul® _ s+ 25 _ 24(s+25) M
Vin(8) 0255 +s+25 s +4s+100
b. From (1) with s = jo
G(jo) = 4(jo + 25) ®)

From (7.53)

—® + 4jo + 100

7-42
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G(s) = —"—— (3)
s"+ 20,5+ o,

and from (1) and (3) o’ = 100, o, = 10,and 2lw, = 4, ¢ = 0.2
Following the procedure of page 7-26 we let U = o/, = ®/10. The numerator of (2) is a lin-

ear factor and thus we express it as 100(1 + jo/25). Then (2) is written as

100(1 + joo/25) _ (1+jw/25)
100(~®°/100 + 4j®/100 + 100/100) 1 - (®/10)* +j0.4/10

G(jo) =

or
11+ jw/25| /0 “

G(jo) = L
11— (©/10)% +j0.40/10| 20

The amplitude of G(jo) in dB is

2010g|G(jo)| = 20log|1 +jo/25 — 20log[|1 - (©/10)* +j0.40/10] (5)

The asymptote of the first term on the right side of (5) has a corner frequency of 25 r/s and
rises with slope of 20 dB/decade . The second term has a corner frequency of 10 r/s and rises
with slope of —40 dB/decade. The amplitude plot is shown below.

80
60 3 dB at o _~13r
40 _ ="
20 - -1

0 N~ /‘ 20log|1 + joo /25|

\ .
-20 ~ 20log|G(jo)|
.40 \ L
~N
-60 ™ y
20l0g{/1 - (0/10)24 j040/10]~ Y
-80 A
107" 10° 10! 10° 10° 10*

c. The plot above indicates that the circuit is a low-pass filter and the 3 dB cutoff frequency o,

occurs at approximately 13 r/s.
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d. The actual cutoff frequency occurs where
Gjoo)] = 1G(j0)|max/~2 = 1/(2) = 0.70

At this frequency (2) is written as

100 + 4jo,
(100-0,%) + 4jo

G(jwc) =

and considering its magnitude we get

J100° + (4o)® 1

J100-0.2)7 + (40?2

2[100% + (4,)?] = (100-02) + (4w,)?

20000 + 320> = 10000 — 2000 + o + 160

ws - 2160- — 10000 = 0

We will use MATLAB to find the four roots of this equation.
syms w; solve(w ™~ 4-216*w ™ 2—-10000)

ans =
[ 2*(27+1354~(1/2))~(1/2)] [ -2*(27+1354~(1/2))"(1/2)]
[ 2*(27-13547(1/2))"(1/2)]1] [ -2*(27-1354"(1/2))"(1/2)]

w1=2%(27+1354" (1/2)) ~ (1/2)

wl =
15.9746

W2=-2*(27+1354 " (1/2)) ~ (1/2)

w2 =
-15.9746

W3=2*%(27-1354 " (1/2)) ~ (1/2)

w3 =
0.0000 + 6.25991

Wa=-2*%(27-1354 "~ (1/2)) ~ (1/2)

wd =
-0.0000 - 6.25991
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From these four roots we accept only the first, that is, .~ 16 r/s

e. From (4)
0 = tan (0/25)
and
_ _0.40/10
1-(0/10)°

For a first order zero or pole not at the origin, the straight line phase angle plot approximations
are as follows:

I. For frequencies less than one tenth the corner frequency we assume that the phase angle is
zero. For this exercise the corner frequency of 8(w) is o, = 25 r/s and thus for

1<®w<25r/s the phase angle is zero as shown on the Bode plot below.

180
0(w)

135
—~ 90 —_—_ — — — = 4
[75] _ e
-
()] 45
) 7 /G(wn) =25r1/s
< 0 - PS °
g \ ( )\ 10 r/s

(P 3] = S -
: -45 X £G(jo)
< NN
= N \
o 90 N
\ \\/
N
-135 4 AN
—-0(®) N N
-180 ~—
10" 10° 10! 10° 10° 10*
o (r/s)

II For frequencies ten times or greater than the corner frequency, the phase angle is approxi-
mately £90°. The numerator phase angle 0(®) is zero at one tenth the corner frequency,
it is 45° at the corner frequency, and 90° for frequencies ten times or greater the corner
frequency. For this exercise, in the interval 2.5 <® <250 r/s the phase angle is zero at
2.5 r/s and rises to 90° at 250 r/s.
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III' As shown in Figure 7.20, for complex poles the phase angle is zero at zero frequency,
—-90° at the corner frequency and approaches —180° as the frequency becomes large. The
phase angle asymptotes are shown on the plot of the previous page.

f. From the plot of the previous page we observe that the phase angle at the cutoff frequency is
approximately —63°

g. The exact phase angle at the cutoff frequency o, = 16 r/s is found from (1) with s = j16.

4(j16 + 25)
(j16)° + 4(j16) + 100

G(j16) =

We need not simplify this expression since we can use MATLAB.
g16=(64j+100)/((16j) ~ 2+64j+100); angle(g16)*180/pi

ans =
-125.0746

This value is about twice as that we observed from the asymptotic plot of the previous page.
Errors such as this occur because of the high non-linearity between frequency intervals. There-
fore, we should use the straight line asymptotes only to observe the shape of the phase angle. It
is best to use MATLAB as shown below.

num=[0 4 100]; den=[1 4 100]; w=Ilogspace(0,2,1000);bode(num,den,w)

Bode Diagram
10 e

L]

Magnitude (dB)
=

' i ' i Eih T ' ' i e
' i ' Lo % ' ' i ro e
' ! ' oo ' ' ' ! o
T e e e P aeai]
' ! ' TR R Vo S T ' f ! T i e Rl
' i ' [ I S ' ' i ro e B
' ! ' [ RS 1 ' ' ! P S

Phase (deq)

e o 2 3 e o a5

1) IR SRR U RS L 0 0% e SO (R O O O
1 10 1CF

Freqguency (radisec)
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Chapter 8

Self and Mutual Inductances - Transformers

his chapter begins with the interactions between electric circuits and changing magnetic fields.
It defines self and mutual inductances, flux linkages, induced voltages, the dot convention,
Lenz’s law, and magnetic coupling. It concludes with a detailed discussion on transformers.

8.1 Self-Inductance

About 1830, Joseph Henry, while working at the university which is now known as Princeton, found
that electric current flowing in a circuit has a property analogous to mechanical momentum which is
a measure of the motion of a body and it is equal to the product of its mass and velocity, i.e., Mv. In
electric circuits this property is sometimes referred to as the electrokinetic momentum and it is equal to
the product of Li where i is the current analogous to velocity and the self-inductance L is analogous
to the mass M. About the same time, Michael Faraday visualized this property in a magnetic field in
space around a current carrying conductor. This electrokinetic momentum is denoted by the symbol
A, that is,

A = Li (8.1)

Newton’s second law states that the force necessary to change the velocity of a body with mass M is
equal to the rate of change of the momentum, i.e.,

d dv
= =(Mv) = M= = Ma 8.2
7 (Mv) p (8.2)
where a is the acceleration. The analogous electrical relation says that the voltage vV necessary to pro-
duce a change of current in an inductive circuit is equal to the rate of change of electrokinetic

momentum, i.e,

d . di
vV = a(LI) = Ld—t (8.3)

8.2 The Nature of Inductance

Inductance is associated with the magnetic field which is always present when there is an electric cur-
rent. Thus when current flows in an electric circuit, the conductors (wires) connecting the devices in
the circuit are surrounded by a magnetic field. Figure 8.1 shows a simple loop of wire and its magnetic
tield which is represented by the small loops. The direction of the magnetic field (not shown) can be
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determined by the left-hand rule if conventional current flow is assumed, or by the right-hand rule if
electron current flow is assumed. The magnetic field loops are circular in form and are called lines of
magnetic flux. The unit of magnetic flux is the weber (Wb).

Figure 8.1. Magnetic field around a current carrying wire

In a loosely wound coil of wire such as the one shown in Figure 8.2, the current through the wound
coil produces a denser magnetic field and many of the magnetic lines link the coil several times.

Figure 8.2. Magnetic field around a current carrying wound coil

The magnetic flux is denoted as ¢ and, if there are N turns and we assume that the flux ¢ passes
through each turn, the total flux denoted as A is called flux linkage. Then,

A = No (8.4)

By definition, a linear inductor one in which the flux linkage is proportional to the current through it,
that is,

A = Li (8.5)
where the constant of proportionality L is called inductance in webers per ampere.

We now recall Faraday’s law of electromagnetic induction which states that

da
V = — 8.6
it (8.6)
and from (8.3) and (8.5),
di
L :
v at (8.7)
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8.3 Lenz’s Law

Heinrich F. E. Lenz was a German scientist who, without knowledge of the work of Faraday and
Henry, duplicated many of their discoveries nearly simultaneously. The law which goes by his name, is
a useful rule for predicting the direction of an induced current. Lenz’s law states that:

Whenever there is a change in the amount of magnetic flux linking an electric circuit, an induced voltage
of value directly proportional to the time rate of change of flux linkages is set up tending to produce a cur-
rent in such a direction as to oppose the change in flux.

To understand Lenz’s law, let us consider the transformer shown in Figure 8.3.

i A —9¢ @ s
R \
| q :
I
C ———
’_:\> ( | \%

<\|/_ 1
U N V) '
| I
\ |
N /

Figure 8.3. Basic transformer construction

Here, we assume that the current in the primary winding has the direction shown and it produces the
flux ¢ in the direction shown in Figure 8.3 by the arrow below the dotted line. Suppose that this flux
is decreasing. Then in the secondary winding there will be a voltage induced whose current will be in
a direction to increase the flux. In other words, the current produced by the induced voltage will tend
to prevent any decrease in flux. Conversely, if the flux produced by the primary winding in increasing,
the induced voltage in the secondary will produce a current in a direction which will oppose an
increase in flux.

8.4 Mutually Coupled Coils

Consider the inductor (coil) shown in Figure 8.4. There are many magnetic lines of flux linking the
coil Ly with N; turns but for simplicity, only two are shown in Figure 8.4. The current i; produces a

magnetic flux @ . Then by (8.4) and (8.5)
and by Faraday’s law of (8.0), in terms of the self-inductance L, ,

_ di, dogy diy

0 el S (8.9)
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Figure 8.4. Magnetic lines linking a coil

Next, suppose another coil L, with N, turns is brought near the vicinity of coil L; and some lines

of flux are also linking coil L2 as shown in Figure 8.5.

+ ) —
/ \ =0
g
g
b NIB
noN i% e
e
{ e i

—
.8
/’.'

Figure 8.5. Lines of flux linking two coils

It is convenient to express the flux ¢4, as the sum of two fluxes @ ; and @, , that is,

P11 = Pt Py (8.10)

where the linkage flux ¢ ; is the flux which links coil L; only and not coil L,, and the mutual flux
@, is the flux which links both coils L; and L,. We have assumed that the linkage and mutual

fluxes @ 1 and @, link all turns of coil L; and the mutual flux ¢,; links all turns of coil L, .

The arrangement above forms an elementary transformer where coil L is called the primary winding

and coil L, the secondary winding.
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In a linear transformer the mutual flux ¢, is proportional to the primary winding current i; and

since there is no current in the secondary winding, the flux linkage in the secondary winding is by
8.9),

where M, is the mutual inductance (in Henries) and thus the open-circuit secondary winding voltage

V2 1S

_ Mo 02 T (8.12)

In summary, when there is no current in the secondary winding the voltages are

i d
Vl_ ldt an V2_ 21 dt (813)

Next, we will consider the case where there is a voltage in the secondary winding producing current
I, which in turn produces flux ¢,, as shown in Figure 8.6.

Figure 8.6. Flux in secondary winding
Then in analogy with (8.8) and (8.9)

and by Faraday’s law in terms of the self-inductance L,

V2 = E = NZT = LZ_ (8.15)
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If another coil Ly with N, turns is brought near the vicinity of coil L,, some lines of flux are also

linking coil L; as shown in Figure 8.7.

. . <
———

A,

> \
N, =) (D N, V2
D | IE
‘b' (D
X)

Figure 8.7. Lines of flux linking open primary coil
Following the same procedure as above we express the flux ¢,, as the sum of two fluxes ¢, and

¢y, that is,

Ppp = QL2+ 0pp (8.16)

where the linkage flux ¢ , is the flux which links coil L, only and not coil L;, and the mutual flux
@4, is the flux which links both coils L, and L. As before, we have assumed that the linkage and

mutual fluxes link all turns of coil L, and the mutual flux links all turns of coil L; .
Since there is no current in the primary winding, the flux linkage in the primary winding is
Ay = Ny, = Mo, (8.17)
where My, is the mutual inductance (in Henries) and thus the open-circuit primary winding voltage
vy s
Vlz—:N—:M—' (8.18)

In summary, when there is no current in the primary winding, the voltages are

i i
V, = - V., = _—
2= R2Tgy ANY V1= Moy (8.19)
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We will see later that

The last possible arrangement is shown in Figure 8.8 where i; # 0 and also i, #0.
P21
+ 'i ‘\‘ +
|
[ P <D
||
Vl Nl -.' ’l- N V2
P <) 2
—) =
\_1b )
—\ —]
\ ) I/
. {7
Ly Lo
Figure 8.8. Flux linkages when both primary and secondary currents are present
The total flux ¢, linking coil L4 is
Pp = Pt Pt P12 = G+ P2 (8.21)
and the total flux ¢, linking coil L, is
P2 = Pt Prot P = G+ 02 (8.22)
and since A = N@, we express (8.21) and (8.22) as
and
Differentiating (8.23) and (8.24) and using (8.13), (8.14), (8.19) and (8.20) we get:
di di
1 2
. . (8.25)
diy di,
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In (8.25) the voltage terms

di di
1 2
L1 it and L2 at

are referred to as self-induced voltages and the terms

dil di2
ME and ME

are referred to as mutual voltages.

In our previous studies we used the passive sign convention as a basis to denote the polarity (+) and
(—) of voltages and powers. While this convention can be used with the self-induced voltages, it can-
not be used with mutual voltages because there are four terminals involved. Instead, the polarity of
the mutual voltages is denoted by the dot convention. To understand this convention, we first consider
the transformer circuit designations shown in Figures 8.9(a) and 8.9(b) where the dots are placed on
the upper terminals and the lower terminals respectively.

g A 2 i1 Mo
+ i + * di,
® * V2 = M—d't—
v b §L2 V2 v L1 Ly v for both
. . circuits
- (a) - = (b) -

Figure 8.9. Arrangements where the mutual voltage has a positive sign

These designations indicate the condition that a current i entering the dotted (undotted) terminal of
one coil induce a voltage across the other coil with positive polarity at the dotted (undotted) terminal
of the other coil. Thus, the mutual voltage term has a positive sign. Following the same rule we see
that in the circuits of Figure 8.10 (a) and 8.10(b) the mutual voltage has a negative sign.

Example 8.1

For the circuit of Figure 8.11 find vy and Vs if
a. i1 = 50 mA and i2 = 25 mA

b. i1 = 0 and i2 = 20sin377t mA

e}
=
Il

15¢0s377t mA and i, = 40sin(377t+60°) mA
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M . M
m & L m 12
+ + +
di
. 1
Ly v v L1 Ly v
for both
’ circuits
@) —— = (b) ——

M =20 mH
L 2]
+ n
vy L1 Ly vy
50 mH 50 mH

Figure 8.11. Circuit for Example 8.1

Solution:

a. Since both currents iy and i, are constants, their derivatives are zero, i.e.,

diy iy _
dt ~ dt
and thus
vi=Vv, =0

b. The dot convention in the circuit of Figure 8.11 shows that the mutual voltage terms are positive
and thus

v, = led—ltl +M—=Z = 005 0+20x 10 x 20 x 377 x cos377t
= 150.8cos377t mV
di,  di, S
vy = M—d Ly—Z = 20107 x 0+ 0,05 x 20 x 377 x Cos 377t
= 377cos377t mV
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di d
v, = Ly dtl + M-C-E = 0.05(-15 x 377sin377t) + 0.02 x 40 x 377 cos (377t + 60°)
= —282.75sin377t + 301.6 cos(377t + 60°) mV
diy di, )
Vv, = ME + Lza = 0.02(-15 x 377sin377t) + 0.05 x 40 x 377cos (377t + 60°)

= —113.1sin377t + 754 cos (377t + 60°) mV

Example 8.2

For the circuit of Figure 8.12 find the open-circuit voltage v, for t>0 given that il(O_) =0.

= 20 mH
i
——4\f\~——hA/w«/v — ¥ N2
t=0 +
C) Vi Ly L, V2
24V 50 mH " 50 mH

Figure 8.12. Circuit for Example 8.2

Solution:
Fort>0
Ld Ri 24
di,
O.OSE+5I1 =24
diy 100i, = 480
—= i, =
dt 1
Now,
i =+

where I is the forced response component of iy and it is obtained from

i=2-48A
5
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and in is the natural response component of i1 and it is obtained from

-Rt/L -100t
e = Ae

io=A

n

A

Then,

. .. -100t
I =g+, = 4.8 + Ae

and with the initial condition

i (0") =iy (07) =0 = 48+Ae’
we get A = 4.8
Therefore,

i = ic+i = 4.8-48¢ "

and in accordance with the dot convention,

di . )
v, = —Md—tl = —0.02(480e %Y = _9.6¢ 1"

8.5 Establishing Polarity Markings

In our previous discussion and in Examples 8.1 and 8.2, the polarity markings (dots) were given.
There are cases, however, when these are not known. The following method is generally used to
establish the polarity marking in accordance with the dot convention.

Consider the transformer and its circuit symbol shown in Figure 8.13.

Q. ----—>----- M
= ’ 5 ¥ N
| N
4 11 :
g D L1 LZCV:‘
L - L L
\ ° .

Figure 8.13. Establishing polarity markings

We recall that the direction of the flux ¢ can be found by the right-hand rule which states that if the
fingers of the right hand encircle a winding in the direction of the current, the thumb indicates the
direction of the flux. Let us place a dot at the upper end of L; and assume that the current i; enters

the top end thereby producing a flux in the clockwise direction shown. Next, we want the current in
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L, to enter the end which will produce a flux in the same direction, in this case, clockwise. This will

be accomplished if the current i, in L, enters the lower end as shown and thus we place a dot at that

end.
Example 8.3

For the transformer shown in Figure 8.14, find v, and v, .

M=2H
i, = 2sin377t A < I, = =5C0s377t A
+ >|_1 L2 ~T +
v 1V
o §—LsH avnd [ °
<\/—> —

Figure 8.14. Circuit for Example 8.3

Solution:

Let us first establish the dot positions as discussed above. The dotted circuit now is as shown in Fig-
ure 8.15.

M=2H
i = 2sin377t A | T T T "\ | ~ip = ~5cos37TL A
[
° |
+ L L, ~r +
v TP Y
i P2
- TP 4 H 8
I q ! -
\ L
N /

Figure 8.15. Figure for Example 8.3 with dotted markings

Since i; enters the dot on the left side and i, leaves the dot on the right side, the fluxes oppose each
othet. Therefore,

L aiy |\/|0|i2 2262c0s377t — 3770sin377t V
Vl = 1dt — at = CcOoS t— SIn t
Mdil L di, 1508 cos 377t + 7540sin377t V
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Example 8.4
For the circuit below, find the voltage ratio |V2/ Vl‘ S

+
©
120£0°
377 r/s

<
I
!

e
Il

Figure 8.16. Circuit for Example 8.4

Solution:
The dots are given to us as shown. Now, we arbitrarily assign currents I; and I, as shown in Figure

8.17 and we write mesh equations for each mesh.
M = 50 mH

R1
0.5 Q
¥
&
v,, = 120209 \ 11
o = 377r/s

Figure 8.17. Mesh currents for the circuit of Example 8.4

With this current assignments |, leaves the dotted terminal of the right mesh and therefore the

mutual voltage has a negative sign. Then,

Mesh 1:
or
(0.5+j18.85)1, —j18.851, = 120£0° (8.26)
* Henceforth we will be using bolded capital letters to denote phasor quantities.
8-13
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Mesh 2:

or

—j18.851, + (1000 +j37.7)l, = 0 (8.27)
We will find the ratio [V,/V{| using the MATLAB code below where V; = jol,l; = j18.851; and
Z=[0.5+18.85] —18.85j; —18.85j 500+37.7j]; V=[120 0]'; I=Z\V:...

forintf(' \n'); forintf(V1 = %7.3f V \t, abs(18.85j*1(1))); forintf(V2 = %7.3f V \t', abs(500*1(2)));...
forintf(Ratio V2/V1 = %7.3f \,abs((500*1(2))/(18.85j*1(1))))

V1l = 120.093 V V2 = 119.753 V  Ratio V2/Vl = 0.997

That is,
v
Vo[ - 11975 _ (997 (8.28)
vV, ~ 12009

and thus the magnitude of V| gap = V, is practically the same as the magnitude of V;, . However, we

suspect that V| gap Will be out of phase with V; . We can find the phase of V| gap by adding the fol-
lowing statement to the MATLAB code above.

fprintf(Phase V2= %6.2f deg', angle(500*1(2))*180/pi)
Phase V2= -0.64 deg

This is a very small phase difference from the phase of Vin and thus we see that both the magnitude

and phase of V| gap are essentially the same as that of V;,.

If we increase the load resistance R gap to 1 KQ we will find that again the magnitude and phase of

Vioap are essentially the same as that of V;, . Therefore, the transformer of this example is an isola-

tion transformer, that is, it isolates the load from the source and the value of V;, appears across the

load even though the load changes. An isolation transformer is also referred to as a 1:1 transformer.

If in a transformer the secondary winding voltage is considerably higher than the input voltage, the
transformer is referred to as a step-up transformer. Conversely, if the secondary winding voltage is
considerably lower than the input voltage, the transformer is referred to as a step-down transformer.

8.6 Energy Stored in a Pair of Mutually Coupled Inductors

We know that the energy stored in an inductor is

W(t) = %Liz(t) (8.29)
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In the transformer circuits shown in Figure 8.18, the stored energy is the sum of the energies sup-
plied to the primary and secondary terminals. From (8.25),

M M
1 1 1
+ ’ + ¥ di
M ° V2 = Ma
V1 ng Ly vy vy Ll% %Lz V2 for both
. . circuits
= (a) - — (b) -
Figure 8.18. Transformer circuits for computation of the energy
di di
1 2
. (8.30)
diy di,

and after replacing M with M, and M, in the appropriate terms, the instantaneous power delivered

to these terminals are:

) diy diyy
Py=Vilh = (Lla + MlZE) Iy
) ) (8.31)
) diy diyy
Po= Volp = (lea + Lzﬁ) I
Now, let us suppose that at some reference time ty, both currents iy and i, are zero, that is,
In this case, there is no energy stored, and thus
W(ty) = 0 (8.33)

Next, let us assume that at time t;, the current iy is increased to some finite value, while i, is still

zero. In other words, we let

i (1) = I (8.34)
and

i)(t,) = 0 (8.35)
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Then, the energy accumulated at this time is
4
w, = jt (Py + p,)dt (8.36)
0

and since i,(t;) = 0, then p,(t;) = 0 and also di,/dt = 0. Therefore, from (8.31) and (8.36) we
get
b di b
_ s S o 102
W, = jto Lyiy g dt = Lljto iydiy = SLylp (8.37)

Finally, let us at some later time t,, maintain i, at its previous value, and increase i, to a finite value,

that is, we let
and

i)(t,) = 1, (8.39)

During this time interval, di;/dt = 0 and using (8.31) the energy accumulated is

L L di, _diy,
Wy = J; (py +Ppyp)dt = J; (M12|1E + Lz'za)dt
' ' (8.40)
f2 - 1, 2
= jt (Maly +Laip)dip = Myplylp + 5L 15
1
Therefore, the energy stored in the transformer from t; to t, is from (8.37) and (8.40),
L, 1 2 1 2

Now, let us reverse the order in which we increase i; and i,. That is, in the time interval ty <t<t,,
we increase i, so that i,(t;) = I, while keeping i; = 0.Then, at t = t,, we keep i, = I, while we
increase iy so that i;(t,) = I;. Using the same steps in equations (8.33) through (8.40), we get

1
2

tz_l

2

w| L,15 (8.42)

Since relations (8.41) and (8.42) represent the same energy, we must have

M = My = M (8.43)
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and thus we can express (8.41) and (8.42) as

2 1 2

t_ 1

Wl = 2

Relation (8.44) was derived with the dot markings of Figure 8.18 which is repeated below as Figure
8.19 for convenience.

M M
i1 i I
1y 2 1.y N 2
* " + ¥ di
. L] = M—
V2 dt
v, L1 Ly vy v, L1 Ly vy for both
. . circuits

Figure 8.19. Transformer circuits of Figure 8.18

However, if we repeat the above procedure for dot markings of the circuit of Figure 8.20 we will find
that

M M

l i
¥ " + * diy
v L1 Ly vz vy L1§ Ly v for both

* . circuits
— @ — —— ) ——

Figure 8.20. Transformer circuits with different dot arrangement from Figure 8.19
t 1 2 1 2

and relations (8.44) and (8.45) can be combined to a single relation as

L, 1. 2 1, 2
W|to = ELllliMI1I2+§L2I2 (8.46)
where the sign of M is positive if both currents enter the dotted (or undotted) terminals, and it is
negative if one current enters the dotted (or undotted) terminal while the other enters the undotted

(or dotted) terminal.
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The currents | 1 and |2 are assume constants and represent the final values of the instantaneous val-

ues of the currents i; and i, respectively. We may express (8.46) in terms of the instantaneous cur-

rents as

t 1, 2,.,.. 1 .2

th 2 2

Obviously, the energy on the left side of (8.47) cannot be negative for any values of iy, i,, L, L,, or
M. Let us assume first that i1 and i2 are either both positive or both negative in which case their

product is positive. Then, from (8.47) we see that the energy would be negative if

b 1 .2 1 .2 -

and the magnitude of the Miyi, is greater than the sum of the other two terms on the right side of

that expression. To derive an expression relating the mutual inductance M to the self-inductances L4

and L,, we add and subtract the term /L;L,i;i, on the right side of (8.47), and we complete the

square. This expression then becomes
wi = Lo ﬁ_'z L Loiqi,—Mi,i 8.49
|t0 = 2( 11— ~Llaly) + JLLolql, = Migl, (8.49)

We now observe that the first term on the right side of (8.49) could be very small and could approach
zero, but it can never be negative. Therefore, for the energy to be positive, the second and third terms

on the right side of (8.48) must be such that  /L,L,>M or

M< [ L, (8.50)

Expression (8.50) indicates that the mutual inductance can never be larger than the geometric mean
of the inductances of the two coils between which the mutual inductance exists.

Note: The inequality in (8.49) was derived with the assumption that i; and i, have the same alge-

braic sign. If their signs are opposite, we select the positive sign of (8.47) and we find that (8.50) holds
also for this case.

The ratio M/ /L, L, is known as the coefficient of coupling and it is denoted with the letter k, that is,

M
Ly

k =

(8.51)
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Obviously k must have a value between zero and unity, that is, 0 <k < 1. Physically, k provides a
measure of the proximity of the primary and secondary coils. If the coils are far apart, we say that
they are loose-coupled and k has a small value, typically between 0.01 and 0.1. For close-coupled cir-
cuits, K has a value of about 0.5. Power transformers have a k between 0.90 and 0.95. The value of

k is exactly unity only when the two coils are coalesced into a single coil.

Example 8.5
For the transformer of Figure 8.21 compute the energy stored at t = 0 if:

a. i1 = 50 mA and i2 = 25 mA

b. i1 = 0 and i2 = 20sin377t mA

g
=
Il

15c0s377t mA and i, = 40sin(377t+60°) mA

M =20mH

50 mH 50 mH

Figure 8.21. Transformer for Example 8.5

Solution:

Since the currents enter the dotted terminals, we use (8.45) with the plus (+) sign for the mutual
inductance term, that is,

1, .2 .1, .2

W(t) = §L1|1+M|1|2+§L2|2 (8.52)
Then,
a.

-3 3.2 -3 -3 -3
W] _, = 05x50x10 " x(50x107") +20x10 " x50 x 10"~ x 25 x 10
-3 -3 2 -6

+05x50%x10 "x(25x10 7) =103x10 " J =103 ud

b.

Since iy = 0 and i, = 205in377t|t=0 = 0, it follows that
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W|t=0 =0

_ 32 _ _ _ o
W|,_, = 05x50x 10 x (15x 107°)" +20x 107 x 15 x 10> x 40 x 10> x sin(60 )

_ _ o 2 _
+05x50x10 > x (40 x 10 S x sin(60°)) = 46 x 107° J = 46

8.7 Circuits with Linear Transformers

A linear transformer is a four-terminal device in which the voltages and currents in the primary coils
are linearly related.

The transformer shown in figure 8.22 a linear transformer. This transformer contains a voltage
source in the primary, a load resistor in the secondary, and the resistors Ry and R, represent the

resistances of the primary and secondary coils respectively. Moreover, the primary is referenced to
directly to ground, but the secondary is referenced to a DC voltage source V; and thus it is said that

the secondary of the transformer has a DC isolation.

Vin

Vout
Riono

e (DC)

Figure 8.22. Transformer with DC isolation

Application of KVL around the primary and secondary circuits yields the loop equations
di di
- O
Vi = R1|1+L1O|t gt
. (8.53)
d|1 diy

and we see that the instantaneous values of the voltages and the currents are not affected by the pres-
ence of the DC voltage source V0 since we would have obtained the same equations had we let

VOZO.
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Example 8.6

For the transformer shown in Figure 8.23, find the total response of i, for t>0 given that

M = 100 mH and.i;(0 ) = i,(0 ) = 0. Use MATLAB to sketch i, for 0<t<5s.

M=2H
% N ¥
=0 100 Q 200 Q

Vin .

. +
+ Ly Ly
_ 1 KQS Yout
SH o H RLOAD
24V DC =
Il 12

Figure 8.23. Transformer for Example 8.6

Solution:

The total response consists of the summation of the forced and natural responses, that is,
a1 = 12t + 120 (8.54)

and since the applied voltage is constant (DC), no steady-state (forced) voltage is produced in the sec-
ondary and thus i, = 0.

For t>0 the s-domain circuit is shown in Figure 8.24.

100 N 200
R AAA' 2s
Vin(s) . . +
+
_ 3s 5s Vout(s)
24/s 11(9) 15(s)
1000

Figure 8.24. The s-domain circuit for the transformer of Example 8.6

The loop equations for this transformer are

(3s+100)1,(s) - 2sl,(s) = 24/s

(8.55)

—2sl,(s) + (58 +1200)1,(s) = 0

Since we are interested only in 1,(s), we will use Cramer’s rule.
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{35 +100 24/5}

(s) = =23 0 _ 48 _ 4.36
2 —_— — —
35+100  —2s 1152 + 41005 + 120000 s + 372.73s + 10909.01
25 5s+1200
or
(o) = 436
(s+340.71)(s + 32.02)
and by partial fraction expansion,
r r
Iy(s)= 4.36 l_ 2 (8.56)

(s+340.71)(s + 32.02) T 5+340.71 s+ 32.02

from which

4.36
r, = = -0.01 8.57
b s+3202| _ 00 (857
4.36 ‘

= —0 = 0.01 (8.58)

2

s+340.71 _ o0,
By substitution into (8.56), we get

Iy(s) = 001 _ _-001 (8.59)

s+32.02 s+340.71
and taking the Inverse Laplace of (8.59) we get

-32.02t e—340.71t

i, = 0.01(e ) (8.60)

Using the following MATLAB code we get the plot shown on Figure 8.25.
t=0: 0.001: 0.2; i2n=0.01.*(exp(-32.02*t)—exp(—340.71.*1)); plot(t,i2n); grid
Example 8.7

For the transformer of Figure 8.26, find the steady-state (forced) response of V.

Solution:
The s-domain equivalent circuit is shown in Figure 8.27.

We could use the same procedure as in the previous example, but it is easier to work with the transfer
function G(S).
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i :
0 002 004 006 002 01 012 014 046 018 02

Figure 8.25. Plot for the secondary current of the transformer of Example 8.6

¥ N
—\VVVY 2 H
10 O
[ ] [ ] +
Vin 3H 5 H
3 100 Q < Vout
— /170cos377t V -
/}\0.1 F

Figure 8.26. Circuit for Example 8.7

¥ . N

AAAA— 2s

10
L] L] J’-
Vin(s)
@ 3s 5s 100 _Vout(s)
—17020° V
1) = o)

1/0.1s

Figure 8.27. The s-domain equivalent circuit of Example 8.7

The loop equations for the transformer of Figure 8.27 are:
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(35+10+1/0.15)1,(S)— (25 + 1/0.15 )1,(5) = V,(3)

8.61
—(25+1/0.18)1,(5) + (55 + 100 + 1/0.18 ) I () = O ®-61)
and by Cramer’s rule,
[(35 +10+1/0.1s) V, (s)
(2s+1/0.1s) 0
I,(s) =
(3s+10+1/0.1s) —(2s+1/0.1s)
~(2s+1/0.1s) (5s+100+1/0.1s)
or
) (25 +10/5)V;(S) (25° +10)V, (s)
2 S) = =
11s% + 3505 + 1040 + 1100/ 115" + 350s° + 10405 + 1100
(0.185° +0.91)V, (s)
s +31.825% + 94,555 + 100
From Figure 8.27 we see that
2 2
(0.185° + 0.91)V. (s) 185 + 91)V, (s
Vout(s) = 100 Iy(s) = 100 - — > L = 5 ( . Win($) (8.62)
s +31.82s" +94.555+ 100 s~ +31.82s" + 94.55s + 100
and
V_ (s 2
G(S) — OUt( ) — - 1823 +91 (863)
Vin(8)  §3 1 31.825% + 94,555 + 100
The input is a sinusoid, that is,
Vi, = 170cos377t V
and since we are interested in the steady-state response, we let
s = jo = j377
and thus
Vi (s) =V, (jo) = 170.20°
From (8.63) we get:
256 x10° + 91 4.35 x 10° £0°
Vourio) = — — e " 170£0° = — GX -
~j5.36 x 10"~ 4.52 x 10° + j3.56 x 10" + 100 ~452x10° —j5.36 x 10
or
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8 o o
V, (jm) = 232X 1? <1807 _ _43.52180° _ g9 274820 = 8.09,-85.18°  (8.64)
5.38 x 10’ /-94.82°  2-384-94.82
and in the t-domain,
Vo (D) = 8.09c0s(377t-85.18°) (8.65)

The expression of (8.65) indicates that the transformer of this example is a step-down transformer.

8.8 Reflected Impedance in Transformers

In this section, we will see how the load impedance of the secondary can be reflected into the pri-
mary.

Let us consider the transformer phasor circuit of Figure 8.28. We assume that the resistance of the
primary and secondary coils is negligible.

M
¥ N

VS L] L] +
+ L]_ L
@ 2 Z onp
A2 V, —
I1 I2 VLOAD

Figure 8.28. Circuit for the derivation of reflected impedance

By KVL the loops equations in phasor notation are:

joL I} —joMI, = Vg (8.66)
or
= — 8.67
2 joM ( )
and
or
joMI
= — 1 (8.69)
(JoLy,+Z oap)
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Equating the right sides of (8.67) and (8.69) we get:

joL, 1, -V joMI
0¥ JOTh (8.70)
JoM (JoLy +Z oap)
Solving for Vg we get:
Ve = [ij _JJ'“’—ML} 8.71)
S ! (joLy +Z 0ap) !
and dividing Vg by I, we obtain the input impedance Z;, as
\% 20 2
. =2 = jol+—2M (8.72)

The first term on the right side of (8.72) represents the reactance of the primary. The second term is
a result of the mutual coupling and it is referred to as the reflected impedance. It is denoted as Zg, i.e.,

_ ®2M?

Zp = —2 WV
JoLy, +Z, opp

From (8.73), we make two important observations:

(8.73)

1. The reflected impedance ZR does not depend on the dot locations on the transformer. For

instance, if either dot in the transformer of the previous page is placed on the opposite terminal,

the sign of the mutual term changes from M to —M. But since Zg varies as M 2 , its sign remains

unchanged.

2. Let ZLOAD = RLOAD + jXLOAD . Then, we can rewrite (873) as

2 2

®2°M ®2M

2R

(8.74)

- joLy +Rioap + 1 XLonp " Rioap +1(Xeonn + ol,)

To express (8.74) as the sum of a real and an imaginary component, we multiply both numerator
and denominator by the complex conjugate of the denominator. Then,

2 2Mm2
Z, = ®2M“R, o0 ] ®“M*(X opp + 0L5) (8.75)

2 2 2 2
Rioap + (XLoap + ®L5) Rioap + (XLoap + ®L5)

The imaginary part of (8.75) represents the reflected reactance and we see that it is negative. That
is, the reflected reactance is opposite to that of the net reactance X oap + ®L, of the secondary.

8-26 Circuit Analysis Il with MATLAB Applications

Orchard Publications



Reflected Impedance in Transformers

Therefore, if X oap is a capacitive reactance whose magnitude is less than oL, , or if it is an induc-
tive reactance, then the reflected reactance is capacitive. However, if X oap 1S a capacitive reac-
tance whose magnitude is greater than oL, , the reflected reactance is inductive. In the case where
the magnitude of X, oap is capacitive and equal to oL, , the reflected reactance is zero and the

transformer operates at resonant frequency. In this case, the reflected impedance is purely real
since (8.75) reduces to

_ ®2M?

RLOAD

Ze (8.76)

Example 8.8

In the transformer circuit of Figure 8.29, Zg represents the internal impedance of the voltage source

Find:
a. Z;,
ba I1
c I,
d- Vl
e V,
100 mH
2Q
,Z_l m
]
VS L[] L] +
m Ly L
@ \/2 Z, oap
| 300 mH Y
. 200 mH I, LOAD
o =377r/s .7540
Vg = 120£0° Zioap = 10-J777 Q
Figure 8.29. Transformer for Example 8.8
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Solution:

a. From (8.72)
\% 2\ 2
Zi, = S _ j""—l‘*-&

and we must add Z; = 2 Q to it. Therefore, for the transformer of this example,

2612
Z, = jol +—2M° o jr54, 142129x00L
joL,+Z oap j113.1+10-j20
= 3.62 +j60.31 = 60.42./86.56° Q
b.
Vs 120.£0°
I, == = = 1.98./-86.56° A
Z,, 60.42./86.56° Q
c. ByKVL
or
joM j37.7 o _ 14.88.3.04° o
I, = - I, =: —1.98./-86.56° = ———""—"_ = 0.8./-80.83° A
27 joL,+Zopp * 7 j113.1+10-j20 93.64./83.87°
d.

V, = joL,l; —joM1, = 75.4./90° x 1.98 /-86.56° — 37.7.£90° x 0.8 /80.83°

149.29./3.04° — 30.15£9.17° = 149.08 + j7.92 — 30.15 - j4.8 = 118.9/1.5° V

c.

Vy, = Zioap - I, = (10-j20)0.8£-80.83° = 22.36 £-63.43° x 0.8/-80.83° = 17.89/-144.26°V

8.9 The Ideal Transformer

An ideal transformer is one in which the coefficient of coupling is almost unity, and both the primary
and secondary inductive reactances are very large in comparison with the load impedances. The pri-
mary and secondary coils have many turns wound around a laminated iron-core and are arranged so
that the entire flux links all the turns of both coils.

An important parameter of an ideal transformer is the turns ratio @ which is defined as the ratio of

the number of turns on the secondary, N, , to the number of turns of the primary N, that is,
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a= == (8.77)

The flux produced in a winding of a transformer due to a current in that winding is proportional to
the product of the current and the number of turns on the winding, Therefore, letting o be a con-
stant of proportionality which depends on the physical properties of the transformer, for the primary

and secondary windings we have:
dqq = aNyi
11 1_1 8.78)
b2 = aNylp

The constant a is the same for the primary and secondary windings because we have assumed that
the same flux links both coils and thus both flux paths are identical. We recall from (8.8) and (8.14)
that

A= Njogp = Lyiy

. (8.79)
Ay = Np@gp = Lylp
Then, from (8.78) and (8.79) we get:
: 2.
N,p,;, = LI, = aNJi
1P11 ih ; 1 (8.80)
No@gp = Lol = aNjip
or
L, = aN’
) (8.81)
Therefore,
L N,)?
2 2 2
< = | £| = 8.82
2[5 - a2
From (8.69),
joMI
= —o L (8.83)
(JoLy+Z opp)
or
I .
2o ___JoM (8.84)
I, (oL, +Z onp)
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and since joL, » Z oap , (8.84) reduces to
2 _joM _M (8.85)

For the case of unity coupling,

=1 (8.86)

ot
M= /LL, (8.87)
and by substitution of (8.87) into (8.85) we get:

L, Jhb Ly

< = = |—= (8.88)
Il L2 L2
From (8.82) and (8.88), we obtain the important relation
b _1
2 -z 8.8
St (8.89)
Also, from (8.77) and (8.89),

and this relation indicates that if N, <Ny, the current I, is larger than I, .

The primary and secondary voltages are also related to the turns ratio a. To find this relation, we

define the secondary or load voltage V, as

and the primary voltage V1 aCcross L1 as

Vi = Zigh (8.92)
From (8.72),
v 2\
Zpp = =% = jol + —2M (8.93)
Iy JoL, +Z opp
8-30 Circuit Analysis Il with MATLAB Applications

Orchard Publications



The Ideal Transformer

and for k = 1
M = L,L,
Then, (8.93) becomes
_ 0’LL,
Zi, = job) + —————=— (8.94)
JoLy +Z oap
Next, from (8.82)
L, = a’l, (8.95)
Substitution of (8.95) into (8.94) yields
| o212
Zi, = joL;+ (8.96)

J(Da Ll + ZLOAD

and if we let joL; — oo, both terms on the right side of (8.96) become infinite and we get an indetet-

minate result. To work around this problem, we combine these terms and we get:

—0’a’Ls +joL Ziopw+ 0 a L] joLiZiow
in — -
joa’Ly + Ziono joa’Ly + Ziono
and as joL; — o,
ZLOAD
z, - 5 (8.97)

Finally, substitution of (8.97) into (8.92) yields
Zioap
vV, = 2 Iy (8.98)

and by division of (8.91) by (8.98) we get:

V Z |
\/—Z:L[);:az-i:a (8.99)
1 (Zoan/a)ly
or
\7
—= =a (8.100)
Vi
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also, from the current and voltage relations of (8.88) and (8.99),

Vol, = Vil (8.101)

that is, the volt-amperes of the secondary and the primary are equal.

An ideal transformer is represented by the network of Figure 8.30.

i . i
- ].a. 2

+ +

v L1 Ly vy

Figure 8.30. Ideal transformer representation

8.10 Impedance Matching

An ideal (iron-core) transformer can be used as an impedance level changing device. We recall from
basic circuit theory that to achieve maximum power transfer, we must adjust the resistance of the
load to make it equal to the resistance of the voltage source. But this is not always possible. A power
amplifier for example, has an internal resistance of several thousand ohms. On the other hand, a
speaker which is to be connected to the output of a power amplifier has a fixed resistance of just a
few ohms. In this case, we can achieve maximum power transfer by inserting an iron-core trans-
former between the output of the power amplifier and the input of the speaker as shown in Figure

8.31 where N2 < N1

Power

Amplifier N V2 :lj

Speaker

Figure 8.31. Transformer used as impedance matching device

8-32 Circuit Analysis Il with MATLAB Applications
Orchard Publications



A Simplified Transformer Equivalent Circuit

Let us suppose that in Figure 8.31 the amplifier internal impedance is 80000 Q and the impedance of
the speaker is only 8 Q. We can find the appropriate turns ratio N,/N; = a using (8.97), that is,

Z
Zin= "2 (8.102)
or
a:ﬁz ZLOAD:JS :Jl :A
N, Z. 80000 ~ 410000 100
or
N,
— = 100 (8.103)
Ny

that is, the number of turns in the primary must be 100 times the number of the turns in the second-
ary.

8.11 A Simplified Transformer Equivalent Circuit

In analyzing networks containing ideal transformers, it is very convenient to replace the transformer
by an equivalent circuit before the analysis. Consider the transformer circuit of Figure 8.32.

= l:a
1% |
\%
S ] ]
Ll L2 s
Z oAb
\% \% —
I ! 2 I, Vioap

Figure 8.32. Circuit to be simplified
From (8.97)

Z _ ZLOAD
in — 2
a

The input impedance seen by the voltage source Vg in the circuit of Figure 8.32 is

z, = zS+Z;%D (8.104)

and thus the circuit of Figure 8.32 can be replaced with the simplified circuit shown in Figure 8.33.
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Zs

Vg

Figure 8.33. Simplified circuit for the transformer of Figure 8.32

The voltages and currents can now be found from the simple series circuit if Figure 8.33.

8.12 Thevenin Equivalent Circuit

Let us consider again the circuit of Figure 8.32. This time we want to find the Thevenin equivalent to
the left of the secondary terminals and replace the primary by its Thevenin equivalent at points X and

y as shown in Figure 8.34.

~ 1 l:a X
VS (] ) +
+ Ll L2
~ VAR
V V —
|1 ! 2 |2 Vioap

Figure 8.34. Circuit for the derivation of Thevenin’s equivalent

If we open the circuit at points X and y as shown in Figure 8.34, we find the Thevenin voltage as

Viy = Voe = ny. Since the secondary is now an open circuit, we have I, = 0, and also I; = 0

because I, = al,. Since no voltage appears across Zg, V; = Vg and V, ;. = aV; = aVg. Then,

Viy = Voo = V,, = aVg (8.105)

Xy

We will find the Thevenin impedance Z;y from the relation

7., = Yoc (8.106)

ISC

The short circuit current lg is found from
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le =1, = 2 = = =’ 8.107
ST 27 3 a aZg ( )
and by substitution into (8.106),
aVv
TH V., SZ = aZZS
s/ alg

X

2

a%Z )
ZLOAD
y

Figure 8.35. The Thevenin equivalent of the transformer circuit in Figure 8.34

The circuit of Figure 8.35 was derived with the assumption that the dots are placed as shown in Fig-
ure 8.34. If either dot is reversed, we simply replace a by -a.

Example 8.9
For the circuit of Figure 8.36, find V,.

Solution:

We will replace the given circuit with its Thevenin equivalent. First, we observe that the dot in the
secondary has been reversed, and therefore we will replace a by —a. The Thevenin equivalent is

1 . —
1
A, 1:10 2
10 Q
Vv .
S +
+
@ Ly L, V,|60+j80Q
- 0.01V, —
8.0° V .

Figure 8.36. Circuit for Example 8.9

*

Since v, = 0 and v,/Vv, = a or av, =V, itfollowsthat v, = 0 also.
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obtained by multiplying Vg and the dependent source by -10 and the 10 Q resistor by

(—a)2 = 100. With these modifications we obtain the circuit of Figure 8.37.

_,|2

— W
1KQ
+
+ .
@ ) |60+j80 Q| V,
~0.001V, =
~80.£0° V

Figure 8.37. The Thevenin equivalent of the circuit of Example 8.9

Now, by application of KCL

V. — (-80.20° .

Vo~ (780407) )_(—10 V,) 4 —2— =
10° 60 + 80
Yy Vp (60-i80)V, g
103 10® 10000 10°

2V, +(6-j8)V, = —80
8(1-j1)V, = 80./180°

(J2£-45°)V, = 10£180°
or

V, = 10 2250 = 5.2.,135°

2

Other equivalent circuits can be developed from the equations of the primary and secondary voltages

and currents.
Consider, for example the linear transformer circuit of Figure 8.38.

From (8.30), the primary and secondary voltages and currents are:

di di
R 2
V1= bage P MGt
) (8.108)
Mdl1 . di,
Vo = Mige T2
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i I
+ +

Figure 8.38. Linear transformer

and these equations are satisfied by the equivalent circuit shown in Figure 8.39.

S il — i2
Y Y Y Y L
+ L, L, +
di
% 22 /4 ¥ diy
M3 —/ M5t V2

Figure 8.39. Network satisfying the expressions of (8.108)

If we rearrange the equations of (8.108) as

dil (di1+d_i2)

t dt
di. di di (8.109)
hp 0l y)
Vo = M(—d't"i'-a?) +(L2—M)a
Figure 8.40. Network satisfying the expressions of (8.109)
Circuit Analysis Il with MATLAB Applications 8-37

Orchard Publications



Chapter 8 Self and Mutual Inductances - Transformers

8.13 Summary

Inductance is associated with the magnetic field which is always present when there is an electric
current.

The magnetic field loops are circular in form and are called lines of magnetic flux.
The magnetic flux is denoted as ¢ and the unit of magnetic flux is the weber (Wb).

If there are N turns and we assume that the flux ¢ passes through each turn, the total flux
denoted as A is called flux linkage. Then,
A = No

A linear inductor one in which the flux linkage is proportional to the current through it, that is,
A = Li
where the constant of proportionality L is called inductance in webers per ampere.

Faraday’s law of electromagnetic induction states that
L
dt

Lenz’s law states that whenever there is a change in the amount of magnetic flux linking an electric
circuit, an induced voltage of value directly proportional to the time rate of change of flux linkages
is set up tending to produce a current in such a direction as to oppose the change in flux.

A linear transformer is a four-terminal device in which the voltages and currents in the primary
coils are linearly related.

In a linear transformer, when there is no current in the secondary winding the voltages are

di, di,

In a linear transformer, when there is no current in the primary winding, the voltages are
di, di,
v, = Lza and v, = Mlza
if i;=0 and i,#0

In a linear transformer, when there is a current in both the primary and secondary windings, the
voltages are
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di di
" -2
vy =Ly s M gt
di di
- M= -2
v, = M gt +L, gt
e The voltage terms
di di
1 2
15 and L, at
are referred to as self-induced voltages.
e The voltage terms
di di
1 2
M it and M it

are referred to as mutual voltages.

e The polarity of the mutual voltages is denoted by the dot convention. If a current i entering the
dotted (undotted) terminal of one coil induces a voltage across the other coil with positive polarity
at the dotted (undotted) terminal of the other coil, the mutual voltage term has a positive sign. If a
current i entering the undotted (dotted) terminal of one coil induces a voltage across the other coil
with positive polarity at the dotted (undotted) terminal of the other coil, the mutual voltage term
has a negative sign.

o If the polarity (dot) markings are not given, they can be established by using the right-hand rule
which states that if the fingers of the right hand encircle a winding in the direction of the current,
the thumb indicates the direction of the flux. Thus, in an ideal transformer with primary and sec-
ondary windings L, and L, and currents i; and i, respectively, we place a dot at the upper end of

L, and assume that the current i; enters the top end thereby producing a flux in the clockwise
direction. Next, we want the current in L, to enter the end which will produce a flux in the same
direction, in this case, clockwise.

e The energy stored in a pair of mutually coupled inductors is given by

b 1
to 2

1

2 .
LlllJ_rM|1|2+2

.2
W Li
| i
where the sign of M is positive if both currents enter the dotted (or undotted) terminals, and it is
negative if one current enters the dotted (or undotted) terminal while the other enters the undotted

(or dotted) terminal.

e The ratio
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is known as the coefficient of coupling and K provides a measure of the proximity of the primary
and secondary coils. If the coils are far apart, we say that they are loose-coupled, and k has a small
value, typically between 0.01 and 0.1. For close-coupled circuits, k has a value of about 0.5.
Power transformers have a k between 0.90 and 0.95. The value of Kk is exactly unity only when
the two coils are coalesced into a single coil.

e If the secondary of a linear transformer is referenced to a DC voltage source V), it is said that the
secondary has DC isolation.
e Inalinear transformer, the load impedance of the secondary can be reflected into the primary can

be reflected into the primary using the relation

_ 2M?

ZR -
JoLy +Z, opp

where Zp is referred to as the reflected impedance.

e An ideal transformer is one in which the coefficient of coupling is almost unity, and both the pri-
mary and secondary inductive reactances are very large in comparison with the load impedances.
The primary and secondary coils have many turns wound around a laminated iron-core and are
arranged so that the entire flux links all the turns of both coils.

e In an ideal transformer number of turns on the primary N; and the number of turns on the sec-

ondary N, are related to the primary and secondary currents I, and |, respectively as
Nilp = Nply
e Animportant parameter of an ideal transformer is the turns ratio @ which is defined as the ratio of
the number of turns on the secondary, N, , to the number of turns of the primary N, that is,
N
a=—2
Nl

e In anideal transformer the turns ratio a relates the primary and secondary currents as

_1
Il a

e In an ideal transformer the turns ratio a relates the primary and secondary voltages as

\
2 _a
Vl
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e In an ideal transformer the volt-amperes of the primary and the secondary are equal, that is,
Valp = Vily

e An ideal transformer can be used as an impedance matching device by specitying the appropriate

turns ratio N,/N; = a. Then,
7 = Zioap

in — 2
a

¢ In analyzing networks containing ideal transformers, it is very convenient to replace the trans-

former by an equivalent circuit before the analysis. One method is presented in Section 8.11.

e An ideal transformer can be replaced by a Thevenin equivalent as discussed in Section 8.12.
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8.14 Exercises

1. For the transformer of Figure 8.41, find v, for t>0.

M=1H
¥ N
+
L
20 Ly 2 v,
1H 2 H

I = 4uy(t) A

Figure 8.41. Circuit for Exercise 1

2. For the transformer circuit of Figure 8.42, find the phasor currents I, and I,.

10£0° V I, = -j10 Q

Figure 8.42. Circuit for Exercise 2

3. For the network of Figure 8.43, find the transfer function G(S) = Vgyr(8)/Vn(S).

__iﬁrai}/ilH 1Q§
O w3 (o

Vin (s) . .
05¥§ 1H 1Q2 Vour(s)

Figure 8.43. Circuit for Exercise 3
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4. For the transformer of Figure 8.44, find the average power delivered to the 4 Q resistor.

NVNN—
)0 8 Q
L AAAA 1:2
+
® X
Vg = 4cos3t V

Figure 8.44. Circuit for Exercise 4

5. Replace the transformer of Figure 8.45 by a Thevenin equivalent and then compute V4, Vo, I,

and I,
Iy — : . I, —
2+j3Q 15
+ o +
+ .
~ vV, v, 100-j75 Q
12 20° B s -

Figure 8.45. Circuit for Exercise 5

6. For the circuit of Figure 8.46, compute the turns ratio a so that maximum power will be delivered
to the 10 KQ resistor.

4 Q 1:a
— VY
C@ ‘ ‘ 10 KQ
12./0° V
Figure 8.46. Circuit for Exercise 6
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8.15 Solutions to Exercises

1.
M=1H M=1H
¥ N ¥ X
—— AN
. . + 2Q . +
L L + L
0 o W3 ER W —(D), Ju3El
1H 2 H -/ 1H 2 H

Application of KVL in the primary yields
i diy

L

1dt

+2i; =8 t>0 (1)

The total solution of i is the sum of the forced component ij; and the natural response iy, i.e.,
g = igptig,

From (1) we find that i;; = 8/2 = 4 and i, is found from the characteristic equation s +2 = 0

from which s = -2 and thus i;, = Ae Then,

i, =4+Ae " (2
Since we are not told otherwise, we will assume that i l(0_) =0 and from (2) 0 = 4+ Ae0 or
A = -4 and by substitution into (2)

i, = 4(1-4e°)

The voltage Vv, is found from

di, di
_ 1 2
V= Mg+ Ly

and since i, = 0,

di d -2t -2t
v, = 1-—t1 = 414 )] = 8e "V

8-44 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Solutions to Exercises

2.
M=jlQ
1Q
—’\/\/\/\r—m
! 20
~ ji1Q j8 Q
10£0° V I I, —< —-j10 Q
The mesh equations for primary and secondary are:
(1+jHly-j11, = 10£0°
-j1+(2-j2)1, =0
By Cramer’s rule,
I, = Dy/A I, = D,/A
where
Ao |@+jD) 1| .
L -1 (2-j2)
D, = 10£0° —j1 | _ 20(1-j)
0 (2-j2)
D, = (1+j1) 10£0° _ j10
I
Thus,
1, = &é—‘ﬂ = 4(1-]) = 42./-45° A
1, =120 _ j2 = 2,000 A
5
Check with MATLAB:
Z=[1+]—j; -j 2-2j]; V=[10 0]; I=2\V;
fprintf(magll = %5.2f A\t abs(I(1))); fprintf(phasel1 = %5.2f deg ',angle(l(1))*180/pi);...
fprintf(' \n');...
fprintf(magl2 = %5.2f A \t', abs(1(2))); fprintf(phasel2 = %5.2f deg ',angle(1(2))*180/pi);...
fprintf(' \n')
magll = 5.66 A phaseIl = -45.00 deg
magI2 = 2.00 A phaseI2 = 90.00 deg
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3.

Vin (8)

Vour (8)

We will find Voyr (s) from Voyr(s) = (1 Q)I5. The three mesh equations in matrix form are:

(s+1) -0.5s -0.5s 1
—05s (s+1) -05s| = [0] - Vin(s)
-0.5s -05s (s+1) 0

We will use MATLAB to find the determinant A of the 3 x 3 mattix.

syms s
delta=[s+1 -0.5*s -0.5*s; -0.5*s s+1 -0.5*s; —-0.5*s -0.5*s s+1]; det_delta=det(delta)

det_delta =
9/4*s"2+3*s+1
d3=[s+1 -0.5*s -0.5*s; -0.5*s s+1 -0.5*s; 1 0 0]; det_d3=det(d3)
det_d3 =
3/4*s"2+1/2*s
I3=det_d3/det_delta
I3 =
(3/4*s"2+1/2*%s)/(9/4*s"2+3*s+1)
simplify(I3)
ans =
s/ (3*s+2)
Therefore,
Vour(s) = 1-15-Vy(s) = s/(3s+2)-V,\(s)
and

G(s) = Vour(s)/Vin(s) = s/(3s+2)
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NV
8Q
20 a=2
—— AAN- 1:2 A
y F
© 40
[\
= 2 v,
4.,0°
I4 Q
For this exercise, Pyyo4 0 = %(I4Q)24 and thus we need to find I, (.
At Node A,
vV, V,-4,0° _
- 5 =
4 8
3V
2 1
— -1, =z (1
8 2 2 ( )
From the primary circuit,
21, +V, =4 (2
Since 1,/1; = 1/a,V,/V; = a,and a = 2, it follows that I, = 2I, and V; = V,/2. By substi-
tution into (2) we get
\Y
41,+=2 = 4
272
2
L+==1 (3
Addition of (1) and (3) yields
3V, V
_2 _2 - l+ 1
8 8 2
from which V, = 3. Then,
| - 2_3
40 ~ - 4
and
1Y%, _ 9
Pawveso = E(Z) 4 = éw
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5.
x o, . X
li—124j30 1:5 aZ, .
Vs + . ‘ Vy =aVy
C{) A ‘ ‘ Vv, 100-j75 Q ZL0ap
12 20° B s~ -
y y
Because the dot on the secondary is at the lower end, @ = -5. Then,
aVg = -5x12/0° = -60£0° = 60£180°
a%Zg = 25(2+j3) = 50 +j75 = 90.14.£56.31° Q
Lo s __ 60/180°  _ 604180° _ 2 g0
2 827 +Z0po 90 +175+ 10075 150 5
and
Vy = Zionp -, = 125/-36.87° x %41800 = 50,143.13° V
6.
— VWY 1:a
4Q
<9 ‘ 10 KQ
12,0°V
From (8.102)
Z
7. = £LOAD
n 8.2
Then,
a2 = e _ 10000 _ 550
Z;, 4
or
a=2>50
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Chapter 9

One- and Two-port Networks

his chapter begins with the general principles of one and two-port networks. The z, y, h, and
g parameters are defined. Several examples are presented to illustrate their use. It concludes

with a discussion on reciprocal and symmetrical networks.

9.1 Introduction and Definitions

Generally, a network has two pairs of terminals; one pair is denoted as the input terminals, and the
other as the output terminals. Such networks are very useful in the design of electronic systems, trans-
mission and distribution systems, automatic control systems, communications systems, and others
where electric energy or a signal enters the input terminals, it is modified by the network, and it exits
through the output terminals.

A port is a pair of terminals in a network at which electric energy or a signal may enter or leave the
network. A network that has only one pair a terminals is called a one-port network. In an one-port
network, the current that enters one terminal must exit the network through the other terminal.
Thus, in Figure 9.1, i;, = i

out

— lin +

~— lout

Figure 9.1. One-port network

Figures 9.2 and 9.3 show two examples of practical one-port networks.

A

201, 70
100 40 TSI
VL RL
-18Q
Figure 9.2. An example of an one-port network
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NVAVN—2

Figure 9.3. Another example of an one-port network

A two-port network has two pairs of terminals, that is, four terminals as shown in Figure 9.4 where

i

—— i 4 N

— I3 —_—

Iy

Figure 9.4. Two-port network

9.2 One-port Driving-point and Transfer Admittances

Let us consider an n—port network and write the mesh equations for this network in terms of the
impedances Z. We assume that the subscript of each current corresponds to the loop number and

KVL is applied so that the sign of each Zj; is positive. The sign of any Z;; for i #] can be positive ot

negative depending on the reference directions of i; and i -

(9.1)
In (9.1) each current can be found by Cramer’s rule. For instance, the current i, is found by
: D,
i = = 9.2
L= 9.2)
where
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9.4)

O
-
1]
<
w
N
w
N
N
w
@
N
w

Next, we recall that the value of the determinant of a matrix A is the sum of the products obtained by
multiplying each element of any row or column by its cofactor . The cofactor, with the proper sign, is
the matrix that remains when both the row and the column containing the element are eliminated.
The sign is plus (+) when the sum of the subscripts is even, and it is minus (=) when it is odd. Mathe-
matically, if the cofactor of the element 8, is denoted as A, then

qr>
Ay = DT M, 9.5)
where Mqr is the minor of the element ayr - We recall also that the minor is the cofactor without a
sign.
Example 9.1

Compute the determinant of A from the elements of the first row and their cofactors given that

1
A=1]2 _
-1

N AN
DN W

Solution:

detA=1|"% 2[-2|2 2| 3|2 4 - 1x20-2x(-10)-3x0 = 40
2 6| |-1-6 |-1 2

* A detailed discussion on cofactors is included in Appendix C.
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Using the cofactor concept, and denoting the cofactor of the element a;; as Cj;, we find that the

ij>

cofactors of Zy;, Z4,, and Z,; of (9.1) are respectively,

Zoy Zops ... Ly,
Zn2 Zn3 Znn
Ly Loz - Lyy
Clz - _ 231 233 cos an (9'7)
an Zn3 Znn_
Z1p Zy3 oo Zyp
C21 - _ 232 233 cee Z3n (9.8)
Zn2 Zn3 Znn_
Therefore, we can express (9.2) as
i, = Dy _ Cuva CaVe CaVs, . CmVi (9.9)
A A A A A
Also,
i = Dy _ CiVa CaVa CapVs | CiaVi (9.10)
A A A A A
and the other currents ig, i, and so on can be written in similar forms.
In network theory the y;; parameters are defined as
Cuy Co Csy
Yu = =7 Yio = =7 Yis = 7~ (9.11)
Likewise,
ClZ CZZ C32
Ya = 5~ Yoo = =~ Yoz = 1~ 9.12)
and so on. By substitution of the y parameters into (9.9) and (9.10) we get:
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Iy = YoV + YooV + YosVa + ... + YoV, (9.14)

If the subscripts of the y -parameters are alike, such as yq;, Y,, and so on, they are referred to as driv-
ing-point admittances. If they are unlike, such as Yy;,, Y,; and so on, they are referred to as transfer
admittances.

If a network consists of only two loops such as in Figure 9.5,

Figure 9.5. Two loop network

the equations of (9.13) and (9.14) will have only two terms each, that is,
i1 = Y11Vi+ Y1V (9.15)
Iy = YoV + YooV (9.16)

From Figure 9.5 we observe that there is only one voltage source, V; ; there is no voltage source in

Loop 2 and thus v, = 0. Then, (9.15) and (9.16) reduce to
I, = YV (9.18)

Relation (9.17) reveals that the driving-point admittance Yy, is the ratio i;/Vv;. That is, the driving-

point admittance, as defined by (9.17), is the admittance seen by a voltage source that is present in the
respective loop, in this case, Loop 1. Stated in other words, the driving-point admittance is the ratio of
the current in a given loop to the voltage source in that loop when there are no voltage sources in any other
loops of the network.

Transfer admittance is the ratio of the current in some other loop to the driving voltage source, in this
case V; . As indicated in (9.18), the transfer admittance Y,; is the ratio of the current in Loop 2 to the

voltage source in Loop 1.
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Example 9.2

For the circuit of Figure 9.0, find the driving-point and transfer admittances and the current through
each resistof.

R, R;
4Q 12 Q
V1
(D R, 6Q
24V

Figure 9.6. Circuit for Example 9.2

Solution:

We assign currents as shown in Figure 9.7.

24V

Figure 9.7. Loop equations for the circuit of Example 9.2

The loop equations are

) . (9.19)
The driving-point admittance is found from (9.11), that is,
Cu
= = 9.20
Yl A ( )
and the transfer admittance from (9.12), that is,
Ciz
= = 9.21
Yo1 A ( )
For this example,
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A= |10 -6 _ 180_36 = 144 (9.22)
-6 18

The cofactor Cy; is obtained by inspection from the matrix of (9.22), that is, eliminating the first row

and first column we are left with 18 and thus C;; = 18. Similarly, the cofactor Cy, is found by elim-

inating the first row and second column and changing the sign of —6. Then, C;, = 6. By substitution
into (9.20) and (9.21), we obtain

Cy 18 1
—zu_ 18 _1 9.23
Y=\ T 14T 8 ©-23)
and
Co, 6 1
e 6 1 9.24
Y = N T T ©-24)
Then, by substitution into (9.17) and (9.18) we get
i, = YV, = %x24 - 3A (9.25)
i) = YoVy = §x24 - 1A (9.26)

Finally, the we observe that the current through the 4 Q resistor is 3 A, through the 12 Q is 1 A
and through the 6 Q is i; —i, = 3-1 = 2A

Of course, there are other simpler methods of computing these currents. However, the intent here
was to illustrate how the driving-point and transfer admittances are applied. These allow easy compu-
tation for complicated network problems.

9.3 One-port Driving-point and Transfer Impedances

Now, let us consider an n—port network and write the nodal equations for this network in terms of
the admittances Y. We assume that the subscript of each current corresponds to the loop number

and KVL is applied so that the sign of each Y;; is positive. The sign of any Yj; for i#] can be posi-

tive or negative depending on the reference polarities of v; and vj.

YoiVi+ YoV + YoV + o+ Y
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In (9.27), each voltage can be found by Cramer’s rule. For instance, the voltage v, is found by

D,
vV, = — 9.28
1= (9.28)
where
Yy Yip Va3 Yin
YZl Y22 Y23 YZn
Yn1 Yn2 Yn3 Ynn_
Vi Yo Vi3 Yin
Vo Yop Yo3 Yon
D1 = V3 Vg Y .. Y3y (©.30)
_Vn Yn2 Yn3 Ynn_
As in the previous section, we find that the nodal equations of (9.27) can be expressed as
Vo = Zygiy + Zpply + Zpgig+ ... + 2y (9.32)
and so on, where
Cy Cy Cay
2, = — Z, = —= 23 = —= 9.34
11 A 12 A 13 A ( )
ClZ C22 C32
Z,, = —= Z,, = —= Z,, = —= 9.35
21 A 22 A 23 A ( )
ClS C23 C33
= —= = = = = 9.36
Za = Z2 = Z33 = (9.36)
and so on. The matrices C; j represent the cofactors as in the previous section.
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The coefficients of (9.31), (9.32), and (9.33) with like subscripts are referred to as driving-point imped-
ances. Thus, z;;, Z,, and so on, are driving-point impedances. The remaining coefficients with unlike

subscripts, such as 7y,, Z,; and so on, are called transfer impedances.

To understand the meaning of the driving-point and transfer impedances, we examine the network of
Figure 9.8 where 0 is the reference node and nodes 1 and 2 are independent nodes. The driving

point impedance is the ratio of the voltage across the nodes 1 and 0 to the current that flows
through the branch between these nodes. In other words,

7y = = (9.37)

Figure 9.8. Circuit to illustrate the definitions of driving-point and transfer impedances.

The transfer impedance between nodes 2 and 1 is the ratio of the voltage v, to the current at node

1 when there are no other current (or voltage) sources in the network. That is,

Example 9.3

For the network of Figure 9.9, compute the driving-point and transfer impedances and the voltages
across each conductance in terms of the current source.

-1 -1
j 20 10
5 ) 107"
Q) 10 O
-1
10t 1Q
Figure 9.9. Network for Example 9.3.
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Solution:

We assign nodes 0, 1, 2, and 3 as shown in Figure 9.10.

ih

Vo
Figure 9.10. Node assignment for network of Example 9.3

The nodal equations are

|
=

2(Vy—Vvy) +1(v,—vy) +1v, = 0 (9.39)
Simplifying and rearranging we get:
—2v;+4v,—vy = 0 (9.40)
-V;—V,+3vy =0
The driving-point impedance zy; is found from (9.34), that is,
Cu
2, = — 9.41
n= 9.41)
and the transfer impedances z,; and z5; from (9.35) and (9.36), that is,
Cp
= L2 9.42
Zn = = (9.42)
Cis
7y = —= 9.43
1= R (9.43)
For this example,
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13 -2 -1
A=|_2 4 _1| =156-2-2-4-13-12 = 123 (9.44)
-1-13
The cofactor Cy; is
Chp= %1 =12-1=11 9.45
1= =11 = (9.45)
-1 3
Similarly, the cofactors C;, and C,5 are
Cp=—2"1=_(6-1)=7 (9.46)
-1 3
and
Cp = {—2 4} =2+4=6 (9.47)
-1-1

By substitution into (9.41), (9.42), and (9.43), we obtain

C11 11
= A - == 4
= X T 13 (9.48)
ClZ 7
= 2tz - _L 4
1= TN T 13 (9.49)
Cis 6
_~13_ 6 50
1= A T 13 ©-50)

Then, by substitution into (9.31), (9.32), and (9.33) we get:
. . . 11 .

Vi = 2ygiy + 230y + 25505 = T30 (9.51)
. . . 7 .

Vo = Zp1iy + 250y + 2505 = T30 (9.52)
. . . 6 .

V3 = Zg1iy +Zglp + 2505 = T3l (9.53)

Of course, there are other simpler methods of computing these voltages. However, the intent here
was to illustrate how the driving-point and transfer impedances are applied. These allow easy compu-
tation for complicated network problems.
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9.4 Two-Port Networks

Figure 9.11 shows a two-port network with external voltages and currents specified.

+ 11 Linear network SEN— A T
(Consists of linear
Vi passive devices and
s possibly dependent
— ——— | sources but no
independent sources

V2

— Iy

Figure 9.11. Two-port network

Here, we assume that i; = i; and i, = i,. We also assume that i; and i, are obtained by the super-

position of the currents produced by both v; and v, .

Now, we will define the y, z, h, and g parameters.
9.4.1 The y Parameters

The two-port network of Figure 9.11 can be described by the following set of equations.
iy = Y1Vi+Y1Vo (9.54)
iy = Y1V +Y2V2 (9.55)
In two-port network theory, the y coefficients are referred to as the y parameters.

Let us assume that Vv, is shorted, thatis, v, = 0. Then, (9.54) reduces to
or
i
Y = \71- (9.57)

1

and Y, is referred to as the short circuit input admittance at the left port when the right port of Fig-

ure 9.11 is short-circuited.

Let us again consider (9.54), that is,
I = YuVi+YVs (9.58)
This time we assume that v, is shorted, i.e.,, v; = 0. Then, (9.58) reduces to

i; = YoV, (9.59)
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ot
i
Y1 = \71- (9.60)
2

and Yy, is referred to as the short circuit transfer admittance when the left port of Figure 9.11 is short-

circuited. It represents the transmission from the right to the left port. For instance, in amplifiers
where the left port is considered to be the input port and the right to be the output, the parameter
Y1» represents the internal feedback inside the network.

Similar expressions are obtained when we consider the equation for i,, that is,

In an amplifier, the parameter Y,; is also referred to as the short circuit transfer admittance and rep-

resents transmission from the left (input) port to the right (output) port. It is a measure of the so-
called forward gain.

The parameter Y,, is called the short circuit output admittance.

The y parameters and the conditions under which they are computed are shown in Figures 9.12

through 9.16.

— 1

— I3

I3 = YV +YVs
I = ¥Y1V1+YV,

Figure 9.12. They parameters for v, #0 and v, # 0

— i i
,2 V2:O

V1

Figure 9.13. Network for the definition of the y,, parameter
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— -

V]_:O

-— 13 —_— i4 VZ

Ip

Vl -— 13 — i4

V2:0

Figure 9.15. Network for the definition of the y,, parameter

— 1

V]_:O

~— I3

Figure 9.16. Network for the definition of the y,, parameter

Example 9.4

For the network of Figure 9.17, find the y parameters.

Solution:

a. The short circuit input admittance Yy,; is found from the network of Figure 9.18 where we have

assumed that v; = 1V and the resistances, for convenience, have been replaced with conduc-

tances in mhos.

NVVY
10Q

50 200

Figure 9.17. Network for Example 9.4
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————————————————

: NVVY :
o -1 |
| 0.1Q |
| |
C) 20207 I v =0
- : e
v=1V : 0.05 Q :

________________

Figure 9.18. Network for computing y,;

We observe that the 0.05 Q' conductance is shorted out and thus the current i 1 1s the sum of
the currents through the 0.2 0! and 0.1 O conductances. Then,

ip = 02v;+01v; = 02x1+01x1=03A
and thus the short circuit input admittance is
Yy = iy/v, = 03/1 = 03 Q7" (9.62)

b. The short circuit transfer admittance Y;, when the left port is short-circuited, is found from the

network of Figure 9.19.

! | 01 0™ |
| |
v =0 <0207 I <+>
| | -
| -1 |
i 0.05 O i —

Figure 9.19. Network for computing y,,

-1 ) -1 .
We observe that the 0.2 Q ~ conductance is shorted out and thus the 0.1 Q = conductance is in

parallel with the 0.05 0" conductance. The current i;, with a minus (-) sign, now flows through
the 0.1 Q" conductance. Then,

il = _0.1V2 = _0.1 X 1 = _0.1 A

and

Yip = i1/V, = =01/1 = 01 Q" (9.63)
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c. The short circuit transfer admittance y,; when the right port is short-circuited, is found from the

network of Figure 9.20.

————————————————

Vl=]V

V2=0

________________

Figure 9.20. Network for computing y,;

-1 . -1 ..
We observe that the 0.05 Q ~ conductance is shorted out and thus the 0.1 Q ~ conductance is in

parallel with the 0.2 O™ conductance. The current i,, with a minus (=) sign, now flows through

the 0.1 Q™ conductance. Then,
i, =-01lv;=-01x1=-01A

and

Yo = ip/Vy = -01/1 = 01 Q™

(9.64)

d. The short circuit output admittance Y,, at the right port when the left port is short-circuited, is

found from the network of 9.21.

————————————————

| MY ; i
| 010 | 2
| |

v =0 < 020q" | <+
| | —
| 005Q7" | !
| |

Figure 9.21. Network for computing y,,

V2:]V

-1 ) .. .
We observe that the 0.2 Q ~ conductance is shorted out and thus the current i, is the is the sum

of the currents through the 0.05 0! and 0.1 O conductances. Then,

i, = 0.05v,+0.1v, = 0.05x1+0.1x1 = 0.15 A
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and
Yoy = ip/Vy = 0.15/1 = 0.15 Q" (9.65)

Therefore, the two-port network of Figure 9.10 can be described by the following set of equations.

i, = Yy V; + YV, = 0.3V, —0.1v
-1 11V1+YoVo 1 ? 066
Iy = YoV +YopV, = —0.1V1+0.3V2

Note:
In Example 9.4, we found that the short circuit transfer admittances are equal, that is,

Yo =Y, = 01 (9.67)
This is not just a coincidence; this is true whenever a two-port network is reciprocal (or bilateral). A
network is reciprocal if the reciprocity theorem is satisfied. This theorem states that:

If a voltage applied in one branch of a linear, two-port passive network produces a certain current in any
other branch of this network, the same voltage applied in the second branch will produce the same current

in the first branch.

The reverse is also true, that is, if current applied at one node produces a certain voltage at another,
the same current at the second node will produce the same voltage at the first. An example is given at
the end of this chapter.

Obviously, if we know that the two-port network is reciprocal, only three computations are required
to find the y parameters.

If in a reciprocal two-port network its ports can be interchanged without affecting the terminal volt-
ages and currents, the network is said to be also symmetric. In a symmetric two-port network,

Yoo = Yn1
Yo1 = Y12

(9.68)

The network of Figure 9.17 is not symmetric since Y,, # Yq

We will present examples of reciprocal and symmetric two-port networks at the last section of this
chapter.

The following example illustrates the applicability of two-port network analysis in more complicated
networks.

Example 9.5

For the network of Figure 9.22, compute Vv, V,, i;,and i,.
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I

ho, AN
+ +
100
100 ’ ‘
<::> vy v 40
‘ 5Q 20Q
I5A ' '

Figure 9.22. Network for Example 9.5

Solution:

We recognize the portion of the network enclosed in the dotted square, shown in Figure 9.23, as that

of the previous example.

fjr-=———--7<--—--- -
R NN
| 100 |
100 ‘ | | ‘
<::> v L, 40
| |
\ 950 2007 \
15A | |
Lo L

_______________

Figure 9.23. Portion of the network for which the y parameters are known.

For the network of Figure 9.23, at Node 1,

i; = 15-v,/10 (9.69)
and at Node 2,
By substitution of (9.69) and (9.70) into (9.606), we get:
i, = Y4V +YV, = 0.3v, -0.1v, = 15-v,/10
.1 11V1tY12V? 1 2 1 ©.71)
Iy = Yo Vi +YpVv, = =0.1v; +0.3v, = -v,/4
or
0.4v,-0.1v, = 15
(9.72)
We will use MATLAB to solve the equations of (9.72) to become more familiar with it.
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syms v1 v2; [v1 v2]=solve(0.4*v1-0.1*v2-15, —-0.1*v1 +0.4*v2)

vl = 40
v2 = 10
and thus
v, =40V
(9.73)
v, =10V
The currents i; and i, are found from (9.69) and (9.70).
ip =15-40/10 = 11 A
(9.74)

i, = -10/4 = 25 A

9.4.2 The z parameters

A two-port network such as that of Figure 9.24 can also be described by the following set of equa-
tions.

i

Vi

Iyl + 2550
Vo = Inlp + 20,

Figure 9.24. The z parameters for i; =0 and i, =0

Vi = Zyqlg + 2l (9.75)

In two-port network theory, the zj; coefficients are referred to as the z parameters or as open circuit
impedance parameters.

Let us assume that Vv, is open, thatis, i, = 0 as shown in Figure 9.25.

T —
V1 V) l2:0

Figure 9.25. Network for the definition of the z;; parameter
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Then, (9.75) reduces to

or

2, = -1 (9.78)

and this is the open circuit input impedance when the right port of Figure 9.25 is open.
Let us again consider (9.75), that is,
Vi = Zgq0q + 2450 (9.79)

This time we assume that the terminal at v, is open, i.e., i; = 0 as shown in Figure 9.26.

il:0 V1 Va

Figure 9.26. Network for the definition of the z,, parameter

Then, (9.75) reduces to
Vi = Zpol (9.80)
ot
2, = ‘I’—l 9.81)
2

and this is the open circuit transfer impedance when the left port is open as shown in Figure 9.26.

Similar expressions are obtained when we consider the equation for v, , that is,
Vo = Zyqlq +Zpl (9.82)
Let us assume that v, is open, thatis, i, = 0 as shown in Figure 9.27.

Then, (9.82) reduces to
Vy = Zyi (9.83)
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i 2 g

or
2, = 2 (9.84)

The parameter Z,, is referred to as open circuit transfer impedance when the right port is open as
shown in Figure 9.27.

Finally, let us assume that the terminal at v; is open, i.e,, i; = 0 as shown in Figure 9.28.

i1=0 V1 Vo

Figure 9.28. Network for the definition of the z,, parameter

Then, (9.82) reduces to
V, = Zoi (9.85)

or

The parameter Z,, is called the open circuit output impedance.

We observe that the z parameters definitions are similar to those of the y parameters if we substitute
voltages for currents and currents for voltages.

Example 9.6

For the network of Figure 9.29, find the z parameters.
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NVVY
50

20Q 150

Figure 9.29. Network for Example 9.6

Solution:

a. The open circuit input impedance z;; is found from the network of Figure 9.30 where we have

assumed that i; = 1 A.

Figure 9.30. Network for computing z,, for the network of Figure 9.29

We observe that the 20 Q resistor is in parallel with the series combination of the 5 Q and 15 Q

resistors. Then, by the current division expression, the current through the 20 Q resistoris 0.5 A
and the voltage across that resistor is

v, = 20x05 =10V
Therefore, the open circuit input impedance z4; is
Zy7 = Vy/ip = 10/1 =10 Q (9.87)
b. The open circuit transfer impedance z;, is found from the network of Figure 9.31.

We observe that the 15 Q resistance is in parallel with the series combination of the 5 Q and

20 Q resistances. Then, the current through the 20 Q resistance is

. 15 . 15
oo = 5154002 T 20 % 173/8A
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_______________

5

il:0 V1

)

i2:1A

_______________

a

Figure 9.31. Network for computing z,, for the network of Figure 9.29

and the voltage across this resistor is

3 60
8

Therefore, the open circuit transfer impedance 2;, is

—x20:-é-:15/2V

Orchard Publications

v
2,=2=%2_7509 (9.88)
Iy 1
c. The open circuit transfer impedance Z,; is found from the network of Figure 9.32.
In Figure 9.32 the current that flows through the 15 Q resistor is
: 20 . 20
50 = 075,151 T 20 1712 A
NVVY
+ 50 +
<> V1 20 O 15Q Vy iz =0
il = ] A
Figure 9.32. Network for computing z,, for the network of Figure 9.29
and the voltage across this resistor is
V2=%x15=15/2V
Therefore, the open circuit transfer impedance z,; is
v
2, =2 =2 _750 (9.89)
Iy 1
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We observe that

Iy = Iy (9.90)

d. The open circuit output impedance Z,, is found from the network of Figure 9.33.

————————————————

| 1
| |
| |
| |
i =0 vy 1< 200 15Q2 | n <>
| |
| |
| |

i2:IA

Figure 9.33. Network for computing z,, for the network of Figure 9.29

We observe that the 15 Q resistance is in parallel with the series combination of the 5 Q and

20 Q resistances. Then, the current through the 15 Q resistance is

2045 . 25

50 = 55 54152 = 20 %1 =3/8A

and the voltage across that resistor is

g><15=75/8V

Therefore, the open circuit output impedance z,, is

=~ _T5/8 5,80 9.91)

9.4.3 The h Parameters

A two-port network can also be described by the set of equations
vy = hygig+hpv, (9.92)
iy = hyly +hpv, (9.93)
as shown in Figure 9.34.

The h parameters represent an impedance, a voltage gain, a current gain, and an admittance. For this
reason they are called hybrid (different) parameters.

Let us assume that v, = 0 as shown in Figure 9.35.
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+ i
] —Vl E
ip - 1

vy = hygig +hppv,

2

iy = hyyig +hyyv,

Figure 9.34. The h parameters for i; #0 and v, # 0

I

Iy

Figure 9.35. Network for the definition of the h,; parameter
Then, (9.92) reduces to
vi = hy iy (9.94)

or

hy = % (9.95)

Therefore, the parameter h;; represents the input impedance of a two-port network.

Let us assume that i; = 0 as shown in Figure 9.36.

i1:O V1

V2

!

h,, =
12
vy

i=0
Figure 9.36. Network for computing h,, for the network of Figure 9.34
Then, (9.92) reduces to

Vi = hyp vy (9.96)
or
hy, = % (9.97)
2
Circuit Analysis 11 with MATLAB Applications 9-25

Orchard Publications



Chapter 9 One- and Two-port Networks

Therefore, in a two-port network the parameter h;, represents a voltage gain (or loss).

Let us assume that v, = 0 as shown in Figure 9.37.

Ip

Figure 9.37. Network for computing h,, for the network of Figure 9.34

Then, (9.93) reduces to
iy = hyly
or

Therefore, in a two-port network the parameter h,, represents a current gain (or loss).

Finally, let us assume that the terminal at v; is open, i.e., i = 0 as shown in Figure 9.38.

i1:O V1 Vy

Figure 9.38. Network for computing h,, for the network of Figure 9.34

Then, (9.93) reduces to
iy = hyVy

or

Therefore, in a two-port network the parameter h,, represents an output admittance.

Example 9.7

For the network of Figure 9.39, find the h parameters.
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10 6 Q

40

Figure 9.39. Netwbrk for Example 9.7

Solution:

a. The short circuit input impedance h;; is found from the network of Figure 9.40 where we have

assumed that i; = 1 A.

C

l1=1A

Figure 9.40. Network for computing h,, for the network of Figure 9.39

From the network of Figure 9.40 we observe that the 4 Q3 and 6 Q resistors are in parallel yield-

ing an equivalent resistance of 2.4 Q in series with the 1 Q resistor. Then, the voltage across the
current source is

v, = 1x(1+24) =34V
Therefore, the short circuit input impedance hy; is

__34_349 (9.98)
iy 1
b. The voltage gain h,, is found from the network of Figure 9.41.

Since no current flows through the 1 Q resistor, the voltage v, is the voltage across the 4 Q resis-

tor. Then, by the voltage division expression,

4 4
1= gogVe = 1gx1 =04V
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i1:0 V]_ 4Q

V2:1V

Figure 9.41. Network for computing h,, for the network of Figure 9.39.

Therefore, the voltage gain h;, is the dimensionless number

hy,=-2=2%_04 (9.99)

c. The current gain hy; is found from the network of Figure 9.42.

We observe that the 4 Q and 6 Q resistors are in parallel yielding an equivalent resistance of
2.4 Q. Then, the voltage across the 2.4 Q parallel combination is

+ 1Q 6Q — I

<> \Z] 40 vy =0

ll:]A

Figure 9.42. Network for computing h,, for the network of Figure 9.39.

The current i, is the current through the 6 Q resistor. Thus,

24 _ o4A
6

12
Therefore, the current gain h,; is the dimensionless number

_b_-04_ o,
2 .

>
N
=

|

1l

We observe that
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and this is a consequence of the fact that the given network is reciprocal.

d. The open circuit admittance h,, is found from the network of Figure 9.43.

+ 1Q 6Q — L

=0 v 40

V2=]V

Figure 9.43. Network for computing h,, for the network of Figure 9.39.

Since no current flows through the 1 Q resistor, the current i, is found by Ohm’s law as

\'
i,= —2 =L -01A
6+4 10

Therefore, the open circuit admittance h,, is

hy, = 2 0—11 010" (9.101)

Note:

The h parameters and the g parameters (to be discussed next), are used extensively in networks con-

- . * . . .
sisting of transistors , and feedback networks. The h parameters are best suited with series-parallel

feedback networks, whereas the g parameters are preferred in parallel-series amplifiers.

9.4.4 The g Parameters

A two-port network can also be described by the set of equations

as shown in Figure 9.44.

* Transistors are three-terminal devices. However, they can be represented as large-signal equivalent two-port net-
works circuits and also as small-signal equivalent two-port networks where linearity can be applied.
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V1

1 = 031Vy + 91010
Vo = OV + 02200

Figure 9.44. The g parameters for v; #0 and i, # 0

The g parameters, also known as inverse hybrid parameters, represent an admittance, a current gain,
a voltage gain and an impedance.

Let us assume that i, = 0 as shown in Figure 9.45.

—_

V1

Figure 9.45. Network for computing g,, for the network of Figure 9.44
Then, (9.102) reduces to
i; = 031V (9.104)
or
911 = \'/_1 (9.105)

1

Therefore, the parameter g;; represents the input admittance of a two-port network.

Let us assume that v; = 0 as shown in Figure 9.46.

V1= 0 V) i2

Figure 9.46. Network for computing g,, for the network of Figure 9.44
Then, (9.102) reduces to
i1 = Oyl (9.106)
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or

i
O = é (9.107)

Therefore, in a two-port network the parameter g,, represents a current gain (or loss).

Let us assume that i, = 0 as shown in Figure 9.47.

V1

Figure 9.47. Network for computing g,, for the network of Figure 9.44
Then, (9.103) reduces to
Vo = 0y Vg (9.108)
or
v
Uy = ._2 (9.109)
1

Therefore, in a two-port network the parameter ¢,; represents a voltage gain (or loss).

Finally, let us assume that v; is shorted, i.e., v; = 0 as shown in Figure 9.48.

V]_:O 1

v
v
gzz-i—
2

v; =0
Figure 9.48. Network for computing g,, for the network of Figure 9.44
Then, (9.103) reduces to

or
v
Uy = 72 (9.111)
2
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Thus, in a two-port network the parameter g,, represents the output impedance of that network.

Example 9.8

For the network of Figure 9.49, find the g parameters.

1Q 40

120

Figure 9.49. Network for Example 9.8
Solution:
a. The open circuit input admittance ¢q; is found from the network of Figure 9.50 where we have

assumed that v, = 1 V.

V]_:]V

Figure 9.50. Network for computing g,, for the network of Figure 9.49.

There is no current through the 4 Q resistor and thus by Ohm’s law,

i 1/13 1 1
=1 _2®_ — 0 9.112
gll V]_ 1 13 ( )

b. The current gain g;, is found from the network of Figure 9.51.

By the current division expression, the current through the 1 Q resistor is

12 . 12
=5 x1=-12/13 A

=
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vy =0 120 <>

Figure 9.51. Network for computing g,, for the network of Figure 9.49.

i2:1A

Therefore, the current gain g, is the dimensionless number
i -
g = 2 = % = _12/13 (9.113)

c. The voltage gain g,; is found from the network of Figure 9.52.

V]_:]V

Figure 9.52. Network for computing g,, for the network of Figure 9.49.

Since there is no current through the 4 Q resistor, the voltage V, is the voltage across the 12 Q

resistor. Then, by the voltage division expression,

12
1+12

V2: X1:12/13V

Therefore, the voltage gain g,; is the dimensionless number

g, = 2= 12713 _ 12
YA 1 13

We observe that
921 = 912 (9.114)
and this is a consequence of the fact that the given network is reciprocal.

d. The short circuit output impedance g,, is found from the network of Figure 9.53.
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Figure 9.53. Network for computing g,, for the network of Figure 9.49.

The voltage v, is the sum of the voltages across the 4 Q resistor and the voltage across the 12 Q

resistor. By the current division expression, the current through the 12 Q resistor is

oo = Togis = 5 %1 = 1/13 A 9.115)

Then,
Vipo = %x 12 = 12/13 V
and

v, = 1—;+4 = 64/13 V

Therefore, the short circuit output impedance g5, is

0, = = = 28 - 6a/130 9.116)

12
9.5 Reciprocal Two-Port Networks

If any of the following relationships exist in a a two-port network,

I3 = I
Yor =Y
2o (9.117)
hy = —hyy
921 = 912
the network is said to be reciprocal.
If, in addition to (9.117), any of the following relationship exists
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Zy; =11
Yoo = Yn
h11h22—h12h21 =1

011922012921 = 1

(9.118)

the network is said to be symmetric.

Examples of reciprocal two-port networks are the tee, m, bridged (lattice), and bridged tee.
These are shown in Figure 9.54.

Examples of symmetric two-port networks are shown in Figure 9.55.

Let us review the reciprocity theorem and its consequences before we present an example. This theo-
rem states that:

If a voltage applied in one branch of a linear, two-port passive network produces a certain current in any
other branch of this network, the same voltage applied in the second branch will produce the same current
in the first branch.

2] EA E4
Tee s
Z .
Z
[z 9
[] Bridged
2 RO
Bridged Tee @ )

Figure 9.54. Examples of reciprocal two-port networks

The reverse is also true, that is, if current applied at one node produces a certain voltage at another,
the same current at the second node will produce the same voltage at the first.

It was also stated earlier that if we know that the two-port network is reciprocal, only three computa-
tions are required to find the y, z, h, and g parameters as shown in (9.117). Furthermore, if we know

that the two-port network is symmetric, we only need to make only two computations as shown in
(9.118).
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E4 4] 4]
Tee T
A
— 2
4] 4]
[] Bridged
2 R
Bridged Tee @ .

Figure 9.55. Examples of symmetric two-port networks.
Example 9.9

In the two-port network of Figure 9.50, the voltage source Vg connected at the left end of the net-

work is set for 15 V, and all impedances are resistive with the values indicated. On the right side of

the network is connected 2 DC ammeter denoted as A. Assume that the ammeter is ideal, that is, has
no internal resistance.

a. Compute the ammeter reading,

b. Interchange the positions of the voltage source and recompute the ammeter reading.

Z
adl vg = 15V
A 7 Z,=300Q
1 3
Z, =60 Q
A) Z;=20
‘ z @ 5
(9 [a Z,=10

Figure 9.56. Network for Example 9.9.

Solution:

a. Perhaps the easiest method of solution is by nodal analysis since we only need to solve one equa-
tion.
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The given network is redrawn as shown in Figure 9.57.

[ Z,)

=] ‘I vg = 15V
a z4 _
A Z, =20Q
v V4 C) 3
CQ [a Z, =10 Q
b

Figure 9.57. Network for solution of Example 9.9 by nodal analysis

By KCL at node a,
V,p—15 N Vap , Vap

30 60 20
or

6, _15

aovab " 30
or

V,, =5V

The current through the ammeter is the sum of the currents 1,5 and I, . Thus, denoting the cur-

rent through the ammeter as 1, we get:

Vap  V _ 5 15
Iy = lpg+lyy = 2+ = 2422 =025+150 = 1L.75A (9.119)
AT BT 7077, 20 10

b. With the voltage source and ammeter positions interchanged, the network is as shown in Figure
9.58.

[ Z,)
| \ =] vg = 15V
z4 a _
a2} Bowe
<—|Zl 2 =
vs> Z, =200
® m Wz
b

Figure 9.58. Network of Figure 9.57 with the voltage source and ammeter interchanged.
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Applying KCL for the network of Figure 9.58, we get:

Vap , Vap , Vap=15 _

30 60 20
or

6, _15

60 2 7 20
or

V,, = 75V

The current through the ammeter this time is the sum of the currents |, and I, . Thus, denoting

the current through the ammeter as 1, we get:

\%
=Dyl = =2+ X 19,15 95,150 = 1.75A (9.120)
zZ, 7, 30 10

We observe that (9.119) and (9.120 give the same value and thus we can say that the given net-
work is reciprocal.

9.6 Summary

A port is a pair of terminals in a network at which electric energy or a signal may enter or leave the
network.

A network that has only one pair a terminals is called a one-port network. In an one-port network,
the current that enters one terminal must exit the network through the other terminal.

A two-port network has two pairs of terminals, that is, four terminals.

For an n—port network the y parameters are defined as
i1 = Y12V +Y12Vo +YagVa + - +Y10Vn
Iy = Yor1Vi +YooVo +Yo3Va+ ... + YV,
i3 = Ya1Vi +YgVo +Ya3Va+ ... + YoV,
and so on.

If the subscripts of the Yy -parameters are alike, such as y;;, Y5, and so on, they are referred to as

driving-point admittances. If they are unlike, such as y;,, Y,; and so on, they are referred to as

transfer admittances.

For a 2 — port network the y parameters are defined as
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1 = YuVi+ YV,
Iy = YoV + Y0V,

Ina 2 - port network where the right port is short-circuited, that is, when v, = 0, the y;; param-

eter is referred to as the short circuit input admittance. In other words,

Ina 2 -port network where the left port is short-circuited, that is, when v; = 0, the y;, parame-
ter is referred to as the short circuit transfer admittance. In other words,

i
_h
Y12—V_
2

vy =0

Ina 2 - port network where the right port is short-circuited, that is, when v, = 0, the y,; param-

eter is referred to as the short circuit transfer admittance. In other words,

Ina 2 -port network where the left port is short-circuited, that is, when v; = 0, the y,, parame-

ter is referred to as the short circuit output admittance. In other words,

For a n—port network the Z parameters are defined as

¥ 2y

and so on.
If the subscripts of the z-parameters are alike, such as z;;, Zy, and so on, they are referred to as

driving-point impedances. If they are unlike, such as z,, zZ,; and so on, they are referred to as

transfer impedances.
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Chapter 9 One- and Two-port Networks

For a 2 — port network the z parameters are defined as

e Ina 2-port network where the right port is open, that is, when i, = 0, the z;; parameter is

referred to as the open circuit input impedance. In other words,

e In a 2-port network where the left port is open, that is, when i; = 0, the z;, parameter is

referred to as the open circuit transfer impedance. In other words,

0, the z,; parameter is

e Ina 2-port network where the right port is open, that is, when i,

referred to as the open circuit transfer impedance. In other words,

e In a 2-port network where the left port is open, that is, when i; = 0, the z,, parameter is

referred to as the open circuit output impedance. In other words,

v
Vs
Zzz—i_
2

i, =0

e A two-port network can also be described in terms of the h parameters with the equations
Vi = hygiy +hypvy
iy = hyyiy +hyVy

e The h parameters represent an impedance, a voltage gain, a current gain, and an admittance. For
this reason they are called hybrid (different) parameters.

e Ina 2-port network where the right port is shorted, that is, when v, = 0, the hy; parameter

represents the input impedance of the two-port network. In other words,
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Y
1
hu—i—
1

v, =0

e Ina 2-port network where the left port is open, that is, when i; = 0, the h;, parameter repre-
sents a voltage gain (or loss) in the two-port network. In other words,
!

h12_v
2

i, =0
e Ina 2-port network where the right port is shorted, that is, when v, = 0, the h,; parameter

represents a current gain (or loss). In other words
p g )

e Ina 2-port network where the left port is open, that is, when i; = 0, the h,, parameter repre-
sents an output admittance. In other words,

2

Nor =
22
AP

i,=0
e A two-port network can also be described in terms of the g parameters with the equations
i1 = 911V1+012dp
V2 = 021Vt 02l

e The g parameters, also known as inverse hybrid parameters, represent an admittance, a current
gain, a voltage gain and an impedance.

e Ina 2-port network where the right port is open, that is, when i, = 0, the g;; parameter repre-

sents the input admittance of the two-port network. In other words,

e Ina 2-port network where the left port is shorted, that is, when v; = 0, the g;, parameter rep-

resents a current gain (or loss) in the two-port network. In other words,
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e Ina 2-port network where the right port is open, that is, when i, = 0, the g,; parameter rep-

resents a voltage gain (or loss). In other words,

e Ina 2-port network where the left port is shorted, that is, when v; = 0, the g,, parameter rep-

resents an output impedance. In other words,

e The reciprocity theorem states that if a voltage applied in one branch of a linear, two-port passive
network produces a certain current in any other branch of this network, the same voltage applied
in the second branch will produce the same current in the first branch. The reverse is also true,
that is, if current applied at one node produces a certain voltage at another, the same current at
the second node will produce the same voltage at the first.

e A two-port network is said to be reciprocal if any of the following relationships exists.

I3 = 112
Yor = Yo
hy = —~hy,
921 = Q12

e A two-port network is said to be symmetrical if any of the following relationships exist.
2y =2y and zp =17y

Y1 = Y1 @nd Yy =Yy
hy, = -hy, and hyhy, —hphy =1

0,1 = —01 and 011922 = 912021 = 1
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9.7 Exercises

1. For the network of Figure 9.59, find the z parameters.

NNV
10Q

5Q 20Q

Figure 9.59. Network for Exercise 1.

2. For the network of Figure 9.60, find the y parameters.

NV
50

20Q 150

Figure 9.60. Network for Exercise 2.

3. For the network of Figure 9.61, find the h parameters.

AN~
40

10 6 Q

Figure 9.61. Network for Exercise 3.

4.For the network of Figure 9.62, find the g parameters.

AN
40

Figure 9.62. Network for Exercise 4.
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5. The equations describing the h parameters can be used to represent the network of Figure 9.63.
This network is a transistor equivalent circuit for the common-emitter configuration and the h
parameters given are typical values for such a circuit. Compute the voltage gain and current gain
for this network if a voltage source of v;= coswt mV in series with 800 Q is connected at the

input (left side), and a 5 KQ load is connected at the output (right side).

hy1 (Q)
+— L +
vy hiavo - hoy iy vy
a
hyy (27)
hy, = 2x107*
hy = 50x10° Q7
Figure 9.63. Network for Exercise 5.
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9.8 Solutions to Exercises

1.

————————————————

| |
| |
I I
I iSQ :
<> Vi 20 Q |
| |
| |
| |
| |

i2=0

________________

_ _(10420) . _ 30 . _
0 = B10+20)1 = 35" H = OTA

————————————————

________________

_ 20 .20
0 = 0+5+10)2 " 35 L= A

v1:5x§:20/7v

Vv

I

12=1A

ANV
+ 10Q

i,=0
<> 121 50 20Q

V2

i2:0
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. 5 . 5
00 = Gi10420)t T35 1T YTA

v2=20x%=20/7V

V2 L2077 _ 99,70

We observe that

l2=1A

| 1
| |
| |
| |
h=0 v 1< 50 2002 1 v ()
I I
| |
| |

________________

. _ _(10+5) . 15 123/7A
00 = 20110452 = 35 <1 =%

v2=2ox§=60/7v

————————————————

|
|
I I
| |
C“) | 20 O 15 O | |short |y, =0
- | |
| |
| |
|

Reg = 5120 =4 Q

i = Vy/Req = 1/4 A

1/4
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————————————————

o M
127y ! 50 !
2 vy = 0 I |
| |
v =0 < 200 I <+>
| | -
| |
15Q _
short\y : v =1V
i, = —Vg,/5 = -1/5 A
Yip = iy/Vp = -1/5/1 = -1/5 Q™"
iy : ANV : -
Yo = = R
v ! 50 !
1 v, =0 | |
| |
C) : 20 Q : v, =0
— | |
| |
v=1V | 15Q '/ short
Yo, = ip/Vy = -1/5/1 = -1/5 Q™"
We observe that
Yor = Y12
i | A
y22 - V_ h | 50 : lp ——
2 vy =0 ! !
| |
v =0 < 200 I
| |
| |
15 Q _
short\y : v =1V
iy = V3/Req = 1/(51115) = 1/(75/20) = 4/15 A
Yop = ip/V, = 4/15/1 = 4/15 Q™"
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6 Q2

V2=0

short

FUNL. SN
7@+t

V2:]V

Vv

Req

61(4+1) 30/11

I, =

. 6 .
V1= 1XI19= 1X(6T+1)><I2

/5 _ 1/5 (dimensionless)

VY

=11/30 A

40

V2=0

short

. 1 . 1
I, = (1+4)><(—|1) = gx(—l) =-1/5A
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I, -1/5
1
We observe that
hy = —hy,
i2 i~ o » NV Y ’ iz
hy, = ” =9 4 4 Q +
2li =0
Vl ] Q 6 Q V2
Vo = 1 \%
v
|2 = —2 = 1 = 1 = 11/30 A
Req 6l(4+1) 30/11
i _
hy, = 2 = 130 _ 13,30 o
v, 1
4.
i NNV ’
=1 i 40 =0
911 vl + Ip =
i,=0
+> vy 1Q 60
vV, = 1 \% _
v
ip=-t=-—2L -1 _11/10A
Req L1I(4+6)) 10/11
i _ 11/10 1
== === =11/10Q
9u v, 1
= 1 — 4Q 2 T
g12 - i2 +
vy =0
v, = 0 10 603V, <>
short ~ p=1A
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i, = (6%1)(42) -2 --3/5A

i _
9y = é = % = —3/5 (dimensionless)
v, — ANV
g, = = 1 4 Q i,=0
21 Vv A + 2
i, =0 + l6o
V1=1 V — -
v
ip=-t-—1 __1 _11,10A
Req 1l(4+6) 10/11
V2 = 6><i69 = GX(IT%—-:—G%) =3/5V
Vo, 3/5
=< ====3/5
921 v, 1
We observe that
G921 = O
v, — AW —
g22 = E 1 4 Q ) +
v, =0 l6q
v, = 0 10 6Q <V, <>
short _ L=1A

V2:6><i69:6><( 4 xiz) :i—gxlz 12/5V
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5.
We recall that

Vi = hygip+hpv, (1)

Iy = hyip+hypv, (2)

With the voltage source v;= cosot mV in series with 800 Q connected at the input and a 5 KQ

load connected at the output the network is as shown below.

800 Q 1200 Q
—’W‘ ! Iy —
I +
2x 107, 50i, 50 x 10°° Q7' 2 5000 ©
1.20° mV -
The network above is described by the equations
(800 + 1200)i; + 2 x 10 v, = 10~
. -6 . _V2
50i, +50%x10 v, =1, = —=
1R Y2 = 2 = 0o
or
2x10%,+2x 107, = 107°
50i, + 250 x 10 %V, = 0
We write the two equations above in matrix form and use MATLAB for the solution.
A=[2*10"3 2*10" (-4); 50 250*10 " (-6)]; B=[10" (~3) 0]'; X=A\B;...
fprintf(' \n'); fprintf('i1 = %5.2e A\t ,X(1)); fprintf('v2 = %5.2e V', X(2))
il = 5.10e-007 A v2 = -1.02e-001 Vv
Therefore,
i, = 051 pA (3)
v, = =102 mV (4
Next, we use (1) and (2) to find the new values of v; and i,
vy = 12x10°x 051 x 100+ 2 x 107" x (102 x 10™%) = 0.592 mV
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i, = 50 x 0.51 x 10 ° x 50 x 10 ° x (~102 x 10°) = 20.4 pA

The voltage gain is

_ Vo _ 2102 mV _

y=—== = -1723
v, 0592 mV

and the minus (-) sign indicates that the output voltage in 180° out-of-phase with the input.

The current gain is

and the output current is in phase with the input.
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Chapter 10

Three-Phase Systems

his chapter is an introduction to three-phase power systems. The advantages of three-phase
system operation are listed and computations of three phase systems are illustrated by several
examples.

10.1 Advantages of Three-Phase Systems

The circuits and networks we have discussed thus far are known as single-phase systems and can be
either DC or AC. We recall that AC is preferable to DC because voltage levels can be changed by
transformers. This allows more economical transmission and distribution. The flow of power in a
three-phase system is constant rather than pulsating. Three-phase motors and generators start and
run more smoothly since they have constant torque. They are also more economical.

10.2 Three-Phase Connections

Figure 10.1 shows three single AC series circuits where, for simplicity, we have assumed that the
internal impedance of the voltage sources have been combined with the load impedance. We also
have assumed that the voltage sources are 120° out-of-phase, the load impedances are the same, and
thus the currents I, I, and |, have the same magnitude but are 120° out-of-phase with each other

as shown in Figure 10.2.

V@D AR B e @3 2

Figure 10.1. Three circuits with 120° out-of-phase voltage sources

o

Figure 10.2. Waveforms for three 120° out-phase currents
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Chapter 10 Three-Phase Systems

Let us use a single wire for the return current of all three circuits as shown below. This arrangement
is known as four-wire, three-phase system.

| +
v, -
|
¥ z
V@ ]
IC +
i

Vel I+ 1+,

Figure 10.3. Four-wire, three-phase system

This arrangement shown in Figure 10.3 uses only 4 wires instead of the 6 wires shown in Figure

10.1. But now we must find the relative size of the common return wire that it would be sufficient to
carry all three currents I+ 1, + 1,

We have assumed that the voltage sources are equal in magnitude and 120° apart, and the loads are

equal. Therefore, the currents will be balanced (equal in magnitude and 120° out-of phase). These
currents are shown in the phasor diagram of Figure 10.4.

~

I

I

Figure 10.4. Phasor diagram for three-phase balanced system
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From figure 10.4 we observe that the sum of these currents, added vectorially, is zero. Therefore,
under ideal (perfect balance) conditions, the common return wire carries no current at all. In a prac-
tical situation, however, is not balanced exactly and the sum is not zero. But still it is quite small and
in a four-wire three-phase system the return wire is much smaller than the other three. Figure 10.5
shows a four-wire, three-phase Y —system where |V | = |Vy| =

¢ » the three loads are identical,

and |, is the current in the neutral (fourth) wire.

l,—
@ 2C0sot V Ziomo
L Zi0AD /
Vbcos(oot— 120°) V \
Z0rD
V.cos(mt—240°) V o

—1

n

Figure 10.5. Four-wire, three-phase Y — system

A three-wire three-phase Y —system is shown in Figure10.6 where |V | = |Vy| =

loads are identical.

Z,0AD

Ziorp

Ziorp

V.cos(mt—240°) V I,

Figure 10.6. Three-wire, three-phase Y — system

This arrangement shown in Figure 10.6 could be used only if all the three voltage sources are pet-
fectly balanced, and if the three loads are perfectly balanced also. This, of course, is a physical impos-
sibility and therefore it is not used.
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A three-wire three-phase A—1load system is shown in Figure 10.7 where [V, = |Vy| = |V|, and the

three loads are identical. We observe that while the voltage sources are connected as a Y —system,

the loads are connected as a A —system and hence the name A —load

Ziorp

)
b Z0AD
Vycos(wt—120°) V \

Ziorp

V.cos(mt—240°) V lo—

Figure 10.7. Three-wire, three-phase A —load system

This arrangement offers the advantage that the A-connected loads need not be accurately balanced.
However, a A-connection with only three voltages is not used for safety reasons, that is, it is a safety
requirement to have a connection from the common point to the ground as shown in Figure 10.5.

10.3 Transformer Connections in Three-Phase Systems

Three-phase power systems use transformers to raise or to lower voltage levels. A typical generator
voltage, typically 13.2 KV, is stepped up to hundreds of kilovolts for transmission over long dis-
tances. This voltage is then stepped down; for major distribution may be stepped down at a voltage
level anywhere between 15 KV to 50 KV, and for local distribution anywhere between 2.4 KV to
12 KV Finally, the electric utility companies furnish power to industrial and commercial facilities at
480 V volts and 120 V and 240 V at residential areas. All voltage levels are in RMS values.

Figure 10.8 shows a bank of three single phase transformers where the primary is A-connected, while
the secondary is Y -connected. This A—Y connection is typical of transformer installations at gener-
ating stations.

Figure 10.9 shows a single-phase three-wire system where the middle of the three wires is center-
tapped at the transformer secondary winding. As indicated, voltage between the outer wires is 240 V
while voltage from either of the two wires to the centered (neutral) wire is 120 V. This arrangement
is used in residential areas.
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ik
3E
ie

1

Figure 10.8. Three single-phase transformers use in three-phase systems

‘ ' 120V
Neutral wire

F L
240V

Figure 10.9. 240/120 volt single phase three-wire system

_(T0000L

120V

Industrial facilities need three-phase power for three-phase motors. Three-phase motors run
smoother and have higher efficiency than single-phase motors. A Y — A connection is shown in Fig-
ure 10.10 where the secondary provides 240 V three-phase power to the motor, and one of the
transformers of the secondary is center-tapped to provide 120 V to the lighting load.

10.4 Line-to-Line and Line-to-Neutral Voltages and Currents

We assume that the perfectly balanced Y -connected load of Figure 10.11 is perfectly balanced, that
is, the three loads are identical. We also assume that the applied voltages are 120° out-of-phase but
they have the same magnitude; therefore there is no current flowing from point n to the ground.

The currents I, I, and |, are referred to as the line currents and the currents I, I, and I, as

the phase currents. Obviously, in a Y -connected load, the line and phase currents are the same.
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Vab Z 0AD

I A

Figure 10.11. Perfectly balanced Y-connected load

Now, we consider the phasor diagram of Figure 10.12.

~

I

I

Figure 10.12. Phasor diagram for Y-connected perfectly balanced load
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If we choose |, as our reference, we have

I, = 1,20° (10.1)
l, = 1,£-120° (10.2)
I, = 1,2+120° (10.3)

These equations define the balance set of currents of positive phase sequence a—b —c.

\

Vpns and V, as phase voltages. We observe that in a Y -connected load, the line and

Next, we consider the voltages. Voltages V and V,, are referred to as line-to-line voltages and

ab> Yac»

voltages V,,,

phase voltages are not the same.
We will now derive the relationships between line and phase voltages in a Y -connected load.

Arbitrarily, we choose V,,, as our reference phase voltage. Then,

V,, = V,,£0° (10.4)
Vy, = V,,£-120° (10.5)
V., = V,,Z+120° (10.6)

These equations define a positive phase sequence a—b —c. These relationships are shown in Figure

10.13.

VC n

Vbn

Figure 10.13. Phase voltages in a Y -connected perfectly balanced load
The Y -connected load is repeated in Figure 10.14 for convenience.

From Figure 10.14
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’ I —

Vab Zi0aD

I I

Figure 10.14. Y-connected load

Vab = Van+Vop = Van = Vi, (10.7)
Vea = Ven+ Voo = Ve —Van (10.8)
Voe = Von+ Ve = Von—Ven (10.9)

These can also be derived from the phasor diagram of Figure 10.15.

Vca_ o _Vcn _Vb/n_ L 7Vab
\ / /
\ / /
\ / /

\ / ° /
30
Van\— - Van
\
\
\
\
Vbn > _Vcn
\ /
\ /
\ /
N |/
Vbc

Figure 10.15. Phasor diagram for line-to-line and line-to-neutral voltages in Y load

From geometry and the law of sines we find that in a balanced three-phase, positive phase sequence

Y -connected load, the line and phase voltages are related as
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Vg, = +/3V,,£30°
Y —connected load

(10.10)

The other two line-to-line voltages can be easily obtained from the phasor diagram of the previous

page.

Now, let us consider a A -connected load shown in Figure 10.16.

VT ’ ’ \ ’
ca
Ve ZL0nD .
ca
\ Ipe
I, . X c

Figure 10.16. Line and phase currents in A -connected load

We observe that the line and phase voltages are the same, but the line and phase currents are not the
same. To find the relationship between the line and phase currents, we apply KCL at point a and we
get:

lap = lat+lca
or

T T (10.11)

The line currents I, and I are derived similarly, and the phase-to-line current relationship in a A -

connected load is shown in the phasor diagram of Figure 10.17.

From geometry and the law of sines we find that a balanced three-phase, positive phase sequence A -
connected load, the line and phase currents are related as

I, = /31,,2-30°

A —connected load

(10.12)

The other two line currents can be easily obtained from the phasor diagram of Figure 10.17.
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Figure 10.17. Phasor diagram for line and phase currents in A-connected load
10.5 Equivalent Y and A Loads

In this section, we will establish the equivalence between the Y and A combinations shown in Figure
10.18.

J GR

Figure 10.18. Equivalence for A and Y-connected loads

In the Y -connection, the impedance between terminals B and C is
Zoc v = Zy+Z; (10.13)

and in the A-connection, the impedance between terminals B and C is Z, in parallel with the sum

Z,+Z,, thatis,

Z,(Z,+Z
Zge 5 = 2% (10.14)
Zi+Z,+2Z4
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Equating (10.13) and (10.14) we get

Z,(Z,+Z
z,+7, = 24t 2) (10.15)
Zi+Z,+2,
Similar equations for terminals AB and CA are derived by rotating the subscripts of (10.15) in a
cyclical manner. Then,

7.2 +7
2,+7, = 24t2) (10.16)
Zi+Zy+14
and
7 47, = alZ2tZy) (10.17)

¢ 2 +Z,+Z,

Equations (10.15) and (10.17) can be solved for Z, by adding (10.16) with (10.17), subtracting
(10.15) from this sum, and dividing by two. That is,

+Z,+7Z,. = = .
a’tTh T e Z,+2,+2, Z,+2,+2,

22,244 2,23+ 2,2, - 2,7, - Z,Z,

2Z. +Z +Z2.-Z.-Z 10.19
a+ b+ C b C Zl+22+z3 ( )
2Z,= _2hZs (10.20)
Zi+Zy,+ 1,
Z.Z
1-3 (10.21)

&7 7+ Z,+ 2,

Similar equations for Z, and Z are derived by rotating the subscripts of (10.21) in a cyclical manner.

Thus, the three equations that allow us to change any A-connection of impedances into a Y -connec-
tion are given by (10.22).

_ le3
&7 +Z,+ 2,
7 = ZZZS
b 2 +Z,+ 2, (10.22)
_ ZlZZ
¢ Z,+Z,+Z,

A —Y Conversion
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Often, we wish to make the conversion in the opposite direction, that is, from Y to AThis conversion
is performed as follows:

Consider the Y and A combinations of Figure 10.8 repeated for convenience.

(@) (b)

Figure 10.19. Y and A loads

From Figure (a),

If we attempt to solve equations (10.23), (10.24) and (10.25) simultaneously, we will find that the
determinant A of these sets of equations is singular, thatis, A = 0. This can be verified with Cramer’s
rule as follows:

Za—Zplg+0 = Vpp

“Z 0, +0+2Z e = Veq

Z, -z, 0
A=|0 2, 2| =22y2c~Z,Z,Z;+0+0+0+0 = 0 (10.27)
-z, 0 Z,

This result suggests that the equations of (10.20) are not independent and therefore, no solution
exists. However, a solution can be found if, in addition to (10.23) through (10.25), we use the equa-
tion

I+ lg+lc =0 (10.28)
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Solving (10.28) for I we get:

lc =-la-1g

and by substitution into (10.25),

Vea = ~Zla—Zlg=Z,1) = ~(Z,+ Z)1,~Zclg
From (10.23) and (10.30),
Zala=2Zylg = Vap
—(Za+Z)p-Zclg = Vea

and by Cramer’s rule,

! | = 22
ATA B™ A
where
A = fa ~ho| _ ~-2.2,-2,2,-2,Z,
~(Z,+2,) -Z,
and
Vag —Z
D, = | "® o = ~ZNVpg+ZpVea
VCA _Zc
Then,
| = D, _ —ZVag+Z,Vea _ ZNVpg=ZpVea
AT AN T -2,2-2,2.-2.2,  Z,Z2,+Z,Z.+Z.Z,
Similarly,

| = D_2 — ZaVBC_ZcVAB
BT AT Z2,2,+2,2.+2.Z,

and by substitution of 1, and Ig into (10.28),

. = ZyVen—2ZaVac
¢ Z.2,+2,2.+2.Z,

Therefore, for the Y -connection which is repeated in Figure 10.20 for convenience, we have:

(10.29)

(10.30)

(10.31)

(10.32)

(10.33)

(10.34)

(10.35)

(10.36)

(10.37)
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Chapter 10 Three-Phase Systems

A
Ip
Za
e
= IS

Figure 10.20. Currents in Y-connection

IA — ZcVAB_ZbVCA
ZaZy+ ZyZe+ 2.2,

lg = 2 ec o Vss (10.38)
Z 2o+ ZyZ + 2.2,

o = ZpVen—ZaVac
L ly+Zpl +Z.Z,

For the A-connection, which is also repeated in Figure 10.21 for convenience, the line currents are:

Figure 10.21. Currents in A -connection

I _\ﬁ_\ﬁ
AT 7z, Z
3 1
Vo V
|, = —=C_ _AB (10.39)
B ZZ Z3
= Yea Vac
c™ z Z
1 2

Now, the sets of equations of (10.38) and (10.39) are equal if
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ZVag=ZoVea  _ Vas Vea

- (10.40)
2,2, +Z2,2.+2.2, Iy Z,
ZoVec—ZcVas  _ Vac Vas (10.41)
ZZo+20Zo+ 22, 2, Zg '
ZpVea—ZaVee  _ Vea Vac (10.42)
220+ 22+ 22, 21 Z, '
From (10.40)
Z Z
C - l and b = l (10.43)
Z,Zp+ZpZc+ 2.2,  Z3 ZoZy+ZpZo+ 22, 7y
and from (10.41)
Z
a -1 (10.44)
2,2, +2,Z.+2.2, Z,
Rearranging, we get:
22y +2, 2. +Z.Z,
Zl =
Zb
7 VAVANE WAV AV
2" Z, (10.45)
2y + 2,2 +Z.Z,
23 =
ZC

Y - A Conversion

Example 10.1

For the circuit of Figure 10.22, use the Y - A conversion to find the currents in the various
branches as indicated.

Solution:
Let us indicate the nodes as a, b, ¢, and d, and denote the 90 Q, 90 2, and 90 Q resistances as

Ras Ry, and R, respectively as shown in Figure 10.23.

Next, we replace the Y connection formed by a, b, ¢, and d with the equivalent A connection
shown in Figure 10.24.
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60 Q

Figure 10.24. Circuit (c) for Example 10.1
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Now;, with reference to the circuits of Figures 10.23 and 10.24, and the relations of (10.45), we get:

_ RaRy +RyR.+RcRy 90 x 80 + 80 x 50 + 50 x 90 _ 15700

R = ~ 196 Q
! R 80 80
_ RaRp +RyRo+RRy _ 15700 o)
2 R, U
_ R,Rp, + RyR. + R.R, _ 15700 _ 314 O

3 R

C

Combination of parallel resistances in the circuit of Figure 10.24 yields

196 x 60
Roa = 196+60~46 Q
and
314 x 70
Raa = 312170~ >" ©

The circuit of Figure 10.24 reduces to the circuit of Figure 10.25. The circuit of Figure 10.25 can be
further simplified as shown in Figure 10.26.

From the circuit of Figure 10.26,

120
I, = == = 0.69 A 10.46
27 174 ( )
120
l, = == = 1.17 A 10.47
37 103 ( )
a
I
46 Q
(D \ 174 Q) d
120V I Iy
57Q
b

Figure 10.25. Circuit (d) for Example 10.1
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120V I Iy

b
Figure 10.26. Circuit (e) for Example 10.1
By addition of (10.46) and (10.47)

l, = l,+1, = 0.69+1.17 = 1.86 (10.48)

To compute the other currents, we return to the circuit of Figure 10.25 which, for convenience, is
repeated as Figure 10.27 and it is denoted as Circuit (f).

For the circuit of Figure 10.27, by the voltage division expression

46
Vag = 16157 x 120 = 53.6 V (10.49)
57
Vip = 16157 x 120 = 66.4 V (10.50)
a
I
46 Q
(D ‘ 174 Q d
120V I, I3
57 Q

Figure 10.27. Circuit (f) for Example 10.1
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Next, we return to the circuit of Figure 10.24 which, for convenience, is repeated as Figure 10.28 and

denoted as Circuit (g).

Figure 10.28. Circuit (g) for Example 10.1

From the circuit of figure 10.28,

|, = \ﬁ
4760
and
|5 =
70

_ 664

Vg _

- 089 A
70
536 _ o5 A
60

(10.51)

(10.52)

Finally, we return to the circuit of Figure 10.23 which, for convenience, is repeated as Figure 10.29

and denoted as Circuit (h).

Figure 10.29. Circuit (h) for Example 10.1
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For the circuit of Figure 10.29, by KCL,
1.86 - 0.89

0.97 A (10.53)

1.86 - 0.95

and

lg = ls—1, = 0.95-0.89 = 0.06 A (10.55)

Of course, we could have found the branch currents with nodal or mesh analysis.

Quite often, the Y and A arrangements appear as shown in Figure 10.30 and they are referred to as
the tee (T) and pi () circuits. Consequently, the formulas we developed for the Y and A arrange-
ments can be used with the tee and T arrangements.

A B A
Za Zb Z3 B

Z

C C

Figure 10.30. T and = circuits

In communications theory, the T and 7 circuits are symmetrical, i.e., Z, = Z, and Z; = Z,.

10.6 Computation by Reduction to Single Phase

When we want to compute the voltages, currents, and power in a balanced three-phase system, it is
very convenient to use the Y -connection and work with one phase only. The other phases will have
corresponding quantities (voltage, current, and power) exactly the same except for a time difference
of 1/3 cycle. Thus, if current is found for phase a, the current in phase b will be 120° out-of- phase
but it will have the same magnitude as phase a. Likewise, phase ¢ will be 240° out-of-phase with
phase a.

If the load happens to be A-connected, we use the A — Y conversion shown in Figure 10.31 and the
equations (10.57) on the next page.

Since the system is assumed to be balanced, the loads Z; = Z, = Z; and Z, = Z,) = Z.. Therefore,
the first equation in (10.57) reduces to:

2
Z,Z Z Z

R S W (10.56)
Z,+2,+2Z; 37, 3
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Figure 10.31. A — Y conversion

_ le3

7, +Z,+ 2,
_ ZZZS

T 2 +Z,+ 2,
_ lez

¢ Z,+Z,+Z,

A =Y Conversion

and the same is true for the other phases.

10.7 Three-Phase Power

(10.57)

We can compute the power in a single phase and then multiply by three to find the total power in a

three-phase system. Therefore, if a load is Y -connected, as in Figure 10.31 (b), the total three-phase

power is given by

ProTaL = 3|VAN||IA| cosH

Y —connected load

(10.58)

where V, is the line-to-neutral voltage, 1, is the line current, cos6 is the power factor of the load,

and 0 is the angle between V, and |, .

If the load is A-connected as in Figure 10.31 (a), the total three-phase power is given by

ProtaL = 3|VAB||IAB|C059

A —connected load

(10.59)

We observe that relation (10.59) is given in terms of the line-to-neutral voltage and line current, and

relation (10.58) in terms of the line-to-line voltage and phase current.
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Quite often, the line-to-line voltage and line current of a three-phase systems are given. In this case,

we substitute (10.12), i.e., 15| = +/3|lg| into (10.59) and we get

ProtaL = A[3|VAB|||A| oSO\ oap
Y or A-connected load

(10.60)

It is important to remember that the power factor cos0 yap in (10.60) refers to the load, that is, the

angle 0 is not the angle between Vg and |,.

Example 10.2

The three-phase generator of Figure 10.32 supplies 100 kW at 0.9 lagging power factor to the three-
phase load. The line-to-line voltage at the load is 2400 V. The resistance of the line is 4 Q per con-

ductor and the inductance and capacitance are negligible. What line-to-line voltage must the genera-
tor supply to the line?

Solution:
The load per phase at 0.9 pf is
L 100 = 33.33 kw

3
oY 7
Generator Load
(Y-connected) (Y-connected)

Figure 10.32. Circuit for Example 10.2
From (10.10),

V,p = +/3V,,230°

(10.61)
Y —connected load
Then, the magnitude of the line-to-neutral at the load end is
\Y,
Von toag] = LVabload _ 2400 _ yag6 (10.62)
J3 J3
and the KVA per phase at the load is
kW/phase_ 33.33 _ 37 kva (10.63)
pf 0.9
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The line current in each of the three conductors is

VA 37000
| = = = 26.7 A 10.64
HINE |Van Ioad| 1386 ( )

and the angle by which the line (or phase) current lags the phase voltage is

0 = cos 0.9 = 25.84° (10.65)

Next, let us assume that the line current in phase a lies on the real axis. Then, the phasor of the line-
to-neutral voltage at the load end is

\ |Van| £25.84° = 1386(0s25.84° + jsin25.84°) = 1247 +j604 V (10.66)

an load =

The voltage drop across a conductor is in phase with the line current since it resistive in nature.
Therefore,

Now, the phasor line-to-neutral voltage at the generator end is

an gen

and its magnitude is

Van gen| = +/1354° + 604" = 1483 V (10.69)

Finally, the line-to-line voltage at the generator end is

Viine _tine gen| = ~/3 % [Van gen| = /3 x 1483 = 2569 V (10.70)

10.8 Instantaneous Power in Three-Phase Systems

A significant advantage of a three-power system is that the total power in a balanced three-phase sys-
tem is constant. This is proved as follows:

We assume that the load is purely resistive. Therefore, the voltage and current are always in-phase
with each other. Now, let ' and Iy be the peak (maximum) voltage and current respectively, and |V

and |I| the magnitude of their RMS values. Then, the instantaneous voltage and current in phase a
are given by

V, = V,cosot = /2|V|cosot (10.71)
i, = l,cos0t = /2|l coswt (10.72)
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Multiplication of (10.71) and (10.72) yields the instantaneous power, and using the trigonometric
identity

cosw’t = (cos2mt+1)/2 (10.73)
we get
P, = V,-i, = 2|V||l[cos’wt = |V||I|(cos2mt + 1) (10.74)

The voltage and current in phase b are equal in magnitude to those in phase a but they are 120° out-
of-phase. Then,

Vv, = +/2|V|cos(mt —120°) (10.75)
i, = ~/2|V|cos(wt - 120°) (10.76)
Pp = Vp-ip = 2|V||I|COSZ(03t—120°) = |V||l|[cos(2mt — 240°) + 1] (10.77)

Similarly, the power in phase € is
D, = V- i, = 2|V||I[cos’(wt—240°) = |V|[I|[cos(2et - 480°) + 1] (10.78)
and the total instantaneous power is

Ptotal = Pa+Pp+Pc

= |V|[l][cos2mt + cos(2mt — 240°) + cos(2mt — 480°) + 3] (10.79)
Recalling that
COS(X—Y) = COSXCOsy + sinxsiny (10.80)
we find that the sum of the three cosine terms in (10.79) is zero. Then,
Protar = 3IVIII] (10.81)

Three —phase Balanced System
Therefore, the instantaneous total power is constant and it is equal three times the average power.
The proof can be extended to include any power factor; thus, (10.81) can be also expressed as

Piotal = 3IVI[1/cos6 (10.82)

Example 10.3

Figure 10.33 shows a three-phase feeder with two loads; one consists of a bank of lamps connected
line-to neutral and the rating is given in the diagram; the other load is A-connected and has the
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impedance shown. Find the current in the feeder lines and the total power absorbed by the two
loads.

4 L 220 Volts
IA (Line-to-Line)

Lamps - Resistive Load

. d_) Rated 500 Watts,
i | 120 Volts each

(2 B

Z, Z = 18+j80

Figure 10.33. Diagram for Example 10.3

Solution:

To facilitate the computations, we will reduce the given circuit to one phase (phase a) taken as refer-
ence, i.e., at zero degrees, as shown in Figure 10.34

h

I

Vin

(Line-to-neutral)

L

Figure 10.34. Single-phase representation of Figure 10.31

Z,

We first compute the impedance Zy . Using (10.56),

Zy _ 18+]80 _ 8247732

-4 = 27.33/77.32 Q
3 3 3

Zy, =
Next, we compute the lamp impedance ZL

Ve L 1200 555

L amp I:)rated 500

The line-to-line voltage is given as V| _| = 220 V; therefore, by (10.10), the line-to-neutral voltage

Vi _n s
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V o
Vg = k=t = 220£0° 197 sgoy

NE NE

For convenience, we indicate these values in Figure 10.34 which now is as shown in Figure 10.35.

Z, = 27.33/77.32 Z, = 28.8.£0°
Figure 10.35. Diagram with computed values, Example 10.3

From Figure 10.35,

| =V|__N= 127,0°
L7z, T 271.33/771.32

= 465/-77.32 = 1.02-j4.54

and

V o
|| = =N o 12720° 00 = 441
Z,  288.0°

Then,
I, +1 = 1.02-j454+4.41 = 543-j4.54 = 7.08£-39.9°

and the power delivered by phase a is

Py =V, _y-1a =127 x7.08 x c0s(-39.9°) = 690 watts
Finally, the total power delivered to the entire load is three times of P, , that is,

Piotal = 3x 690 = 2070 watts = 2.07 Kw

Check:

Each lamp is rated 120 V and 500 w but operates at 127 V. Thus, each lamp absorbs

Voper 12 P ?
(Voger) _ Poger Poper = (%) x 500 = 560 w

rated rated

and the power absorbed by the three lamps is

Plamps= 3 x 560 = 1680 w
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The voltage across each impedance Z in the A—connected load is (see Figure 10.33) 220 V. Then,

the current in each impedance Z is

Vi 220

I, = —— = = 2.68£-77.32° A
18+)80 82.£77.32

and the power absorbed by each impedance Z is
P =V _ 1,000 = 220 x 2.68 x cos(-77.32°) = 129.4 watts

The total power absorbed by the A load is
P, = 3x129.4 = 388 watts

and the total power delivered to the two loads is

ProtaL = Plamps + Ps = 2068 watts = 2.068 kw
This value is in close agreement with the value on the previous page.

10.9 Measuring Three-Phase Power

A wattmeter is an instrument which measures power in watts or kilowatts. It is constructed with two
sets of coils, a current coil and a voltage coil where the interacting magnetic fields of these coils pro-
duce a torque which is proportional to the V x | product. It would appear then that one would need
three wattmeters to measure the total power in a three-phase system. This is true in a four-wire sys-
tem where the current in the neutral (fourth wire) is not zero. However, if the neutral carries no cur-
rent, it can be eliminated thereby reducing the system to a three-wire three-phase system. In this sec-
tion, we will show that the total power in a balanced three-wire, three phase system can be measured
with just two wattmeters.

. * .
Figure 10.36 shows three wattmeters connected to a Y load where each wattmeter has its current
coil connected in one line, and its potential coil from that line to neutral. With this arrangement,
Wattmeters 1, 2, and 3 measure power in phase a, b, and ¢ respectively.

Figure 10.37 shows a three-wire, three-phase system without a neutral. This arrangement occurs in
systems where the load, such as an induction motor, has only three terminals. The lower end of the
voltage coils can be connected to any reference point, say p. We will now show that with this
arrangement, the sum of the three wattmeters gives the correct total power even though the refer-
ence point was chosen as any reference point.

*  |f the load were A-connected, each wattmeter would have its current coil in one side of the A and its potential
coil from line to line.
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————————————————

Load

LS >

Wattmeter connections

Load

Wattmeter connections

p

Figure 10.37. Wattmeter connections in three-wire, three-phase system

We recall that the average power P, is found from
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j pdt = V|dt

Then, the total power absorbed by the load of Figure 10.36 is

Piotal = I (Van atVonlp t Vcn'c)dt

This is the true power absorbed by the load, not power indicated by the wattmeters.

(10.83)

(10.84)

Now, we will compute the total power indicated by the wattmeters. Each wattmeter measures the

average of the line current times the voltage to point p. Then,

PWattmeters = TI (Vap at pr'b + chlc)dt

But
Vap = Van+Vnp
Vep = Ven + Vip

and by substitution of these into (10.85), we get:

Pwattmeters = j [(Van atVpnlp + Vcn'c) + Vnp(la Tyt 'c)]dt
and since
i +ig+i, =0

then (10.87) reduces to

Pwattmeters = J‘ (Van at Vbn b +Vcn c)dt

(10.85)

(10.86)

(10.87)

(10.88)

(10.89)

This relation is the same as (10.84); therefore, the power indicated by the wattmeters and the true

power absorbed by the load are the same.

Some thought about the location of the arbitrarily selected point p would reveal a very interesting

result. No matter where this point is located, the power relation (10.87) reduces to (10.89). Suppose

that we locate point p on line ¢. If we do this, the voltage coil of Wattmeter 3 is zero and thus the

reading of this wattmeter is zero. Accordingly, we can remove this wattmeter and still obtain the true

power with just Wattmeters 1 and 2 as shown in Figure 10.38.
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__________________

Wattmeter connections

Figure 10.38. Two wattmeter method of reading three-phase power

10.10 Summary

AC is preferable to DC because voltage levels can be changed by transformers. This allows more
economical transmission and distribution.

The flow of power in a three-phase system is constant rather than pulsating. Three-phase motors
and generators start and run more smoothly since they have constant torque. They are also more
economical.

If the voltage sources are equal in magnitude and 120° apart, and the loads are also equal, the cur-

rents will be balanced (equal in magnitude and 120° out-of phase).

Industrial facilities need three-phase power for three-phase motors. Three-phase motors run
smoother and have higher efficiency than single-phase motors.

The equations I, = 1,£0°, I, = 1,£-120°, |, = 1,£+120° define a balanced set of currents of

positive phase sequence a—b—c.

The equations V,, = V,,2£0°, Vy, = V,,£-120°, and V, = V,,£+120° also define a balanced

set of voltages of positive phase sequence a—b—-c.

In a Y -connected system
V,, = /3V,,£30°

In a Y -connected load, the line and phase currents are the same.

In a A-connected system

I, = J/3l,7-30°
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e Ina A-connected load, the line and phase voltages are the same.

e For A— Y Conversion we use the relations

_ le3
& Zi+Z,+2,
_ ZZZ3
T Z,+2,+2,
leZ

 Z v Z,+ 2,

e For Y > A Conversion we use the relations

L Lo+ 2Lyl +Z.Z,
Zl =
Zy
VAVANE WAV AV
ZZ =
Za
L Lo+ 2Lyl + 1.2,

c

If a load is Y -connected, the total three-phase power is given by

ProTaL = 3|VAN||IA| cosO

Y —connected load

e If the load is A-connected the total three-phase power is given by

ProtaL = 3|Vag||lag|c0s6

A —connected load

When we want to compute the voltages, currents, and power in a balanced three-phase system, it is

very convenient to use the Y -connection and work with one phase only.

(10.90)

e Foranyload (Y or A—connected) the total three-phase power can be computed from

ProtaL = A/§|VAB| |1al€0S0| oD

Y or A -connected load

and it is important to remember that the power factor 0S| gap refers to the load, that is, the

angle 0 is not the angle between V5 and |,.

Circuit Analysis Il with MATLAB Applications
Orchard Publications

10-31



Chapter 10 Three-Phase Systems

10.11 Exercises

1. In the circuit of Figure 10.39, the line-to-line voltage is 100 V, the phase sequence is a—b - ¢, and
each Z = 10£30°. Compute:

a. the total power absorbed by the three-phase load.

b. the wattmeter reading,

a r— - — — al
b
Wattmeter(
Oe)
c

Figure 10.39. Circuit for Exercise 1

2. In the circuit of Figure 10.40 the lighting load is balanced. Each lamp is rated 500 w at 120 V.
Assume constant resistance, that is, each lamp will draw rated current. The three-phase motor
draws 5.0 Kw at a power factor of 0.8 lagging. The secondary of the transformer provides bal-
anced 208 V line-to-line. The load is located 1500 feet from the three-phase transformer. The
resistance and inductive reactance of the distribution line is 0.403 Q and 0.143 Q respectively per

1000 ft of the wire line. Compute line-to-line and line-to-neutral voltages at the load.

w

9

Figure 10.40. Circuit for Exercise 2
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10.12 Solutions to Exercises

1. a

QD
N%

o
-
|
|
|
|
|
L

C

From the circuit above

Vap _ 100£0° J3 o1 :
I, = =22 = = 10/-30° = 10 x = _j10x = = -
= 2 = Tp,300 = 10430 0x == ~j10x 3 5.3-j5
V _ o
I, = 2 = 10022407 _ 15/ 5700 = 10.00° = j10
Z 10.£30°
I, = I—1., = 5//3-j5-j10 = 5.3 -j15
and with MATLAB

x=5*sqrt(3)-15j; fprintf(' \n');...
fprintf('mag = %5.2f A \t', abs(x)); fprintf(phase = %5.2f deg', angle(x)*180/pi)

mag = 17.32 A phase = -60.00 deg
Thus,

1| = 17.32 A

The phase sequence a—b — ¢ implies the phase diagram below.

From (10.59)
I:)total = A/:73|VabH|a‘(load pf)

= /3% 100 x 17.32 x c0s30° = 2, 598 w
b.

The wattmeter reads the product Vy, x I, where I, is 240° behind I, as shown on the phasor

diagram. Then, the wattmeter reading is

P = V,, x|, = 100£0° x 10./3 x cos(- 60° — 240°)

100 x 17.32 x cos(-300°) = 866 w

wattmeter

and, as expected, this value is on-third of the total power.
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V., = 100/-240°

_Ibc
V,, = 100,0°

30°

Iab

V,, = 100£-120°

2. The single-phase equivalent circuit is shown below where
R = 0.403 /1000 ft x 1500 ft = 0.605 Q

X, = 0.143 /1000 ft x 1500 ft = 0.215 Q

and thus
ZLlNE = 0605 +10215
Also,
P 500
lamor = lamoz = =28 = 2= = 417 A
amp o Vrated 120
‘ ____________ 1500 ft
'R X : |
| 3140001]0) E total
— AN , °
] 10605 Q j0.215Q 1 7, \ ‘
V,, = (208/3)£0° V ’ \ M)y Vir = Vieas
= 120£0° V hamp1 liamp2 M
417 A |4.17 A 5/3 Kw ‘
l — — —10.8 pf
We recall that for a single phase system the real power is given by
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Preal = |VR|\/|S|||R|\/|S|COSe

where cos® = pf

Then, we find the motor current Iy, in terms of the motor voltage V,, as

| | — 5000/3 _ 2083
| = =
0.8[Viy|  [Vu|

and since cos 0.8 = —36.9° (lagging pf), the motor current |y, is expressed as

1, = 2283 3690 = L (1666 - j1251)
VM VM

The total current is

lotal = Nampt + liampz + Iy = 2 4.17 + \%(1666 —j1251) = \%(8.34VM +1666 — j1251)
M M

and the voltage drop across the 1500 ft line is
Viine = liotal - Ziine = \%(8-34VM + 1666 —j1251) - (0.605 +j0.215)
M
= \%(5'05VM +j1.79V,, + 1008 + j358.2 — j756.9 + 269.0)
M

= \%[(5.05VM +1277) +j(1.79V,, — 398.7)]
M
Next,
Van = 120£0° = Vijpe+ Vi = Vi[(S.OSVM+1277)+j(1.79vM_398.7)]+vM
M

or

120V,, = [(5.05V,, + 1277) +j(1.79V,, - 398.7)] + V,

or

V,\Z,I - (114.95-j1.79)V), + (1277 -j398.7) = O
We solve this quadratic equation with the following MATLAB code:
p=[1 114.95-1.79j 1277-398.7j]; roots(p)

ans =
1.0e+002 *

1.0260 + 0.0238i
0.1235 - 0.04171
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Then, Vy,; = 102.6 +j2.39 = 102.63£1.33° and V,,, = 12.35-j4.17 = 13.4/-18.66°. Of these,

the value of V\,, is unrealistic and thus it is rejected.

The positive phase angle in Vy,; is a result of the fact that a motor is an inductive load. But since

an inductive load has a lagging power factor, we denote this line-to neutral of line-to-ground volt-
age with a negative angle, that is,

Vi = Vipaq = 102.632-1.33° V

The magnitude of the line-to-line voltage is

Vi_i| = ¥3xVy, = J/3x10263 = 177.76 V
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Appendix A

Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions, proce-

dures for naming and saving the user generated files, comment lines, access to MATLAB’s Edi-

tor/Debugger, finding the roots of a polynomial, and making plots. Several examples are pro-
vided with detailed explanations.

A.1 MATLAB® and Simulink®

MATLAB ® and Simulink ® are products of The MathWorks, Inc ™. These are two outstanding
software packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and envi-
ronmental applications. MATLAB enables us to solve many advanced numerical problems fast and
efficiently. Simulink is a block diagram tool used for modeling and simulating dynamic systems such
as controls, signal processing, and communications. In this appendix we will discuss MATLAB only.

A.2 Command Window

To distinguish the screen displays from the user commands, important terms, and MATLAB func-
tions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays

Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>"
Helvetica Bold: MATLAB functions
Times Bold Italic: Important terms and facts, notes and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt
EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a new
command from the user. It is highly recommended that we use the Editor/Debugger to write our
program, save it, and return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M-File. This takes us to the Edi-

* EDU>> is the MATLAB prompt in the Student Version
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tor Window where we can type our code (list of statements) for a new file, or open a previously
saved file. We must save our program with a file name which starts with a letter. Important! MAT-
LAB is case sensitive, that is, it distinguishes between upper- and lower-case letters. Thus, r and T
are two different letters in MATLAB language. The files that we create are saved with the file name
we use and the extension .m; for example, myfile01.m. 1t is a good practice to save the code in a
file name that is descriptive of our code content. For instance, if the code performs some matrix
operations, we ought to name and save that file as matricesO1.m or any other similar name. We
should also use a floppy disk to backup our files.

2. Once the code is written and saved as an m-file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command win-
dow.

3. To execute a program, we type the file name without the .m extension at the >> prompt; then, we
press <enter> and observe the execution and the values obtained from it. If we have saved our
file in drive @ or any other drive, we must make sure that it is added it to the desired directory in
MATLAB’s search path. The MATLAB User’s Guide provides more information on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATILAB topics, we can type help followed by any topic from the displayed menu. For example, to
get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide contains
numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu. We can
do this periodically to become familiar with them. Whenever we want to return to the command win-
dow, we click on the CI1ose button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all pre-
vious values, variables, and equations without exiting, we should use the command clear. This com-
mand erases everything; it is like exiting MATLAB and starting it again. The command clc clears the
screen but MATLARB still remembers all values, variables and equations that we have already used. In
other words, if we want to clear all previously entered commands, leaving only the >> prompt on the
upper left of the screen, we use the €lc command.

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the function
or command or as a separate line. For instance,

conv(p,q) % performs multiplication of polynomials p and g.
% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.
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One of the most powerful features of MATLAB is the ability to do computations involving complex
numbers. We can use either i, or j to denote the imaginary part of a complex number, such as 3-41
or 3-47j. For example, the statement

z=3-4j
displays
z = 3.0000-4.00001

In the above example, a multiplication (¥) sign between 4 and j was not necessary because the com-
plex number consists of numerical constants. However, if the imaginary part is a function, or variable
such as €cos(X), we must use the multiplication sign, that is, we must type COS(X)*j or j*cos(x) for the
imaginary part of the complex number.

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form [a, a,_; ... @, @; dp]. These

are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1

Find the roots of the polynomial
p(x) = x*—10x + 35x° — 50x + 24

Solution:

The roots are found with the following two statements where we have denoted the polynomial as p1,
and the roots as roots_ p1.

p1=[1 -10 35 -50 24] % Specify and display the coefficients of p1(x)
pl =
1 -10 35  -50 24

roots_ p1=roots(p1) % Find the roots of p1(x)
roots_pl =

4.0000

3.0000

2.0000
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1.0000

We observe that MATLLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2

Find the roots of the polynomial

pL(x) = 7"+ 16x7 + 25x + 52

Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the
statements below, where we have defined the polynomial as p2, and the roots of this polynomial as
roots_ p2. The result indicates that this polynomial has three real roots, and two complex roots. Of

course, complex roots always occur in complex Conjugate* pairs.
p2=[1 -7 0 16 25 52]
p2 =
1 -7 0 16 25 52
roots_ p2=roots(p2)
roots_ p2 =
6.5014
2.7428
-1.5711
-0.3366+ 1.32021
-0.3366- 1.32021

A.4 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) function
where r is a row vector containing the roots.

Example A.3

It is known that the roots of a polynomial are 1,2, 3, and 4. Compute the coefficients of this poly-
nomial.

* By definition, the conjugate of a complex number A = a+jb is A* = a—jb
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Solution:

We first define a row vector, say r3, with the given roots as elements of this vector; then, we find the
coefficients with the poly(r) function as shown below.

r3=[1 2 3 4] % Specify the roots of the polynomial
r3 =

1 2 3 4
poly r3=poly(r3) % Find the polynomial coefficients
poly_r3 =

1 -10 35  -50 24

We observe that these are the coefficients of the polynomial p,(x) of Example A.1.

Example A.4

It is known that the roots of a polynomial are -1, -2, -3, 4+j5 and 4 -j5. Find the coefficients
of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients with the
poly(r) function as shown below.

rd=[-1 -2 -3 -445] —-4-5j]
rd =
Columns 1 through 4
-1.0000 -2.0000 -3.0000 -4.0000+ 5.00001
Column 5
-4.0000- 5.00001
poly r4=poly(r4)
poly_r4d =
1 14 100 340 499 246

Therefore, the polynomial is

pu(x) = &+ 14x" + 1005 + 340x° + 499x + 246
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A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial p(X) at some specified value of the independent
variable x.

Example A.5
Evaluate the polynomial

Ps(X) = x® - 3x° +5x° —4x® + 3x + 2 (A.1)
at X = -3.

Solution:
p5=[1 -8 0 5 -4 3 2]; % These are the coefficients
% The semicolon (;) after the right bracket suppresses the display of the row vector
% that contains the coefficients of p5.
%
val_minus3=polyval(p5, —3) % Evaluate p5 at x=-3; no semicolon is used here
% because we want the answer to be displayed

val _minus3 =

1280
Other MATLAB functions used with polynomials are the following:

conv(a,b) — multiplies two polynomials @ and b

[a,r]=deconv(c,d) —divides polynomial ¢ by polynomial d and displays the quotient ¢ and remain-
derr.

polyder(p) — produces the coefficients of the derivative of a polynomial p.
Example A.6
Let
p; = x* = 3x" +5x° + 7x+9
and

p, = 2x° —8x* + 4x% + 10x + 12

Compute the product p; - p, using the conv(a,b) function.
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Solution:

pi=[1 -3 05 7 9]; % The coefficients of p1

p2=[2 0 -8 0 4 10 12]; % The coefficients of p2

pip2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2
plp2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108

Therefore,

Dy p, = 2x - 6x™ 0 - 8x7 + 34x% + 18x" — 24x°

_74x°-88x" + 78x% + 166x° + 174x + 108
Example A.7
Let
p; = x =3 +5x° + 7x+ 9
and

Py = 2x° - 8x° + 4x” + 10X + 12

Compute the quotient p;/p, using the [q,r]=deconv(c,d) function.

Solution:
% It is permissible to write two or more statements in one line separated by semicolons

p3=[1 0-3 0 5 7 9]; p4=[2 -8 0 0 4 10 12]; [q,r]=deconv(p3,p4)

q =
0.5000
r =
0 4 -3 0 3 2 3
Therefore,
q=05 r=4x—3x +3x° +2x + 3
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Example A.8
Let

ps = 2x°—8x* + 4x% + 10x + 12

Compute the derivative(—;j-)-(pS using the polyder(p) function.

Solution:
p5=[2 0 -8 0 4 10 12]; % The coefficients of p5
der_p5=polyder(p5) % Compute the coefficients of the derivative of p5
der_pb5 =
12 0 -32 0 8 10
Therefore,

%{pS = 12x° - 32x° + 4x” + 8x + 10

A.6 Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

Num(x) _ ann+bn_1xn_1+b LX T+ .+ bix+ Db

R(x) = Den(x)

m m-1 m-2
amx +am_1x +a X +...+aX+Qq,

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots

of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if we
separate them by commas or semicolons. Commas will display the results whereas semicolons will

suppress the display.
Example A.9
Let

R(x) = Pum _ X =3 +5x +7x+9
Pden  x°—4x*+2x*+5x+6

Express the numerator and denominator in factored form, using the roots(p) function.
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Solution:

num=[1 -3 0 5 7 9];den=[1 0 -4 0 2 5 6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display hum and den roots

roots_num =
2.4186+ 1.07121 2.4186- 1.07121 -1.1633
-0.3370+ 0.99611 -0.3370- 0.99611
roots_den =
1.6760+0.49221 1.6760-0.49221 -1.9304
-0.2108+0.98701 -0.2108-0.98701i -1.0000

As expected, the complex roots occur in complex conjugate pairs.
For the numerator, we have the factored form

= (x-2.4186 — j1.0712)(x—2.4186 + j1.0712)(x + 1.1633)
(X +0.3370 — j0.9961)(x + 0.3370 + j0.9961)

pnum

and for the denominator, we have

Pgen = (Xx=1.6760 —j0.4922)(x—1.6760 + j0.4922)(x + 1.9304)
(x +0.2108-j0.9870)(x + 0.2108 + j0.9870)(x + 1.0000)
We can also express the numerator and denominator of this rational function as a combination of

linear and quadratic factors. We recall that, in a quadratic equation of the form X?>+bx+c = 0

whose roots are X; and X, , the negative sum of the roots is equal to the coefficient b of the X term,
that is, —(X; + X,) = b, while the product of the roots is equal to the constant term C, that is,

X1 - X, = €. Accordingly, we form the coefficient b by addition of the complex conjugate roots and

this is done by inspection; then we multiply the complex conjugate roots to obtain the constant term
¢ using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 —1.0712i)
ans = 6.9971

(-0.3370+ 0.9961i)*(-0.3370-0.9961i)
ans = 1.1058

(1.6760+ 0.4922i)*(1.6760-0.4922i)
ans = 3.0512

Circuit Analysis 1l with MATLAB Applications A-9
Orchard Publications



Appendix A Introduction to MATLAB®

(—0.2108+ 0.9870i)*(—0.2108-0.9870i)
ans = 1.0186
Thus,

R(x) = Prum _ (x* — 4.8372x + 6.9971)(x” + 0.6740x + 1.1058)(x + 1.1633)
Pden  (x°—3.3520x + 3.0512)(x” + 0.4216x + 1.0186)(X + 1.0000)(x + 1.9304)

We can check this result with MATLAB’s Symbolic Math Toolbox which is a collection of tools
(functions) used in solving symbolic expressions. They are discussed in detail in MATLAB’s Users
Manual. For the present, our interest is in using the collect(s) function that is used to multiply two
or more symbolic expressions to obtain the result in polynomial form. We must remember that the
conv(p,q) function is used with numeric expressions only, that is, polynomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following code:

syms x % Define a symbolic variable and use collect(s) to express numerator in polynomial
form

collect((x ™ 2-4.8372*x+6.9971)*(x ~ 2+0.6740*x+1.1058)* (x+1.1633))
ans =

x"5-29999/10000*x"4-1323/3125000*x"3+7813277909/
1562500000*x72+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression in
polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x. Here, x is the horizontal axis (abscissa) and y is the vertical
axis (ordinate).

Example A.10

Consider the electric circuit of Figure A.1, where the radian frequency o (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude was
held constant. The ammeter readings were then recorded for each frequency. The magnitude of the

impedance |Z| was computed as |Z| = |V/A| and the data were tabulated on Table A.1.
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Figure A.1. Electric circuit for Example A.10

TABLE A.1 Table for Example A.10

o (rads/s) | |Z]Ohms || o (rads/s) | |Z| Ohms
300 39.339 1700 90.603
400 52.589 1800 81.088
500 71.184 1900 73.588
600 97.665 2000 67.513
700 140.437 2100 62.481
800 222.182 2200 58.240
900 436.056 2300 54.611

1000 | 1014.938 2400 51.428
1100 469.83 2500 48.717
1200 266.032 2600 46.286
1300 187.052 2700 44122
1400 145.751 2800 42.182
1500 120.353 2900 40.432
1600 103.111 3000 38.845

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type o (omega) in the MATLLAB command window, so we will use the English letter w

instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by typ-
ing three or more periods, then pressing <enter> to start a new line, and continue to enter data. This
is illustrated below for the data of w and z. Also, as mentioned before, we use the semicolon (;) to
suppress the display of numbers that we do not care to see on the screen.

The data are entered as follows:

Circuit Analysis 1l with MATLAB Applications
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w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];

%

z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056....

1014.938 469.830 266.032 187.052 145.751 120.353 103.111....

90.603 81.088 73.588 67.513 62.481 58.240 54.611 51.468....

48.717 46.286 44.122 42.182 40.432 38.845];

Of course, if we want to see the values of w or z or both, we simply type W or zZ, and we press
<enter>. To plot z (y-axis) versus W (x-axis), we use the plot(X,y) command. For this example, we
use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s graph
screen. This plot is shown in Figure A.2.

1200 T T T T T
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Figure A.2. Plot of impedance |z| versus frequency o for Example A.10

This plot is referred to as the amplitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull-down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull-down
menu, and we select Figure.
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We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The

command grid toggles them, that is, changes from off to on or vice versa. The default” is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.
xlabel(‘string’) and ylabel(‘string’) are used to label the x- and y-axis respectively.

The amplitude frequency response is usually represented with the x-axis in a logarithmic scale. We
can use the semilogx(x,y) command that is similar to the plot(X,y) command, except that the x-axis
is represented as a log scale, and the y-axis as a linear scale. Likewise, the semilogy(X,y) command is
similar to the plot(X,y) command, except that the y-axis is represented as a log scale, and the x-axis as
a linear scale. The loglog(x,y) command uses logarithmic scales for both axes.

Throughout this text it will be understood that log is the common (base 10) logarithm, and In is the
natural (base ) logarithm. We must remember, however, the function log(x) in MATLAB is the nat-
ural logarithm, whereas the common logarithm is expressed as 10g10(x), and the logarithm to the
base 2 as log2(x).

Let us now redraw the plot with the above options by adding the following statements:
semilogx(w,z); grid; % Replaces the plot(w,z) command

title('Magnitude of Impedance vs. Radian Frequency');

xlabel(‘w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, our plot is as shown in Figure A.3.

If the y-axis represents power, voltage or current, the x-axis of the frequency response is more often
shown in a logarithmic scale, and the y-axis in dB (decibels). The decibel unit is defined in Chapter 4.

*  Adefault is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.

Circuit Analysis |1 with MATLAB Applications A-13
Orchard Publications



Appendix A Introduction to MATLAB®

1200

1000

800

600

400

200
= \\

2 3 4
10 10 10

Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage Vv in a dB scale on the y-axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’)” switches to the current Figure Window, and displays a cross-hair
that can be moved around with the mouse. For instance, we can use the command gtext(‘lmpedance
|Z| versus Frequency’), and this will place a cross-hair in the Figure window. Then, using the
mouse, we can move the cross-hair to the position where we want our label to begin, and we press
<enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some spe-
cific location specified by X and y, and string is the label which we want to place at that location. We
will illustrate its use with the following example that plots a 3-phase sinusoidal waveform.

The first line of the code below has the form

* With MATLAB Versions 6 and 7 we can add text, lines and arrows directly into the graph using the tools provided
on the Figure Window.

A-14 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Using MATLAB to Make Plots

linspace(first_value, last_value, number_of_values)

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The code for the 3-phase plot is as follows:

x=linspace(0, 2*pi, 60); % piis a built-in function in MATLAB;

% we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;

y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3);

plot(x,y,x,u,x,v); % The x-axis must be specified for each function

grid on, box on, % turn grid and axes box on

text(0.75, 0.65, 'sin(x)'); text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)")

These three waveforms are shown on the same plot of Figure A.4.
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Figure A.4. Three-phase waveforms
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In our previous examples, we did not specify line styles, markers, and colors for our plots. However,
MATLAB allows us to specify various line types, plot symbols, and colors. These, or a combination
of these, can be added with the plot(x,y,s) command, where § is a character string containing one or
more characters shown on the three columns of Table A.2. MATLAB has no default color; it starts
with blue and cycles through the first seven colors listed in Table A.2 for each additional line in the

plot. Also, there is no default marker; no markers are drawn unless they are selected. The default line
is the solid line.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style
b blue . point - solid line
g green 0 circle : dotted line
r red X X-mark - dash-dot line
c cyan + plus — dashed line
m magenta * star
y yellow S square
k black d diamond
w white Vv triangle down

A triangle up
< triangle left
> triangle right
p pentagram
h hexagram

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs’) plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs-"). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are two-dimensional, that is, they are drawn on two axes. MAT-
LLAB has also a three-dimensional (three-axes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3-space through the points whose coordinates are the ele-
ments of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(X4,¥1,21,51,X2,¥2,22,82,X3,Y3,23,83,...) Where X, Y, and Z, are vectors
or matrices, and S, are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two-dimensional plots.
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Example A.11

Plot the function

z=—2x3+x+3y2—1 (A.3)
Solution:

We arbitrarily choose the interval (length) shown on the code below.

x=-10: 0.5: 10; % Length of vector x
y=X; % Length of vector y must be same as x
z= -2.*X. " 3+x+3.*y. ~ 2-1; % Vector z is function of both x and y’

plot3(x,y,z); grid

The three-dimensional plot is shown in Figure A.5.
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Figure A.5. Three dimensional plot for Example A.11

In a two-dimensional plot, we can set the limits of the x- and y-axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three-dimensional plot we can set the limits of all three axes

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication,
division, and exponential operators are preceded by a dot. These operations will be explained in Section A.8.
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with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,zZ) commands, or on the same line without first executing the plot command.
This must be done for each plot. The three-dimensional text(x,y,z,’string’) command will place
string beginning at the co-ordinate (x,y,z) on the plot.

For three-dimensional plots, grid on and box off are the default states.

We can also use the mesh(X,y,2) command with two vector arguments. These must be defined as
length(x) = n and length(y) = m where [m, n] = size(Z). In this case, the vertices of the mesh

lines are the triples {X(j), y(i), Z(i, j)} . We observe that X corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say z = f (X, y) , we must first generate the X
and Y matrices that consist of repeated rows and columns over the range of the variables x and y. We
can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the matrix X
whose rows are copies of the vector X, and the matrix Y whose columns are copies of the vector Y.

Example A.12
The volume V of a right circular cone of radius  and height h is given by

_ %nrzh (A4)

Plot the volume of the cone as r and h vary on the intervals 0 <r<4 and 0 <h <6 meters.
Solution:
The volume of the cone is a function of both the radius r and the height A, that is,

V = f(r,h)

The three-dimensional plot is created with the following MATLAB code where, as in the previous
example, in the second line we have used the dot multiplication, dot division, and dot exponentiation.
This will be explained in Section A.8.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h
V=(pi.*R.”™ 2.*H)./3; mesh(R, H, V)

xlabel('x-axis, radius r (meters)"); ylabel('y-axis, altitude h (meters)";

zlabel('z-axis, volume (cubic meters)"); title('Volume of Right Circular Cone'); box on

The three-dimensional plot of Figure A.6, shows how the volume of the cone increases as the radius
and height are increased.
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Figure A.6. Volume of a right circular cone.

This, and the plot of Figure A.5, are rudimentary; MATLAB can generate very sophisticated three-
dimensional plots. The MATLAB User’s manual contains more examples.

A.8 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m x n matrix of plotting areas and
chooses the pth area to be active. No spaces or commas are required between the three integers m, n

and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

111
Full Screen Default
211 221 | 222
122
212 223 | 224 121
221 | 222 211 221 129 101 222
212 223 | 224 223 224

Figure A.7. Possible subplot arrangements in MATLAB
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A.9 Multiplication, Division and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the matrix
multiplication, division, and exponentiation, and the element-by-element multiplication, division,
and exponentiation. They are explained in the following paragraphs.

In Section A.2, the arrays [a b ¢ ...], such a those that contained the coefficients of polynomials,
consisted of one row and multiple columns, and thus are called row vectors. 1f an array has one col-
umn and multiple rows, it is called a column vector. We recall that the elements of a row vector are
separated by spaces. To distinguish between row and column vectors, the elements of a column vec-
tor must be separated by semicolons. An easier way to construct a column vector, is to write it first as
a row vectot, and then transpose it into a column vector. MATLAB uses the single quotation charac-
ter (') to transpose a vector. Thus, a column vector can be written either as b=[-1; 3; 6; 11] or as
b=[-1 3 6 11]'". MATLAB produces the same display with either format as shown below.

b=[-1;3; 6; 11]
b =

-1

3

6

11
b=[-1 3 6 11]

11
We will now define Matrix Multiplication and Element-by-Element multiplication.
1. Matrix Multiplication (multiplication of row by column vectors)

Let
A

[a, &, a; ... a,]

and
B

[b, b, by ... b.]

be two vectors. We observe that A is defined as a row vector whereas B is defined as a column vector,
as indicated by the transpose operator (). Here, multiplication of the row vector A by the column
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vector B, is performed with the matrix multiplication operator (*). Then,

A*B = [a;b; +a,b, +a3b;+ ... +a,b,] = single value (A.5)

For example, if

A=[1 2 3 4 5]
and

B=[-26 -3 8 7]

the matrix multiplication A*B produces the single value 68, that is,

A*B = 1x(-2)+2x6+3x(-3)+4x8+5x7 = 68
and this is verified with MATLAB as

A=[1 2 3 4 5];B=[-2 6 -3 8 7]}
A*B

ans =
68

Now, let us suppose that both A and B are row vectors, and we attempt to perform a row-by-row
multiplication with the following MATLAB statements.

A=[1 2 3 4 5];B=[-2 6 -3 8 7];
A*B

When these statements are executed, MATLAB displays the following message:
??? Error using ==> *
Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects vector
B to be a column vector, not a row vector. It recognizes that B is a row vector, and warns us that we
cannot perform this multiplication using the matrix multiplication operator (*). Accordingly, we must
perform this type of multiplication with a different operator. This operator is defined below.

2.Element-by-Element Multiplication (multiplication of a row vector by another row vector)

Let
C=1[c, ¢, ¢35 ... ¢l

and
D

[dl d2 d3 o dn]

be two row vectors. Here, multiplication of the row vector C by the row vector D is performed with
the dot multiplication operator (.*). There is no space between the dot and the multiplication sym-
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bol. Thus,

C*D = [Cldl C2d2 C3d3 C dn] (A.6)

n
This product is another row vector with the same number of elements, as the elements of C and D.

As an example, let

C=[L 2 3 4 5]
and

D=[2 6 -3 8 7]

Dot multiplication of these two row vectors produce the following result.

C*D = 1x(=2) 2x6 3x(=3) 4x8 5x7 =-2 12 -9 32 35

Check with MATLAB:
C=[12 3 4 5], % Vectors C and D must have
D=[-2 6-3 8 7]; % same number of elements
C.*D % We observe that this is a dot multiplication
ans =
-2 12 -9 32 35

Similatly, the division (/) and exponentiation () operators, are used for matrix division and exponen-
tiation, whereas dot division (./) and dot exponentiation (.*) are used for element-by-element divi-
sion and exponentiation.

We must remember that no space is allowed between the dot (.) and the multiplication, division,
and exponentiation operators.

Note: A dot (.) is never required with the plus (+) and minus (-) operators.
Example A.13
Write the MATLAB code that produces a simple plot for the waveform defined as

2
y = f(t) = 3e_4tcos5t—2e_3tsin2t+ti—1 (A.7)

in the 0 <t <5 seconds interval.

Solution:
The MATLAB code for this example is as follows:

t=0:0.01: 5 % Define t-axis in 0.01 increments
y=3 .*exp(-4 .*t) .* cos(5 .*t)-2 .* exp(-3 .*t) .*sin(2.*t) +t.7 2./ (t+1);
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plot(t,y); grid; xlabel('t); ylabel('y=f(t)"); title('Plot for Example A.13)

Figure A.8 shows the plot for this example.

Plot for Example A.13

4 e
=
3 /"//
/
g ]

S|/
\J/

Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less than
-1, say as =3 <t< 3, MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero when
t = —1. To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to 2.2 x 107"° . Tt will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by the
arguments Xmin, xmax, ymin and ymax. There are no commas between these four arguments. This
command must be placed after the plot command and must be repeated for each plot.

The following example illustrates the use of the dot multiplication, division, and exponentiation, the
eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB?’s capability of dis-
playing up to four windows of different plots.

Example A.14

Plot the functions

y = sin?, z = cos’, W = sin’-cos’, Vv = sin’x/cos’x
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in the interval 0 <x <27 using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

Solution:

The MATLAB code to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x). ~ 2); z=(cos(x).”™ 2);

w=y.* z;

v=y./ (z+eps); % add eps to avoid division by zero

subplot(221);% upper left of four subplots

plot(x,y); axis([0 2*pi 0 1]);

title('y=(sinx) ~ 2');

subplot(222); % upper right of four subplots
plot(x,z); axis([0 2*pi 0 1]);

title('z=(cosx) ™ 2');

subplot(223); % lower left of four subplots
plot(x,w); axis([0 2*pi 0 0.3));

title(‘w=(sinx) ~ 2*(cosx) ™~ 2";

subplot(224); % lower right of four subplots
plot(x,v); axis([0 2*pi 0 400]);

title('v=(sinx) ™~ 2/(cosx) "~ 2');

These subplots are shown in Figure A.9.

y=(sinx)2 z=(<:osx)2
1 1
0.8} 0.8
0.6 0.6
0.4} 0.4
0.2f 0.2
0 0
0 2 4 6 0 2 4 6
w=(sinx)2*(cosx)2 v=(sinx)%(cosx)2
400
0.25}
300
0.2f
0.15} 200
0.1}
100
0.05}
0 L L 0
0 2 4 6 0 2 4 6

Figure A.9. Subplots for the functions of Example A.14
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The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce the
real(z) and imag(z) functions that display the real and imaginary parts of the complex quantity z =
X + iy, the abs(z), and the angle(2) functions that compute the absolute value (magnitude) and
phase angle of the complex quantity z = x + iy = r£60. We will also use the polar(theta,r) function
that produces a plot in polar coordinates, where r is the magnitude, theta is the angle in radians, and
the round(n) function that rounds a number to its nearest integer.

Example A.15

Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance Z,) as a function of

the radian frequency ® can be computed from the following expression:

10" —j(10%/®)
10+j(0.1o - 10>/ )
a. Plot Re{Z} (the real part of the impedance Z) versus frequency .

Zy, = Z = 10+ (A.8)

b. Plot Im{Z} (the imaginary part of the impedance Z) versus frequency .
c. Plot the impedance Z versus frequency o in polar coordinates.

Solution:

The MATLAB code below computes the real and imaginary parts of Z,, that is, for simplicity,

denoted as z, and plots these as two separate graphs (parts a & b). It also produces a polar plot (part
©).

w=0: 1: 2000; % Define interval with one radian interval

z=(10+(10.~ 4—-j.*10.”~ 6./ (Ww+eps)) ./ (10 + j.* (0.1 .* w—-10. " 5./ (W+eps))));
%

% The first five statements (next two lines) compute and plot Re{z}
real_part=real(z); plot(w,real_part); grid;

xlabel('radian frequency w'); ylabel('Real part of Z));

%
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% The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z); plot(w,imag_part); grid;

xlabel('radian frequency w'"); ylabel(lmaginary part of Z');

% The last six statements (next six lines) below produce the polar plot of z

mag=abs(z); % Computes |Z|

rndz=round(abs(z)); % Rounds |Z| to read polar plot easier
theta=angle(z); % Computes the phase angle of impedance Z
polar(theta,rndz); % Angle is the first argument

grid;

ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures A.11, A.12, and A.13 respectively.
Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m-files since both require the .m extension.

A script file consists of two or more built-in functions such as those we have discussed thus far.
Thus, the code for each of the examples we discussed earlier, make up a script file. Generally, a script
file is one which was generated and saved as an m-file with an editor such as the MATLAB’s Editor/
Debugger.
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Figure A.11. Plot for the real part of the impedance in Example A.15
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Figure A.12. Plot for the imaginary part of the impedance in Example A.15

1015

Polar Plot of Z

Figure A.13. Polar plot of the impedance in Example A.15

A function file is a user-defined function using MATLAB. We use function files for repetitive tasks.
The first line of a function file must contain the word function, followed by the output argument, the
equal sign ( =), and the input argument enclosed in parentheses. The function name and file name

must be the same, but the file name must have the extension .m. For example, the function file con-
sisting of the two lines below
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function y = myfunction(x)

y=x." 3 + c0s(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions.

fzero(f,x) tries to find a zero of a function of one variable, where f is a string containing the name of
a real-valued function of a single real variable. MATLAB searches for a value near a point where the
function f changes sign, and returns that value, or returns NaN if the search fails.

Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fmin(f,x1,x2) minimizes a function of one variable. It attempts to return a value of x where f(X) is

minimum in the interval X; <X <X, . The string f contains the name of the function to be minimized.

Note: MATLAB does not have a function to maximize a function of one variable, that is, there is no
fmax(f,x1,x2) function in MATLAB; but since a maximum of f(X) is equal to a minimum of —f(x),
we can use fmin(f,x1,x2) to find both minimum and maximum values of a function.

fplot(fcn,lims) plots the function specified by the string fen between the x-axis limits specified by
lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y-axis limits. The
string fen must be the name of an m-file function or a string with variable X.

Note: NaN (Not-a-Number) is not a function; it is MATLAB’s response to an undefined expression
such as 0/0, o/, or inability to produce a result as described on the next paragraph. We can avoid
division by zero using the eps number, that we mentioned earlier.

Example A.16

Find the zeros, maxima and minima of the function

f(x) = L + L 10

(x—-0.1)2+001 (x—1.2)°+0.04

Solution:
We first plot this function to observe the approximate zeros, maxima, and minima using the follow-

ing code.

x=-1.5:0.01: 1.5;
y=1./ ((x-0.1).” 2 + 0.01) -1./ ((x-1.2).™ 2 + 0.04) —10;
plot(x,y); grid

The plot is shown in Figure A.14.
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Figure A.14. Plot for Example A.16 using the plot command

The roots (zeros) of this function appear to be in the neighborhood of x = -0.2 and x = 0.3. The

maximum occurs at approximately X = 0.1 where, approximately, = 90, and the minimum

= _34.

Ymax
occurs at approximately X = 1.2 where, approximately, Y,
Next, we define and save f{x) as the funczero01.m function m-file with the following code:
function y=funczero01(x)

% Finding the zeros of the function shown below

y=1/((x-0.1) ~2+0.01)-1/((x—1.2) ~ 2+0.04)-10;

Now, we can use the fplot(fcn,lims) command to plot f(X) as follows.

fplot(funczero01', [-1.5 1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14 that
was obtained with the plot(X,y) command.
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Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of f(x) in (A.20) more precisely. The code
below must be saved with a file name, and then invoked with that file name.

x1= fzero(funczero01', -0.2);

x2= fzero(funczero01', 0.3);

fprintf('The roots (zeros) of this function are r1= %3.4f, x1);
fprintf(' and r2= %3.4f \n', x2)

MATLAB displays the following:
The roots (zeros) of this function are rl= -0.1919 and r2= 0.3788

Whenever we use the fmin(f,x1,x2) function, we must remember that this function searches for a

minimum and it may display the values of local minima’ , if any, before displaying the function mini-
mum. It is, therefore, advisable to plot the function with either the plot(x,y) or the fplot(fcn,lims)
command to find the smallest possible interval within which the function minimum lies. For this
example, we specify the range 0 <X < 1.5 rather than the interval -1.5<x<1.5.

The minimum of f{x) is found with the fmin(f,x1,x2) function as follows.
min_val=fmin(‘funczero01', 0, 1.5)
min_val = 1.2012

* Local maxima or local minima, are the maximum or minimum values of a function within a restricted range of
values in the independent variable. When the entire range is considered, the maxima and minima are considered
be to the maximum and minimum values in the entire range in which the function is defined.
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This is the value of x at which y = f(x) is minimum. To find the value of y corresponding to this

value of x, we substitute it into f(X), that is,
x=1.2012; y=1/((x-0.1) ~ 2+ 0.01) -1/ ((x-1.2) ™~ 2 + 0.04) -10
vy = -34.1812

To find the maximum value, we must first define a new function m-file that will produce —f(x). We
define it as follows:

function y=minusfunczero01 (x)
% It is used to find maximum value from -f(x)
y=—(1/((x-0.1) ~2+0.01)-1/((x-1.2) ~ 2+0.04)-10);

We have placed the minus () sign in front of the right side of the last expression above, so that the
maximum value will be displayed. Of course, this is equivalent to the negative of the funczero01
function.

Now, we execute the following code to get the value of x where the maximum y = f(X) occurs.
max_val=fmin('minusfunczero01’, 0,1)

max_val = 0.0999

x=0.0999;% Using this value find the corresponding value of y
y=1/((x-0.1) ~ 2+ 0.01) -1/ ((x-1.2) ~ 2 + 0.04) -10

y = 89.2000

A.11 Display Formats

MATLAB displays the results on the screen in integer format without decimals if the result is an inte-
ger number, or in short floating point format with four decimals if it a fractional number. The format
displayed has nothing to do with the accuracy in the computations. MATLAB performs all computa-
tions with accuracy up to 16 decimal places.

The output format can changed with the format command. The available formats can be displayed
with the help format command as follows:

help format

FORMAT Set output format.

All computations in MATLAB are done in double precision.

FORMAT may be used to switch between different output display formats as follows:

FORMAT Default. Same as SHORT.
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FORMAT SHORT Scaled fixed point format with 5 digits.

FORMAT LONG Scaled fixed point format with 15 digits.

FORMAT SHORT E Floating point format with 5 digits.

FORMAT LONG E Floating point format with 15 digits.

FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX  Hexadecimal format.

FORMAT + The symbols +, - and blank are printed for positive, negative and zero elements.
Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT  Approximation by ratio of small integers.
Spacing:

FORMAT COMPACT Suppress extra line-feeds.

FORMAT LOOSE Puts the extra line-feeds back in.

Some examples with different format displays age given below.
format short 33.3335 Four decimal digits (default)

format long 33.33333333333334 16 digits

format shorte 3.3333e+01 Four decimal digits plus exponent
format short g 33.333 Better of format short or format format short e
format bank 33.33 two decimal digits

format + only + or — or zero are printed

format rat 100/ 3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the text

is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is used,
the values will be displayed and printed in fixed decimal format, and if %e is used, the values will be
displayed and printed in scientific notation format. With these commands only the real part of each

parameter is processed.
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Differential Equations

his appendix is a review of ordinary differential equations. Some definitions, topics, and exam-
ples are not applicable to introductory circuit analysis but are included for continuity of the
subject, and for reference to more advance topics in electrical engineering such as state vari-

ables. These are denoted with an asterisk and may be skipped.

B.1 Simple Differential Equations

In this section we present two simple examples to show the importance of differential equations in

engineering applications.

Example B.1

A 1 F capacitor is being charged by a constant current |. Find the voltage V¢ across this capacitor as

a function of time given that the voltage at some reference time t = 0 is V.

Solution:

It is given that the current, as a function of time, is constant, that is,

ic(t) = I = constant (B.1)
We know that the current and voltage in a capacitor are related by
io(t) = cd—vf (B.2)
and for our example, C = 1. Then, by substitution of (B.2) into (B.1) we get
dve _ |
dt
By separation of the variables,
and by integrating both sides of (B.3) we get
Ve(t) = It+K (B.4)
where K represents the constants of integration of both sides.
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We can find the value of the constant kK by making use of the initial condition, i.e,att = 0, Ve = V,
and (B.4) then becomes

Vo = 0+K (B.5)

or kK = Vy, and by substitution into (B.4),

Ve(t) = 1t+V, (B.6)

This example shows that when a capacitor is charged with a constant current, a linear voltage is pro-
duced across the terminals of the capacitor.

Example B.2
Find the current i, (t) through an inductor whose slope at the coordinate (t, i) is cost and the cur-

rent i passes through the point (n/2,1).

Solution:

We are given that

dd—itL = cost (B.7)

By separating the variables we get
di, = costdt (B.8)

and integrating both sides we get
iL(t) = sint+k (B.9)

where kK represents the constants of integration of both sides.

We find the value of the constant k by making use of the initial condition. For this example, ® = 1
and thusat ot = t = n/2,i_ = 1. With these values (B.9) becomes

1= sin’zt +k (B.10)

or k = 0, and by substitution into (B.9),
i (t) = sint (B.11)
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B.2 Classification

Differential equations are classified by:

1. Type — Ordinary or Partial

2. Order — The highest order derivative which is included in the differential equation

3. Degree — The exponent of the highest power of the highest order derivative after the differential
equation has been cleared of any fractions or radicals in the dependent variable and its derivatives

For example, the differential equation

(%)2.{. (S—XY) +6( 2) +3(—§) +)_(_Y:_1 —ye

is an ordinary differential equation of order 4 and degree 2.

If the dependent variable y is a function of only a single variable X, that is, if y = f(X) , the differen-

tial equation which relates y and X is said to be an ordinary differential equation and it is abbreviated
as ODE.

The differential equation

d—Y+3—¥+ 2 = 5co0s4t
dt dt

is an ODE with constant coefficients.

The differential equation

x2d—Y+x—Y+(x -n ) =0
is an ODE with variable coefficients.

If the dependent variable y is a function of two or more variables such as y = f(x, t), where x and t
are independent variables, the differential equation that relates y, X, and t is said to be a partial dif-
ferential equation and it is abbreviated as PDE.

An example of a partial differential equation is the well-known one-dimensional wave equation shown
below.

oy _ 2_1
ot? ox’
Most of the electrical engineering problems are solved with ordinary differential equations with con-

stant coefficients; however, partial differential equations provide often quick solutions to some prac-
tical applications as illustrated with the following three examples.
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Example B.3

The equivalent resistance Ry of three resistors Ry, R,, and Rj in parallel is given by

11,1, 1
Rr Ry R, R;
Given that initially R; = 5Q, R, = 20 Q, and R; = 4 Q compute the change in Ry if R, is
increased by 10% and R; is decreased by 5% while R; does not change.

Solution:

The initial value of the equivalent resistance is Ry = 51120114 = 2 Q.

Now;, we treat R, and R; as constants and differentiating Ry with respect to R; we get

1R 1 Q_F%_(R_T)Z
RZOR, ~ R? R,  \Ry
Similarly,
Q.R_T:(BI)Z and Q&:(BI)Z
aRZ R2 aRg R3

and the total differential dRy is

oRy
oR,

_ Ry

or, (Rt Ry + S loR, = (R—T)zdRﬁ(R—T)zdRﬁ(R—T )Zng

R
dRy OR, R, R, R,

By substitution of the given numerical values we get

dR; = (g )2(0)+(%)2(2)+(§)2(—0.2) = 0.02-0.05 = -0.03

Therefore, the eequivalent resistance decreases by 3%.

Example B.4

In a series RC circuit that is excited by a sinusoidal voltage, the magnitude of the impedance Z is

computed from Z = R 24 Xcz . Initially, R = 4 Q and X = 3 Q. Find the change in the imped-
ance Z if the resistance R is increased by 0.25 Q (6.25%) and the capacitive reactance X is
decreased by 0.125 Q (-4.167%).
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Solution:

We will first find the partial derivatives 0Z and — L4 ; then we compute the change in impedance

oR oxXe’
from the total differential dZ. Thus,
S_FZQ = L and 8672 = L
R%+ X ¢ JRZ+XS
and
dZ—é—Z-dR oz dX, = R dR + X dX¢

OR 8XC a /R 2 Xc2

and by substitution of the given values

4 (0.25)+3 (-0.125) _ 1 -0.375
fas 5

Therefore, if R increases by 6.25% and X decreases by 4.167%, the impedance Z increases by

4.167%.

dz = = 0.125

Example B.5

A light bulb is rated at 120 volts and 75 watts. If the voltage decreases by 5 volts and the resistance
of the bulb is increased by 8 Q, by how much will the power change?

Solution:

AtV = 120 volts and P = 75 watts, the bulb resistance is

2 2
R=%=17250 =192 0
and since
2 2
P:\—/— then QE_Z_\_/ and a—F—’:—\—/—
R vV R oR R?
and the total differential is
oP oP 2V
dP = — dV+ —= dR = —dV——dR
ov TR R?
120 120°
_ 419—22( 5)- 1o 5(8) = 9375
That is, the power will decrease by 9.375 watts.
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B.3 Solutions of Ordinary Differential Equations (ODE)

A function y = f(X) is a solution of a differential equation if the latter is satisfied when y and its
derivatives are replaced throughout by f(X) and its corresponding derivatives. Also, the initial condi-
tions must be satisfied.

For example a solution of the differential equation

2

d—}£+y =0
dx
is
y = k;sinx + k,cosx

since Yy and its second derivative satisfy the given differential equation.

Any linear, time-invariant electric circuit can be described by an ODE which has the form

dy, , d dy
andtn +an,ldtn_1 tootartagy
d"x d" 'x dx
_ bmdtm+bm‘1dt”—1+"'+bldt+box (B.12)

Excitation (Forcing) Function x(t)
NON-HOMOGENEOUS DIFFERENTIAL EQUATION

If the excitation in (B12) is not zero, that is, if X(t) # 0, the ODE is called a non-homogeneous ODE. If

X(t) = 0, it reduces to:

d" d"* d
anﬁ+an_1dt7}f+ +ala¥+a0y =0

HOMOGENEOUS DIFFERENTIAL EQUATION

(B.13)

The differential equation of (B.13) above is called a homogeneous ODE and has n different lineatly
independent solutions denoted as Y;(t), Yo(t), Ya(t), ..., Ya(t).

We will now prove that the most general solution of (B.13) is:

Yu(t) = Ky yi(t) + Ky Yo () + Ky Y5 () + ... + K, ya() (B.14)
where the subscript H on the left side is used to emphasize that this is the form of the solution of the
homogeneous ODE and ki, Ky, Ks, ..., K, are arbitrary constants.
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Proof:
Let us assume that Yy, (t) is a solution of (B.13); then by substitution,

d"y, dh_lYl dy,
a, m +an_ldtn_l +...+ala+aoyl =0

A solution of the form K,y,(t) will also satisty (B.13) since

n-1

d" d d
andtn(kl Y1) + an—ldtn_l(kl Yo+ ..+ aldt(kl Y1) +ao(Ky Y1)

n n-1
= kl[anddtynl +an 1u + ... +al%+ ao y]j = 0

n n-1
Y1 d 'y, Y1
a, o +an_1dtn_l +...+ala+aoyl =0
and
n n-1
Yo d 'y, Yo
a, X +an_1dtn_l +...+a1W+a0y2 =0
Therefore,

n n-1

d d d
(YY) +a T (Yat+Y) 4+ a1aI[(Y1 +Y2) +ag(Y1+Y2)
dt dt

n n-1

d
= an@ Yitan 1=Vt -~+ald_ty1+aoy1

dt

n n-1

+ad—y+a — Y, + +agy+ay:0
ndtn 2 n-1 ,_1 Y271 --- 14t 72 0 Y2

dt

In general, if

y= Kyy1 (1), Koy (1), Kays(t), ..., Kpya(t)

are the n solutions of the homogeneous ODE of (B.13), the linear combination

y= K1y1(t) + Koy (1) + Kgys(t) + ... + Ky, (1)

is also a solution.

(B.15)

(B.16)

(B.17)

In our subsequent discussion, the solution of the homogeneous ODE, i.e., the complementary solu-
tion, will be referred to as the natural response, and will be denoted as yy (t) or simply yy . The pat-
ticular solution of a non-homogeneous ODE will be referred to as the forced response, and will be
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denoted as Yg(t) or simply Yg . Accordingly, we express the total solution of the non-homogeneous
ODE of (B.12) as:

Y(t) = Y Natwral 7Y Forced = YNTVYE (818)

Response Response

The natural response Yy contains arbitrary constants and these can be evaluated from the given ini-
tial conditions. The forced response Yyg , however, contains no arbitrary constants. It is imperative to

remember that the arbitrary constants of the natural response must be evaluated from the total
response.

B.4 Solution of the Homogeneous ODE

Let the solutions of the homogeneous ODE

n n-1

and—ny+an_1d—n}lf+ +a1d—Y+a0y =0 (B.19)
dt dt"” dt
be of the form

Then, by substitution of (B.20) into (B.19) we get

a ks"e" +a,_,ks" e+ ... +akse” +a, ke™ = 0

or

1

(a,8"+a, 18" ‘+...+a,5+a,)ke" =0 (B.21)

We observe that (B.21) can be satisfied when
(a,s"+a, ;8" '+..+3,5+3,) =0 or k=0 or s = -w (B.22)

but the only meaningful solution is the quantity enclosed in parentheses since the latter two yield triv-
ial (meaningless) solutions. We, therefore, accept the expression inside the parentheses as the only
meaningful solution and this is referred to as the characteristic (auxiliary) equation, that is,

(a,s"+a, ;" '+...+a,5+a,)=0

(B.23)

Characteristic Equation

Since the characteristic equation is an algebraic equation of an nth-power polynomial, its solutions are
S1, S, S3, ---» Sy, and thus the solutions of the homogeneous ODE are:

st syt

yi= ke, v, = ke, ya= ke, .., v, =ke (B.24)
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Case I — Distinct Roots

If the roots of the characteristic equation are distinct (different from each another), the n solutions
of (B.23) are independent and the most general solution is:

t

Yy = kleslt + kzeszt +otke” (B.25)
FOR DISTINCT ROOTS

Case II — Repeated Roots
If two or more roots of the characteristic equation are repeated (same roots), then some of the terms
of (B.24) are not independent and therefore (B.25) does not represent the most general solution. If,

for example, S; = S,, then,

s t S s, t s, t s, t
kle +k2e 2 = kle +kze ! = (k1+k2)e ! = k3e !

and we see that one term of (B.25) is lost. In this case, we express one of the terms of (B.25), say

s,t s,t ) .
ke ' as kpte ' . These two represent two independent solutions and therefore the most general solu-

tion has the form:

s t

Yo = (K + ke 4 kee™ 4.+ ke (B.26)

If there are m equal roots the most general solution has the form:

Spt

m— st s,t
yy= (K + Kot + o +k t" e +k,_e+...+ke (B.27)
FOR M EQUAL ROOTS

Case III - Complex Roots

If the characteristic equation contains complex roots, these occur as complex conjugate pairs. Thus,
if one rootis S; = —a +jp where a and B are real numbers, then another root is $; = —a—jp.
Then,

st

5, ot - B , =
ke +k,e ke “ P L ke P = e (ke 4 ke P

e *'(k,cosPt + jk,sin Bt + k,cosBt—jk,sint)
e "'[(ky + K,)cosBt + j(Kk, — k,)sint]

e *'(kycosPt + k,sinpt)= e “'kscos(Bt + @)
FOR TWO COMPLEX CONJUGATE ROQOTS

(B.28)
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If (B.28) is to be a real function of time, the constants K; and k, must be complex conjugates. The

other constants Kj, K4, K5, and the phase angle ¢ are real constants.

The forced response can be found by
a. The Method of Undetermined Coefficients or
b. The Method of Variation of Parameters

We will study the Method of Undetermined Coefficients first.

B.5 Using the Method of Undetermined Coefficients for the Forced Response

For simplicity, we will only consider ODEs of order 2. Higher order ODEs are discussed in differ-
ential equations textbooks.

Consider the non-homogeneous ODE

d ‘y d

aE + bd_ty +cy = f(x) (B.29)

where a, b, and ¢ are real constants.

We have learned that the total (complete) solution consists of the summation of the natural and
forced responses.

For the natural response, if y; and y, are any two solutions of (B.29), the linear combination
Y3 = Kiy1 +KoY,, where k; and K, are arbitrary constants, is also a solution, that is, if we know the
two solutions, we can obtain the most general solution by forming the linear combination of y; and

Y, . To be certain that there exist no other solutions, we examine the Wronskian Determinant defined

below.
i Yo d d
W(y., y,) = d d =% &Y2—y2 & Y, =0 (B.30)
dx t dx 2
WRONSKIAN DETERMINANT

If (B.30) is true, we can be assured that all solutions of (B.29) are indeed the linear combination of y,
and y,.

The forced response is, in most circuit analysis problems, obtained by observation of the right side of
the given ODE as it is illustrated by the examples that follow.
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Example B.6
Find the total solution of the ODE

2
%+4%¥+3y _0 (B.31)

subject to the initial conditions y(0) = 3 and y'(0) = 4 where y' = dy/dt
Solution:

This is a homogeneous ODE and its total solution is just the natural response found from the char-

acteristic equation s’ +4s+3 = 0 whose roots are s; = -1 and s, = —-3. The total response is:
V(1) = Yn(D) = kie " +koe (B.32)
The constants k; and k, are evaluated from the given initial conditions. For this example,

y(O) = 3 = kle0+k2e0

or
k+k, = 3 (B.33)
Also,
y'(0) = 4 = %%ho = ke - 3ke |
or
K —3k, = 4 (B.34)

Simultaneous solution of (B.33) and (B.34) yields k; = 6.5 and k, = -3.5. By substitution into
(B.32), we get

y(t) = yn(t) = 6.5e " -3.5¢"" (B.35)
Check with MATT.AB:
y=dsolve(D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4'

y =
(-7/2%exp(-3*t) *exp(t)+13/2) /exp(t)

pretty(y)
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The function y = f(t) is shown in Figure B.1 plotted with the MATLAB command ezplot(y,[0 10]).

1372 exp(1)-7/2 exp{-3 1)

Figure B.1. Plot for the function y = f (t) of Example B.6.

Example B.7
Find the total solution of the ODE

2
444N 3y = 3e® (B.36)
2t

subject to the initial conditions y(0) = 1 and y'(0) = -1
Solution:
The left side of (B.30) is the same as that of Example B.6.Therefore,
yu(t) = ke + ke (B.37)

(We must remember that the constants k; and k, must be evaluated from the total response).

To find the forced response, we assume a solution of the form
yr = A (B.38)

We can find out whether our assumption is correct by substituting (B.38) into the given ODE of
(B.36). Then,

4Ae? —8Ae ™ +3Ae = 3¢ (B.39)
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from which A = -3 and the total solution is
y(t) = yN + yF = kle_t + kze_3t—3e_2t (B.40)
The constants k; and k, are evaluated from the given initial conditions. For this example,

y(0) = 1 = ke’ +k,e° - 3¢°

or
k1+ k2 = 4 (8.41)
Also,
1 _ _ QY _ -t -3t _2t
y'(0) = -1 = at| = —k,e -3k,e " +6e —o
or

Simultaneous solution of (B.41) and (B.42) yields k; = 2.5 and k, = 1.5. By substitution into (B.40),
we get
y(t) = yy+Yr = 256" +15e -3¢ (B.42)

Check with MATLAB:
y=dsolve(D2y+4*Dy+3*y=3*exp(-2*t)', 'y(0)=1', 'Dy(0)=-1

y =
(-3*exp (-2*t) *exp (t)+3/2%exp (-3*t) *exp(t)+5/2) /exp (t)

pretty(y)
-3 exp(-2 t) exp(t) + 3/2 exp(-3 t) exp(t) + 5/2

ezplot(y,[0 8])
The plot is shown in Figure B.2
Example B.8

Find the total solution of the ODE

2
ZT)Z/-'- 6%¥+9y =0 (B.43)

subject to the initial conditions y(0) = -1 and y'(0) = 1
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Figure B.2. Plot for the function y = f (t) of Example B.7.

Solution:

This is a homogeneous ODE and therefore its total solution is just the natural response found from

L. . 2
the characteristic equation s+ 6s+ 9 = 0 whose roots are s; = S, = -3 (repeated roots). Thus, the

total response is
y(t) = yy = ke +kyte™ (B.44)
Next, we evaluate the constants k; and Kk, from the given initial conditions. For this example,

y(0) = -1 = k,e°+k,(0)e°

or
k, = -1 (B.45)
Also,
y(0) = 1= %% = —3ke ke - 3kte ™|
o t=0
-3k +k, =1 (B.46)

From (B.45) and (B.46) we get yields k; = —1 and k, = —2. By substitution into (B.44),

y(t) = —e ' =2t (B.47)
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Check with MATLAB:
y=dsolve(D2y+6*Dy+9*y=0', 'y(0)=-1', 'Dy(0)=1

y =
-—exp(-3*t)-2%*exp(-3*t) *t

ezplot(y,[0 4])
The plot is shown in Figure B.3.

exp{-31)2 exp{-3t)t

Figure B.3. Plot for the function y = f(t) of Example B.8.
Example B.9
Find the total solution of the ODE

2
% + 5%% +6y = 3¢ (B.48)

Solution:

No initial conditions are given; therefore, we will express the solution in terms of the constants K
and Kk, . By inspection, the roots of the characteristic equation of (B.48) are s; = -2 and s, = -3

and thus the natural response has the form
yy = ke ke (B.49)
Next, we find the forced response by assuming a solution of the form

ye = Ae ! (B.50)
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We can find out whether our assumption is correct by substitution of (B.50) into the given ODE of
(B.48). Then,

4Ae?' —10Ae ™ + 6Ae ™ = 37 (B.51)

but the sum of the three terms on the left side of (B.52) is zero whereas the right side can never be
zero unless we let t — oo and this produces a meaningless result.

The problem here is that the right side of the given ODE of (B.48) has the same form as one of the

terms of the natural response of (B.49), namely the term k; et

To work around this problem, we assume that the forced response has the form
ye = Ate™ (B.52)

that is, we multiply (B.50) by t in order to eliminate the duplication of terms in the total response.
Then, by substitution of (B.52) into (B.48) and equating like terms, we find that A = 3. Therefore,
the total response is

4 ke + 3te™ (B.53)

y() = yn+Ye = ki€

Check with MATLAB:
y=dsolve(D2y+5*Dy+6*y=3*exp(-2*1)')
y =
—3*exp (-2*t)+3*t*exp (-2*t)+Cl*exp (-3*t) +C2*exp (-2*t)
Example B.10
Find the total solution of the ODE

ﬂ+5d—y+6y = 4cos5t (B.54)

dt dt

Solution:

No initial conditions are given; therefore, we will express solution in terms of the constants K; and
k,. We observe that the left side of (B.54) is the same of that of Example B.9. Therefore, the natural

response is the same, that is, it has the form
-2 -3
yy = ket + ke (B.55)
Next, to find the forced response and we assume a solution of the form

ye = Acos5t (B.56)
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We can find out whether our assumption is correct by substitution of the assumed solution of (B.56)
into the given ODE of (B.55). Then,

— 25Acos5t — 25Asin5t + 6Acosbt = — 19Acosbt — 25Asin5t = 4cosb5t

but this relation is invalid since by equating cosine and sine terms, we find that A = —4/19 and also
A = 0. This inconsistency is a result of our failure to recognize that the derivatives of Acos5t pro-

duce new terms of the form Bsin5t and these terms must be included in the forced response.
Accordingly, we let

Yg = Kysin5t + k,cos5t (B.57)
and by substitution into (B.54) we get

—25k4sin5t — 25k, cos5t + 25k cos5t — 25Kk, sin5t
+ 6kssin5t + 6k, cos5t = 4cos5t

Collecting like terms and equating sine and cosine terms, we obtain the following set of equations

(B.58)
25k,—19k, = 4
We use MATLAB to solve (B.58)
format rat; [k3 k4]=solve(19*x+25*y, 25*x-19*y-4)
k3 =
50/493
kd =
-38/493
Therefore, the total solution is
) e g, 50 o =38
y(t) = yy+VYe(t) = ke +kye +4935|n5t+493cos5t (B.59)

Check with MATLAB.
y=dsolve('D2y+5*Dy+6*y=4*cos(5*t)"); y=simple(y)

y =
-38/493*cos (5*t)+50/493*sin(5*t)+Cl*exp (-3*t)+C2*exp (-2*t)

In most engineering problems the right side of the non-homogeneous ODE consists of elementary

functions such as k (constant), X" where n is a positive integet, € ¥, coskx, sinkx, and linear combi-
nations of these. Table B.1 summarizes the forms of the forced response for a second order ODE
with constant coefficients.
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TABLE B.1 Form of the forced response for 2nd order differential equations

2
Forced Response of the ODE aj—% + bd—Y +cy = f(t)
t

dt
f(t) Form of Forced Response yg (t)
k (constant) K (constant)
kt" (n= positive integer) Kot"+K; "+ K,_it+K,
ke™ (r =real or complex) Ke"

kcosat or ksinat (o =constant) | K coaat + K,sinat

kt"e"cosat or kt"e"'sinat (Kot"+ K t" "+ .+ K, _ t+K,)e cosat

+ (Kot"+ K t" h 4+ K, t+ K e 'sinat

We must remember that if f(t) is the sum of several terms, the most general form of the forced
response Yg(t) is the linear combination of these terms. Also, if a term in Yg(t) is a duplicate of a
term in the natural response Yy (1), we must multiply ¢ (t) by the lowest power of t that will elimi-

nate the duplication.
Example B.11
Find the total solution of the ODE
2
Y 14D 4 gy = e e (B.60)
dt? dt
Solution:

No initial conditions are given; therefore we will express solution in terms of the constants k; and
k,. The roots of the characteristic equation are equal, that is, S; = S, = -2, and thus the natural

response has the form
yN = kle_2t + k2 te_2t (B.61)

To find the forced response (particular solution), we refer to the table of the previous page and from
the last row we choose the term kt"e" cosat. This term with n = 1 ,r=-2,and a = 0, reduces to

kte™®'. Therefore the forced response will have the form
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ye = (ket+ky)e™ (B.62)

But the terms e and te™" are also present in (B.61); therefore, we multiply (B.62) by t* to obtain a
suitable form for the forced response which now is

yF = (k3 t3 + k4t2)e_2t (B.63)

Now, we need to evaluate the constants K; and K,. This is done by substituting (B.63) into the given

ODE of (B.60) and equating with the right side. We use MATLAB do the computations as shown
below.

syms t k3 k4 % Define symbolic variables
fO=(k3*t ™~ 3+k4*t ™~ 2)*exp(—2*t); % Forced response (B.64)

f1=diff(f0); f1 =simple(f1) % Compute and simplify first derivative

f1l =

—t*exp (-2*t) * (-3*k3*t-2*kd+2*k3*t"2+2*kd*t)

f2=diff(f0,2); f2=simple(f2) % Compute and simplify second derivative

f2 =

2%exp (-2*t) * (3*k3*t+kd-6*k3*t"2-4*kd*t+2*k3*t"3+2*kd*t"2)
f=f2+4*f1 +4*f0; f=simple(f) % Form and simplify the left side of the given ODE

f = 2*(3*k3*t+kd) *exp(-2*t)

Finally, we equate £ above with the right side of the given ODE, that is
2(3kst+k,)e? = te X —e™ (B.64)

and we find k3 = 1/6 and k; = -1/2. By substitution of these values into (B.64) and combining

the forced response with the natural response, we get the total solution

t ls 2t 1o -2t
+6te —2te (B.65)

y(t) = ke ?' +kyte™
We verify this solution with MATLAB
z=dsolve('D2y+4*Dy+4*y=t*exp(-2*t)—exp(-2*t)')

Z =
1/6%exp (-2*t) *£"3-1/2%exp (-2*t) *t"2
+Cl*exp (-2*t) +C2*t*exp (-2*t)
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B.6 Using the Method of Variation of Parameters for the Forced Response

In certain non-homogeneous ODEs, the right side f(t) cannot be determined by the method of
undetermined coefficients. For these ODEs we must use the method of variation of parameters. This
method will work with all linear equations including those with variable coefficients such as

Y s a + oy = o (B.66)
dt dt

provided that the general form of the natural response is known.
Our discussion will be restricted to second order ODEs with constant coefficients.

The method of variation of parameters replaces the constants k; and K, by two variables uU; and u,

that satisfy the following three relations:

y=UWY+hY, (B.67)
dy ~ du,
TR T 0 (B.68)
du, dy, du, dy, _
gt dttar dt - (B.69)

Simultaneous solution of (B.68) and (B.69) will yield the values of du,/dt and du,/dt; then, integra-
tion of these will produce u; and u,, which when substituted into (B.67) will yield the total solution.

Example B.12

Find the total solution of

z—ig+4da¥+3y =12 (B.70)

in terms of the constants k; and k, by the

a. method of undetermined coefficients
b. method of variation of parameters
Solution:

With either method, we must first find the natural response. The characteristic equation yields the
roots S; = -1 and s, = —3. Therefore, the natural response is
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yN = kle_t + k2 e_3t (B?l)
a. Using the method of undetermined coefficients we let Y = Kj (a constant). Then, by substitution
into (B.70) we get k; = 4 and thus the total solution is
y(t) = yn+VYe = ke + ke + 4 (B.72)
b. With the method of variation of parameters we start with the natural response found above as
(B.71) and we let the solutions y; and Y, be represented as
y,=e'and y,=e™ (B.73)
Then by (B.67), the total solution is

y = Uy + Uy,
or

y=ue ' +u,et (B.74)

Also, from (B.G8),

du, du,

or

pm p” 0 (B.75)

and from (B.69),
du dy,  du, dy, _
gttt dt -

or
(e + dd—Liz(—3e’3t) =12 (B.76)

Next, we find du,/dt and du,/dt by Cramer’s rule as follows:

0 e—3t
_3t -3t -3t
% — 12 —3e — —126 — —126 — 6€t (8.77)
dt e—'[ e—St _ 36—4t + e—4t _Ze—4t
e 3%
and
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dt ot g™

-t -t
% —e 12 12e — _6e3t (B78)

Now, integration of (B.77) and (B.78) and substitution into (B.75) yields

Ul = 6 Ietdt = 6et + kl U2 = —6 IEStdt = —263t + k2 (B.?g)
y = U +ue
= ((6e'+ky)e "+ (—2e> +kye™
(( e +( 3 2)e ) (B.80)
= (6 + kle_t— 2 + kze_ t)
= (ke + ket +4)
We observe that the last expression in (B.80) is the same as (B.72) of part (a).
Check with MATLAB:
y=dsolve('D2y+4*Dy+3*y=12')
y' =
(d*exp (t)+Cl*exp (-3*t) *exp (t)+C2) /exp(t)
Example B.13
Find the total solution of
2
d—}zf +4y = tan2t (B.81)

dt

in terms of the constants K; and K, by any method.

Solution:

This ODE cannot be solved by the method of undetermined coefficients; therefore, we will use the
method of variation of parameters.

The characteristic equation is §° +4 = 0 from which s = %j2 and thus the natural response is

yy = k& + ke (B.82)

We let
y, = cos2t and vy, = sin2t (B.83)
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Then, by (B.67) the solution is

Yy = Uy, + Uy, = UC0S2t+ U,sin2t (B.84)
Also, from (B.68),
du, | du, _
dt yl + dt y2 - O
or
S cosot + d—sm2t =0 (B.85)
dt dt '
and from (B.69),
du, dy, + == dug dy2 = f(t) = dul( 2sin2t) + C—i—(20032t) = tan2t (B.86)

dt dt dt

Next, we find du,/dt and du,/dt by Cramer’s rule as follows:

0 Sin2'[ ‘ Sin22t
dy _ |tan2t 2c0s2t]  _ ~ cos2t _ —sin’2t (B.87)
dt cos2t sin2t 200522t + 2sin?2t  2C0s2t '

-2sin2t 2c0s2t
and
‘ cos2t 0 ‘
du -2sin2t tan2t| _ sin2t
i 2 -2 (B.88)

Now, integration of (B.87) and (B.88) and substitution into (B.84) yields

sin 2t _ sm2t

Uy 2Ic052t In(se02t+ tan2t) + k; (B.89)
1r. cos2t
U, = EJ.sm2tdt = -5 4k (B.90)
y = Uy, +Uyy, = %‘M—%cosmln(sewutan2t)+k1c032t—w+kzsin2t
1 (B.91)
= —ZC032t|n(SEC2t+ tan2t) + k, cos2t + k,sin2t
Check with MATLAB:

y=dsolve('D2y+4*y=tan(2*t)")

y =
-1/4*cos(2*t) *log((l+sin(2*t)) /cos(2*t))+Cl*cos (2*t)+C2*sin(2*t)
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B.7 Exercises

Solve the following ODEs by any method.

1. OI—Y+4—Y+3y —t-1
dt dt

Answer: y = kleft + kzef3t + %t - g

2. OI—Y+4—Y+3y = s¢
dt dt

Answer: y = ke '+ k,e '+ 2te™
d—Y+28}£/+y = cos’t Hint: Use cos’t = %(C052t+ 1)
dt
Answer: y = ke + k,te” t, 1 _3c0s2t—4sin2t
2 50

2
4. d—¥+y = sect
dt

Answer: y = k;cost + k,sint + tsint + cost(Incost)
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Appendix C

Matrices and Determinants

his appendix is an introduction to matrices and matrix operations. Determinants, Cramer’s
rule, and Gauss’s elimination method are reviewed. Some definitions and examples are not
applicable to subsequent material presented in this text, but are included for subject continuity,
and reference to more advance topics in matrix theory. These are denoted with a dagger (1) and may

be skipped.

C.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

1 31
4 -7 6
In general form, a matrix A is denoted as
81 8z 83 .- 8yp
1@m1 qm2 qmz -+ 8mn

The numbers g; j are the elements of the matrix where the index i indicates the row, and j indicates

the column in which each element is positioned. Thus, a,5 indicates the element positioned in the

fourth row and third column.
A matrix of m rows and n columns is said to be of m x n order matrix.

If m = n, the matrix is said to be a square matrix of order m (or n). Thus, if a matrix has five rows
and five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements ay;, a5, Ass, ..., &, are called the main diagonal elements. Alter-

nately, we say that the matrix elements ay;, @5y, 8g3, ..., @, ,are located on the main diagonal.

nn >
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T The sum of the diagonal elements of a square matrix A is called the trace” of A.

T A matrix in which every element is zero, is called a zero matrix.

C.2 Matrix Operations
Two matrices A = [ail] and B = [bij] are equal, thatis, A = B, if and only if

a; = b i=123..m j=123,...,n (C.2)
Two matrices are said to be conformable for addition (subtraction), if they are of the same order m x n.

IfA = [aiﬂ and B = [bij] are conformable for addition (subtraction), their sum (difference) will be

another matrix C with the same order as A and B, where each element of C is the sum (difference)

of the corresponding elements of A and B, that is,

C = A£B = [a;£bj] (C.3)

Example C.1

Compute A+ B and A-B given that

Solution:
naB o |1+2 243 3+0] _[3 5 3]
0-1 1+2 4+5 -1 3 9
and
A_B = 1-2 2-3 3-0/_|-1-13
0+1 1-2 4-5 1-1-1
Check with MATLAB:
A=[123; 01 4]; B=[2 3 0;-1 2 5]; % Define matrices A and B
A+B % Add A and B

*  Henceforth, all paragraphs and topics preceded by a dagger ( ) may be skipped. These are discussed in matrix

theory textbooks.
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ans =
3 5 3
-1 3 9
A-B % Subtract B from A
ans =
-1 -1 3
1 -1 -1

If k is any scalar (a positive or negative number), and not [K] which is a 1 x 1 matrix, then multipli-

cation of a matrix A by the scalar Kk is the multiplication of every element of A by K.

Example C.2

Multiply the matrix

57

by
a. kl = 5
Solution:
a.
kA =5x |12 = [5x1 5x(=2)] _ |5 -10
2 3 5x2 5x3 10 15
b.
kA = (c34j2)x |1 7Y = |(-3+i2)x1 (-3+j2)x(-2)| _ |-3+j2 6-j4
2 3 (-3+j2)x2 (-3+j2)x3 -6+j4 —-9+j6
Check with MATLAB:
k1=5; k2=(-3 + 2%); % Define scalars ky and ko
A=[1-2;2 3]; % Define matrix A
k1*A % Multiply matrix A by constant kj
ans =
5 -10
10 15
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k2*A %Multiply matrix A by constant ko

ans =
-3.0000+ 2.00001 6.0000- 4.00001
-6.0000+ 4.00001i -9.0000+ 6.00001

Two matrices A and B are said to be conformable for multiplication A - B in that order, only when the
number of columns of matrix A is equal to the number of rows of matrix B. That is, the product
A-B (but not B - A) is conformable for multiplication only if A is an m x p matrix and matrix B is
an p x N matrix. The product A-B will then be an m x n matrix. A convenient way to determine if
two matrices are conformable for multiplication is to write the dimensions of the two matrices side-
by-side as shown below.

Shows that A and B are conformable for multiplication

/
Al 1B

mxp pxn
I
/

Indicates the dimension of the product A - B

For the product B - A we have:

Here, B and A are not conformable for multiplication

~
Bl la

pxn mxp

For matrix multiplication, the operation is row by column. Thus, to obtain the product A - B, we
multiply each element of a row of A by the corresponding element of a column of B ; then, we add
these products.

Example C.3

Matrices C and D are defined as

1
C = [234] andD = |1
2
Compute the products C-D and D-C
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Solution:

The dimensions of matrices C and D are respectively 1 x 3 3 x 1; therefore the product C- D is
feasible, and will resultin a 1 x 1, that is,

1

C.-D = [234] 1| = [(2)-(1)+(3)-(—1)+(4)‘(2)] - [7]
2

The dimensions for D and C are respectively 3 x 1 1 x 3 and therefore, the product D - C is also
feasible. Multiplication of these will produce a 3 x 3 matrix as follows:

1 L2 O3 -4 2 3 4
D-C= 1234 =@ D@ 1@ =|2-3-4
2 2)-(2) 2)-3) @)-4 4 6 8
Check with MATLAB:
C=[2 3 4]; D=[1; -1; 2]; % Define matrices C and D
C*D % Multiply C by D
ans =
7
D*C % Multiply D by C
ans =
2 3 4
-2 -3 -4
4 9 8

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it
will become apparent later in this chapter, when we discuss the inverse of a matrix.

C.3 Special Forms of Matrices

T A square matrix is said to be upper triangular when all the elements below the diagonal are zero.
The matrix A of (C.4) is an upper triangular matrix.

In an upper triangular matrix, not all elements above the diagonal need to be non-zero.
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(C.4)

T A square matrix is said to be lower triangular, when all the elements above the diagonal are zero.
The matrix B of (C.5) is a lower triangular matrix.

apy 0 O 0
3.21 2\122\ 0 0
B=]. .5, 00 (C.5)
\.\..\ 0
1@m1 8m2 @mg -+ é‘an_

In a lower triangular matrix, not all elements below the diagonal need to be non-zero.

T A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix C of (C.0) is a diagonal matrix.

2, 0 0 ... 0]
0 a0 .. 0
C=lo0 0200 (C.6)
0 000
0 0 0 ..ay,
T A diagonal matrix is called a scalar matrix, if a;; = ay, = az3 = ... = a,, = k where k is a sca-

lar. The matrix D of (C.7) is a scalar matrix with k = 4.

4000
D 0400 C.7)

0040

0004

A scalar matrix with k = 1, is called an identity matrix I. Shown below are 2x 2,3 x 3, and 4 x 4

identity matrices.
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v o9 feios
010 (C.8)

01 001 0010

000 1

The MATLAB eye(n) function displays an n x n identity matrix. For example,

eye(4) % Display a 4 by 4 identity matrix
ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix

A . For example, let matrix A be defined as

A=[1 3 1;,-2 1-5;4-7 6] % Define matrix A
A =
1 3 1
-2 1 -5
4 -7 6
then,
eye(size(A))
displays
ans =
1 0 0
0 1 0
0 0 1

. T . . . .
T The transpose of a matrix A, denoted as A, is the matrix that is obtained when the rows and col-

umns of matrix A are interchanged. For example, if

1 4
A= {1 2 j then AT=|p & (C.9)
45
3 6
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In MATLAB we use the apostrophe (') symbol to denote and obtain the transpose of a matrix. Thus,
for the above example,

A=[1 2 3; 4 5 6] % Define matrix A
A =
1 2 3
4 5 6
A % Display the transpose of A
ans =
1 4
2 5
3 6

. . . . T . . .
T A symmetric matrix A is a matrix such that A° = A, that s, the transpose of a matrix A is the same

as A. An example of a symmetric matrix is shown below.

12 3 12 3
T
A=12 45 A=12 45 =A (C.10)
3-5 6 3-5 6

T If a matrix A has complex numbers as elements, the matrix obtained from A by replacing each

element by its conjugate, is called the conjugate of A, and it is denoted as A*

An example is shown below.

A = 1+]j2 J A* = 1-j2
3 2-j3 3 2+])3
MATLAB has two built-in functions which compute the complex conjugate of a number. The

first, conj(x), computes the complex conjugate of any complex number, and the second, conj(A),
computes the conjugate of a matrix A. Using MATLAB with the matrix A defined as above, we

get
A=[1+2] j; 3 2-3j] % Define and display matrix A

A =
1.0000+ 2.00001 0+ 1.00001
3.0000 2.0000- 3.00001
conj_A=conj(A) % Compute and display the conjugate of A
conj_A =
1.0000- 2.00001 0- 1.00001
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3.0000 2.0000+ 3.00001

T A square matrix A such that A" = —A is called skew-symmetric. For example,

02-3 _ |0-23
A=120-4 A=|2 0 4/=-A
340 -3 -4 0

Therefore, matrix A above is skew symmetric.

+ A square matrix A such that A™" = A is called Hermitian. For example,

1 1-j 20 |1 1+j 2 |1 1l+j 2
A=11+j 3 j|A=]1-j 3 —|A =]1-j 3 -j=A
2 4 0 2 j o 2 i o0

Therefore, matrix A above is Hermitian.

T A square matrix A such that A™ = _A is called skew—Hermitian. For example,

I | e o T T B B S B
A=l-1-j 8 jiA =) 8 jA =e) -3 H[=A
-2 j 0 2 j 0 2 —j 0

Therefore, matrix A above is skew-Hermitian.

C.4 Determinants
Let matrix A be defined as the square matrix

ayp dgp Q43 ... Ay

Ay Ayp Apz ... Ay
A = A1
ay 8 Agg ... A (C.11)

a8y

then, the determinant of A, denoted as detA, is defined as

detA = a;;8,,853...8,, + Ap8p3834... 3y, + Ay38pAz5... 8, + ... (C.12)
_anl..-a22a13-.._an2...a23a14_ ans...a24a15— .o
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The determinant of a square matrix of order n is referred to as determinant of order n.

Let A be a determinant of order 2, that is,

A = |11 812 (C.13)
dpy 8
Then,
Example C.4

Matrices A and B are defined as

A:lzandB=2_
3 4 2 0

Compute detA and detB.

Solution:
detA =1-4-3-2=4-6 = -2
detB =2-0-2-(-1) =0-(-2) =2
Check with MATLAB:
A=[1 2;3 4]; B=[2 -1;2 0]; % Define matrices A and B
det(A) % Compute the determinant of A
ans =
-2
det(B) % Compute the determinant of B
ans =
2

Let A be a matrix of order 3, that is,

ap1 a1 g3
A = lay ay ay (C.15)
a3 A3 dgz
then, detA is found from
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detA = a;jay,as3 +a;5,8y383 + ag335,353
(C.16)
—8718p,833 —87185,833 — 87185833

A convenient method to evaluate the determinant of order 3, is to write the first two columns to the
right of the 3 x 3 matrix, and add the products formed by the diagonals from upper left to lower
right; then subtract the products formed by the diagonals from lower left to upper right as shown
on the diagram of the next page. When this is done properly, we obtain (C.16) above.

33 A3 Az +

This method works only with second and third order determinants. To evaluate higher order deter-
minants, we must first compute the cofactors; these will be defined shortly.

Example C.5

Compute detA and detB if matrices A and B are defined as

2 35 2 -3 -4
A=11 0 1) andB =1 0 2
2 10 0 -5 -6
Solution:
2 3 2.3
detA = N ><5></
1/0><1 17 0
271 0><2\
or
detA= (2x0x0)+(3x1x1)+(5bx1x1)
-(2x0x5)-(1x1x2)-(0x1x3)=11-2=9
Likewise,
2-3 -4 ,2 -3
detB = 1 g _2><]<_2
0{5—6><2 -6
or

detB= [2x0x (-=6)]+[(-=3) x (=2) x 0] +[(-4) x 1 x (-5)]
—[0x0x(-4)]-[(-5) x(-2) x 2] = [(-6) x 1 x (-3)] =20-38 = -18
Check with MATLAB:
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A=[2 3 5;1 0 1; 2 1 0]; det(A) % Define matrix A and compute detA

ans =

9
B=[2 -3 4,1 0 -2; 0 -5 -6];det(B) % Define matrix B and compute detB

ans =
-18

C.5 Minors and Cofactors

Let matrix A be defined as the square matrix of order n as shown below.

ayq @gp Qg3 ... Ay

Ay Ayp Apz ... Ay

12n1 2n2 1

If we remove the elements of its ith row, and jth column, the remaining n— 1 square matrix is called

the minor of A, and it is denoted as [Miﬂ .

The signed minor (—1)i + [Mil] is called the cofactor of g; i and it is denoted as «; i

Example C.6

Matrix A is defined as

a1y 81 413
A = |ay 8y ay (C.18)
831 Az g3
Compute the minors [M,,|,  [My,|,  [My] and the cofactors oy, o, and oy
Solution:
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_ 822 823 _ |82 Az _ |82 8
My| = My = My | =
a3y ds3 831 33 831 a3

and

oy = (_1)“1['\/'11] - [Mll] %12 = (_1)“2:'\/'12] - _[M12] %13 = :M13] - (_1)“3['\/'13}

The remaining minors
Mo (M) [M]s [ (M) (Mg

Olyg, Olgp, Olog, Olgg, Olgp, @NM Olgg

and cofactors

are defined similarly.

Example C.7

Compute the cofactors of matrix A defined as

1 2-3
A=12 _4 2 (Clg)
-1 2-6
Solution:
ap =D 2220 ap=(-1)'F 2% ?2l=10 (C.20)
2 -6 -1-6
a = (D72 A =0 ay =123 =6 (C.21)
12 26
2+2| 1 -3 2+3(1 2
oy = (-1) =-9 Oyg = (-1) =4 C.22
. L _6} . L2 c22)
ag = (D2 =8 ag,=(-1)°"?t 3 =8 (C.23)
-4 2 2 2
ag = (1)L 2| = g (C.24)
2 4
It is useful to remember that the signs of the cofactors follow the pattern
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that is, the cofactors on the diagonals have the same sign as their minors.

Let A be a square matrix of any size; the value of the determinant of A is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

Example C.8

Matrix A is defined as

1 2 -3
A = 2 _4 2 (025)
-1 2 -6

Compute the determinant of A using the elements of the first row.
Solution:
detA = 1{‘4 2} -2{ 2 2}—3{ 2 ‘} = 1x20-2x(~10)—=3x0 = 40
2 -6 -1-6 -1 2
Check with MATLAB:
A=[1 2 -3;2 -4 2; -1 2 -6];det(A) % Define matrix A and compute detA

ans =
40

We must use the above procedure to find the determinant of a matrix A of order 4 or higher. Thus, a
fourth-order determinant can first be expressed as the sum of the products of the elements of its first
row by its cofactor as shown below.
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a,;,; 4o A a
11 912 <13 “14
dyo Apg Ayy dqo dq3 Aqy

a, &, a,, a
_ |81 8pp 8p3 Ap4| _
A= = 8yy|ag) Ag3 Ag4| 21|83, g3 Agy (C.26)
gy 83y gz gy
Qyp Q43 4 Qyp 843 4
Q41 yp Q43 Byy
a1p 843 A1y app 893 A1y

tag|ay, Ay3 8y ~841|8p Ayz Ay

42 Q43 44 83z A33 Agy
Determinants of order five or higher can be evaluated similarly.

Example C.9

Compute the value of the determinant of the matrix A defined as

2-1 0 -3
A=|"1 10 -1 (C.27)
4 0 3 -2
300 1

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor. Then,

1 0-1 -1 0-3 -1 0-3 -1 0-3
A=2l0 3-2| ~(-Djo 3-2/ *4j1 0-1 (3|1 0-1
0 01 0 01 0 01 0 3 -2
[a] [b] [c] [d]
Next, using the procedure of Example C.5 or Example C.8, we find
[a] =6, [b] =-3,[c]=0, [d] =-36
and thus
detA = [a]+[b]+[c]+[d] = 6-3+0-36 = —33
We can verify our answer with MATLAB as follows:
A=[2 -1 0 -3:-110-1;4 03 -2, -3 0 0 1]; delta = det(A)
delta =
-33
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Some useful properties of determinants are given below.

Property 1: If all elements of one row or one column are zero, the determinant is zero. An example of
this is the determinant of the cofactor [¢] above.

Property 2: If all the elements of one row or column are m times the corresponding elements of another
row or column, the determinant is zero. For example, if

2 4 1
A=13 6 1 (C.28)
1 2 1
then,
2 4 1|2 4
detA=1]3 6 113 6 =12+4+6-6-4-12=0 (C.29)
1 2 1|1 2

Here, detA is zero because the second column in A is 2 times the first column.
Check with MATLAB:
A=[2 4 1;3 6 1;1 2 1];det(A)

ans =
0

Property 3: If two rows or two columns of a matrix are identical, the determinant is zero. This follows
from Property 2 with m = 1.

C.6 Cramer’s Rule

Let us consider the systems of the three equations below

apX+apy+a;z = A

and let
a1y 8pp g3 A ay ag; a;; A ag a;p ap A
A= dpy 8pp Ay3 Di =1 B ay ay D2 =1 a, B ay D;=|ayayB
dgy a3y Ag3 C ay ag ag C ag ag ag C
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Cramer’s rule states that the unknowns x, y, and z can be found from the relations

D, o S

C.31
A y== A (C.31)

X =

provided that the determinant A (delta) is not zero.

We observe that the numerators of (C.31) are determinants that are formed from A by the substitu-

tion of the known values A, B, and C, for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (C.30) is a homogeneous set of equations, thatis,if A = B = C = 0, then, D;, D,, and D, are
all zero as we found in Property 1 above. Then, X =y = z = 0 also.

Example C.10

Use Cramer’s rule to find vy, V,, and Vg if

and verify your answers with MATLAB.
Solution:
Rearranging the unknowns Vv, and transferring known values to the right side, we get
2Vi—Vy,+3vy =5
Now, by Cramet’s rule,
2 -1 3| 2 -1
A=|_4 3 92| _4 3 =6+6-12+27+4+4 =135
3 1 -1|] 3 1
5 -1 3|5 -1
D,=|8 3 2|8 -3 =15+8+24+36+10-8 = 85
4 1 14 1
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2 5 3| 2 5

D,=|_4 8§ 2| _4 g =-16-30-48-72+16-20 = —170

3 4 -1] 3 4

2 -1 5| 2 -1

Dy=|_4 3 8| _4 3 =-24-24-20+45-16-16 = -55

3 1 4, 3 1

Then, using (C.31) we get

. - D1_8 _17 « - D2 _ 170 _ 34
L7 A 37 7 27 A 35 7

We will verify with MATLAB as follows.

_Ds_ 55_ 1
N (C.34)

% The following code will compute and display the values of v4, v, and vs.

format rat % Express answers in ratio form
B=[2 -1 3; -4 -8 -2; 3 1-1]; % The elements of the determinant D of matrix B
delta=det(B); % Compute the determinant D of matrix B
di=[5-13;,8-3-2;, 41 -1]; % The elements of D
detd1=det(d1); % Compute the determinant of D,
d2=[2 5 3; -4 8 -2; 3 4 -1]; % The elements of D,
detd2=det(d2); % Compute the determinant of D,
d3=[2 -1 5;-4 -3 8; 3 1 4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D
vi=detd1/delta; % Compute the value of v4
v2=detd2/delta; % Compute the value of v,
v3=detd3/delta; % Compute the value of v
%
disp('v1=");disp(v1); % Display the value of v4
disp('v2=");disp(v2); % Display the value of v,
disp('v3=");disp(v3); % Display the value of v
vl=
17/7

v2=

-34/7
v3=

-11/7

These are the same values as in (C.34)
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C.7 Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimination
method. With this method, the objective is to eliminate one unknown at a time. This can be done by
multiplying the terms of any of the equations of the system by a number such that we can add (or
subtract) this equation to another equation in the system so that one of the unknowns will be elimi-
nated. Then, by substitution to another equation with two unknowns, we can find the second
unknown. Subsequently, substitution of the two values found can be made into an equation with
three unknowns from which we can find the value of the third unknown. This procedure is repeated
until all unknowns are found. This method is best illustrated with the following example which con-
sists of the same equations as the previous example.

Example C.11

Use the Gaussian elimination method to find vy, V,, and V5 of the system of equations

2Vy—V,+3vy = 5

Solution:

As a first step, we add the first equation of (C.35) with the third to eliminate the unknown vy and we

obtain the following equation.
Sv;+2v; =9 (C.36)

Next, we multiply the third equation of (C.35) by 3, and we add it with the second to eliminate v, .

Then, we obtain the following equation.
5v,; —5v; = 20 (C.37)
Subtraction of (C.37) from (C.30) yields

7vg = =11 or vy = —% (C.38)

Now, we can find the unknown v; from either (C.36) or (C.37). By substitution of (C.38) into (C.36)

we get
1) _ _1
5v1+2-(—7) =9 orv,= - (C.39)

Finally, we can find the last unknown Vv, from any of the three equations of (C.35). By substitution

into the first equation we get
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7T 7 7 7
These are the same values as those we found in Example C.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small integers,
as in Example C.11. However, it becomes impractical if the coefficients are large or fractional num-
bers.

C.8 The Adjoint of a Matrix
Let us assume that A is an n square matrix and 0 is the cofactor of aj - Then the adjoint of A,
denoted as adjA, is defined as the n square matrix below.

OLll (}.21 (131 R 4

Ogp Oy Ogp ... Opoy

adjA = (C.41)

(1,13 0(23 (133 (an

We observe that the cofactors of the elements of the ith row (column) of A are the elements of the
ith column (row) of adjA.

Example C.12

Compute adjA if Matrix A is defined as

1 2 3
1 4 3
Solution:
3 4] [2 3 2 3
4 3 4 3 3 4
3 o 7 6 -1
adjA = |_|1 4 13 {23 =11 0 -1
13 |13 3 4 Lo 1
1 3] 12 1 2
1 4] |1 4] 13
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C.9 Singular and Non-Singular Matrices

An n square matrix A is called singular if detA = 0;if detA=0, A is called non-singular.

Example C.13

Matrix A is defined as

1 2 3
A=12 3 4 (C.43)
3 57
Determine whether this matrix is singular or non-singular.
Solution:
1 2 3|12
detA=|2 3 4|23 =21+24+30-27-20-28 =0
3 57|35
Therefore, matrix A is singular.
C.10 The Inverse of a Matrix
If A and B are n square matrices such that AB = BA = |, where | is the identity matrix, B is called

the inverse of A, denoted as B = AT , and likewise, A is called the inverse of B, thatis, A = B!

. . . . . -1 .
If a matrix A is non-singular, we can compute its inverse A~ from the relation

-1 1 .
A= det_AadJA (C.44)
Example C.14
Matrix A is defined as
1 2 3
1 4 3
Compute its inverse, that is, find AT
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Solution:

Here, detA = 9+8+12-9-16-6 = -2, and since this is a non-zero value, it is possible to com-
pute the inverse of A using (C.44).

From Example C.12,

-7 6 -1
adjA = |1 0 -1
-2 1
Then,
L1 -7 61 35-3 05
AT =o2adjA = =11 0 1) = |05 0 05 (C.46)
1-21 -05 1-05
Check with MATLAB:

A=[1 2 3; 1 3 4; 1 4 3], invA=inv(A) % Define matrix A and compute its inverse

A =

1 2 3
1 3 4
1 4 3
invA =
3.5000 -3.0000 0.5000
-0.5000 0 0.5000
-0.5000 1.0000 -0.5000

Multiplication of a matrix A by its inverse A produces the identity matrix |, that is,
AAT =1 or ATA=I (C.47)

Example C.15

Prove the validity of (C.47) for the Matrix A defined as

o

Proof:
detA = 8-6 =2 and adjA = 2 -3
2 4
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Then,

anl_ |4 3|1 -3/2) _[4-3 -6+6/ _ |1 Of _,
2 2f|-1 2 2-2 -3+4] [0 1

C.11 Solution of Simultaneous Equations with Matrices

- _ 1 112 -3 _ |1 -3/2
A _detAadJA_Z{z 4}_{_1 2}

and

Consider the relation
AX = B (C.48)

where A and B are matrices whose elements are known, and X is a matrix (a column vector) whose

elements are the unknowns. We assume that A and X are conformable for multiplication. Multipli-

cation of both sides of (C.48) by A™ yields:

A7AX = ATB = IX = AT'B (C.49)

or

X=A"'B (C.50)

Therefore, we can use (C.50) to solve any set of simultaneous equations that have solutions. We will
refer to this method as the inverse matrix method of solution of simultaneous equations.

Example C.16

For the system of the equations

2X1+3X,+X3 = 9
compute the unknowns X;, X,, and X5 using the inverse matrix method.
Solution:
In matrix form, the given set of equations is AX = B where
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2 3 1 X1 9
A=|1 2 3, X=|x,|, B=g (C.52)
3 1 2 X 8
Then,
X=A"'B (C.53)
or
-1
Xt| |2 3 1/ |9
X, =11 2 3| |6 (C.54)
x{ |3 1 2] [8

Next, we find the determinant detA, and the adjoint adjA

1-57
detA=18 and adjA=| 7 1 _5
71

-5
Therefore,
1 -5 7
-1 1 a1
S Getn AT 3G 7 15
-5 7 1
and by (C.53) we obtain the solution as follows.
X1 1 -5 7|9 35 35/18 1.94
1 1
X'=1x| =15/ 7 1-5]|6] = 15|29 = |29/18| = |161 (C.55)
X3 -5 7 1]|8 5 5/18 0.28

To verify our results, we could use the MATLAB?’s inv(A) function, and then multiply A by B.
However, it is easier to use the matrix left division operation X = A\ B; this is MATLAB’s solution

-1 . . . . . . .
of A "B for the matrix equation A-X = B, where matrix X is the same size as matrix B. For this
example,

A=[2 3 1;1 2 3;3 1 2];B=[9 6 8];
X=A\B
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1.9444
1.6111
0.2778

Example C.17

For the electric circuit of Figure C.1,

Figure C.1. Circuit for Example C.17

the loop equations are

101, - 91, = 100
—91,+201,-9l, = 0 (C.56)
—9l,+15l, = 0

Use the inverse matrix method to compute the values of the currents I, I,, and I3
Solution:

. . . . -1
For this example, the matrix equationis Rl = V or | = RV, where

10-9 0 100 Iy
R=1]920-9/, V=| o and I=l,
0 -915 0 I,

The next step is to find R™ . This is found from the relation

R 1

Therefore, we find the determinant and the adjoint of R. For this example, we find that
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219 135 81
detR = 975, adjR = |135 150 90 (C.58)
81 90 119
Then,
. 219 135 81
R™ = oR24IR = 575(135 150 90
81 90 119
and
ly | |219 135 81||100f /219 22.46
I'= 1, = 575|135 150 90 || 0| = g7z|135 = |13.85
Iy 81 90 119/| 0 81 8.31
Check with MATLAB:
R=[10 -9 0; -9 20 -9; 0 -9 15]; V=[100 O 0]; I=R\V
T =
22.4615
13.8462
8.3077

We can also use subscripts to address the individual elements of the matrix. Accordingly, the above
code could also have been written as:

R(1,1)=10; R(1,2)=-9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=-9; R(2,2)=20; R(2,3)=-9; R(3,2)=-9; R(3,3)=15; V=[100 0 0]'; I=R\V
T =
22.4615
13.8462
8.3077

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix
method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT
(Matrix Multiplication) functions, to obtain the values of the three currents in Example C.17.

The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure C.2. Then, we enter the elements of matrix V in G3:G5.
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2. Next, we compute and display the inverse of R, that is, R™'. We choose B7:D9 for the elements
of this inverted matrix. We format this block for number display with three decimal places. With

this range highlighted and making sure that the cell marker is in B7, we type the formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously.

We observe that R appears in these cells.

3. Now, we choose the block of cells G7:G9 for the values of the current I. As before, we highlight
them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of | then appear in G7:G9.

A | B | c ] bp|] E [F|] G H

1 |Spreadsheet for Matrix Inversion and Matrix Multiplication

2

3 10 -9 0 100
4 R= -9 20 -9 V= 0
5 0 -9 15 0
6

7 0.225| 0.138| 0.083 22.462
8 R'=[ 0.138| 0.154| 0.092 I=] 13.846
9 0.083| 0.092| 0.122 8.3077
10

Figure C.2. Solution of Example C.17 with a spreadsheet

Example C.18

For the phasor circuit of Figure C.18

170£0°

Figure C.3. Circuit for Example C.18
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the current Iy can be found from the relation

V-V
R3
and the voltages V; and V, can be computed from the nodal equations
V,-170£0° V,;-V, V,;-0
1 241 =0 (C.60)
85 100 j200
and
V,-170£0° V,-V, V,-0
2 21, 2 =0 (C.61)

- + +
-j100 100 50
Compute, and express the current |, in both rectangular and polar forms by first simplifying like

terms, collecting, and then writing the above relations in matrix form as YV = |, where
Y = Admittance, V = Voltage, and | = Current

Solution:

The Y matrix elements are the coefficients of V; and V,. Simplifying and rearranging the nodal equa-
tions of (C.60) and (C.61), we get

(0.0218 - j0.005)V, - 0.01V, = 2

. . (C.62)
~0.01V, +(0.03 +j0.01)V, = j1.7
Next, we write (C.62) in matrix form as
0.0218 -j0.005  -0.01 Vi 2
-001  0.03+j0.01] |V, = [j17 (C.63)
H_J
Y vV |

where the matrices Y, V, and | are as indicated.

We will use MATLAB to compute the voltages V; and V,, and to do all other computations. The

code is shown below:.

Y=[0.0218-0.005] —0.01; -0.01 0.03+0.01j]; I=[2; 1.7j]; V=Y\I;% Define Y, I, and find V

fprintf(\n'); % Insert a line

disp('V1 ="); disp(V(1)); disp(V2 =); disp(V(2)); % Display values of V1 and V2
vVl =
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1.0490e+002 + 4.9448e+0011i

V2 =
53.4162 + 55.3439i

Next, we find Iy from

R3=100; IX=(V(1)-V(2))/R3 % Compute the value of Iy

IX =
0.5149- 0.05901

This is the rectangular form of Iy . For the polar form we use

maglX=abs(IX) % Compute the magnitude of Iy

magIxX =
0.5183

thetalX=angle(IX)*180/pi % Compute angle theta in degrees

thetalIX =
-6.5326

Therefore, in polar form
Iy = 0.518./-6.53°

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to com-
pute matrices that include complex numbers in their elements as in Example C.18
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C.12 Exercises
For Problems 1 through 3 below, the matrices A, B, C, and D are defined as:
a<ls 72 x|z 02| oo 02177
3-56 7-4 6 5 -2
1. Perform the following computations, if possible. Verify your answers with MATLAB.
a.A+B b A+C cB+D dC+D
eA-B f£A-C gB-D hC-D
2. Perform the following computations, if possible. Verify your answers with MATLAB.
a. A-B b. A-C c. B-D d C-D
e. B-A t. C-A g D-A h. D-C
3. Perform the following computations, if possible. Verify your answers with MATLAB.
a. detA b. detB c. detC d. detD
e. det(A-B) f. det(A-C)
4. Solve the following systems of equations using Cramer’s rule. Verify your answers with MATLAB.

Xq+3Xy+2X3—X4 = 9
3X, +4X,-5%3 = 0

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Solve the following systems of equations using the inverse matrix method. Verify your answers
with MATLAB.

2 4 32| [& 1
1 3 4| [X1 -3
ol 2 Ll2-4 13 % _|10
a3 1-2|[x| = |-2 =
>3 e . 13-4 2| |x |14
X3 2-2 2 1] |y, 7
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Constructing Semilog Plots with Microsoft Excel

his appendix contains instructions for constructing semilog plots with the Microsoft Excel

spreadsheet. Semilog, short for semilogarithmic, paper is graph paper having one logarithmic

and one linear scale. It is used in many scientific and engineering applications including fre-
quency response illustrations and Bode Plots.

D.1 The Excel Spreadsheet Window

Figure D.1 shows the Excel spreadsheet workspace and identifies the different parts of the Excel win-
dow when we first start Excel.

Fd Microsoft Excel - Print Screen - 10| x|
- Fle Edit Wiew Insert Format  Tools Data  Window Help  Acrobat Type aquestionforhelp = o & X
}-:- Prampt. _
Dedsag LY {BR-T v-- R =-F2 i [43] 100~ )
arial J0F B I UE=E=EE %€ %, @5 EL - B AL
i3 &3 %a 4 T ¥ | Y] B g2 | P9 Reply with Changss... End Review. ..
| =l RS N
artwizar
TE.
Al - f

e 5 | ¢ | o | & | F | & | & DU ] & ] K | Ly
1
| 2|
EER Chart toolpar (hidden)
4
| &
| B
RE
| 5
| 9 |
10
[11]
12 P
13
14
15
15 B
4 4 » #[\Sheetl {Sheetz / Sheet3 IR} | LIJJ
Draw~ 3 | Autoshapes~ . w [] O & 4{ s {7 &'i'é'f =l i\ .
Ready UM S

& Startl ) Microsoft Booksh, .. | E’ Adobe FrameMak... | @ Documentl - Mice.., | Microsoft Excel ... Adobe PhotoDeld, ., | %;’& 11:46 AM

Figure D.1. The Excel Spreadsheet Workspace
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Figure D.2 shows that whenever a chart is selected, as shown by the visible handles around the
selected chart, the Chart drop menu appears on the Menu bar and that the Chart toolbar now is visi-

ble. We can now use the Chart Objects Edit Box and Format Chart Area tools to edit our chart.

Fd Microsoft Excel - Print Screen -0l x|
- File Edit Yiew Insert  Format  Tools  Chart  Window  Help  Acrobat Print Screen s e
.')L:x Prompt
s &Y fB@-s o RN L
Avrial 10 ~+ B I U E=E=H|% s g || EETH DA -,
e e e R g=1 | ¥#Reply with Changes... End Review, ..
Chart érea - - | [E e B % 2 Menu bar  ChartWizard
nE. Chart drop menu
P
Chart Area = e
D ) [ 7 ) <70 | ) ) ) R [ W
1
2 1 0.11] Chart Objects Edit Box | Format Chart Area Handles
[ | 2 0.13
4
E ] | |
G 26
7
et 2
B
g 1.5
10 . i
11
2 05 i
|13 0 ; ; ; ; ;
b5 0 02 04 0B 08 1 12
15 Y
1E | n n n =
M 4 b M[sSheetl (Sheetz f Sheet3 / 1« | LIJJ
Draw~ 3 Adoshapes . W IO E A4l 0@ d-Z2-A-SE=Z 5 B @.
Ready I S

a Startl ) Microsoft Booksh, .. | m’ Adobe FrameMak. .. | Documerntl - Micr... || Microsoft Excel ... E fdobe Photabelu. ., | %;& 11:19 AM

Figure D.2. The Excel Spreadsheet with Chart selected

D.2 Instructions for Constructing Semilog Plots

1. Start with a blank spreadsheet as shown in Figure D.1.

Click on ChartWizard.

2
3. Click on the X-Y (Scatter) Chart type under the Standard Types tab on the ChartWizard menu.
4

. The Chart sub-type shows five different sub-types. Click on the upper right (the one showing two

continuous curves without square points.)

5. Click on Next, Series tab, Add, Next.
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10.

11.

12.

13.

14.

Click on Gridlines tab and click on all square boxes under Value X-axis and Value Y-axis to place
check marks on Major and Minor gridlines.

Click on Next, Finish, click on the Series 1 box to select it, and press the Delete key on the key-
boatd to delete it.

The plot area normally appears in gray color. To change it to white, first make sure that the chart
is selected, that is, the handles (black squares) around the plot are visible. Point the mouse on the
Chart Objects Edit Box tool (refer to Figure D.2), scroll down, click on the Plot Area, then click
on the Format Plot Area (shown as Format Chart Area tool in Figure D.2).

The Area section on the Patterns tab shows several squares with different colors. Click on the
white square, fifth row, right-most column, and click on OK to return to the Chart display. You
will observe that the Plot Area has a white background.

Click anywhere near the x-axis (lowest horizontal line on the plot) and observe that the Chart
Objects Edit Box now displays Value (X) axis. Click on the Format Chart Area tool which now
displays Format Axis, click on the Scale tab and make the following entries:

Minimum: 1~ Maximum: 100000  Major Unit: 10 Minor Unit: 10
Make sure that the squares to the left of these values are not checked.
Click on Logarithmic scale to place a check mark, and click on OK to return to the plot.

Click anywhere near the y-axis (left-most vertical line on the plot) and observe that the Chart
Objects Edit Box now displays Value (Y) axis. Click on the Format Chart Area tool which now
displays Format Axis, click on the Scale tab and make the following entries:

Minimum: =80  Maximum: 80  Major Unit: 20  Minor Unit: 20

Make sure that the squares to the left of these values are not checked. Also, make sure that the
Logarithmic scale is not checked. Check on OK to return to the plot.

You will observe that the x-axis values appear at the middle of the plot. To move them below the
plot, click on Format Chart Area tool, click on the Patterns tab, click on Tick mark labels (lower
right section), and click on OK to return to the plot area.

To expand the plot so that it will look more useful and presentable, make sure that the chart is
selected (the handles are visible). This is done by clicking anywhere in the chart area. Bring the
mouse close to the lower center handle until a bidirectional arrow appears and stretch down-
wards. Repeat with the right center handle to stretch the plot to the right. Alternately, you may
bring the mouse near the lower right handle and stretch the plot diagonally.

You may wish to display the x-axis values in exponential (scientific) format. To do that, click any-
where near the x-axis (zero point), and observe that the Chart Objects Edit Box now displays
Value (X) axis. Click on the Format Chart Area tool which now displays Format Axis, click on the
Number tab and under Category click on Scientific with zero decimal places.
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15. If you wish to enter title and labels for the x- and y-axes, with the chart selected, click on Chart
(on the Menu bar), click on chart Options, and on the Titles tab enter the Title and the x- and y-
axis labels. Remember that the Chart drop menu on the Menu bar and the Chart toolbar are hid-
den when the chart is deselected.

16. With the values used for this example, your semilog plot should look like the one below.

80 -
60 -
40 -

20 ~

-20 -

-40 -

-60

-80
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
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Scaling

his appendix discusses magnitude and frequency scaling procedures that allow us to transform
circuits that contain passive devices with unrealistic values to equivalent circuits with realistic
values.

E.1 Magnitude Scaling

Magnitude scaling is the process by which the impedance of a two terminal network is changed by a
factor K, which is a real positive number greater or smaller than unity.

If we increase the input impedance by a factor K., , we must increase the impedance of each device of

the network by the same factor. Thus, if a network consists of R, L, and C devices and we wish to
scale this network by this factor, the magnitude scaling process entails the following transformations
where the subscript m denotes magnitude scaling,

Rn = kR

L, =kl

3

(E.1)

C.,—>

=10

m

These transformations are consistent with the time-domain to frequency domain transformations

R—>R
L—-joL
1

C—)J.CO—C

(E.2)

and the t-domain to S-domain transformations

R—-R
L —>sL
1

C—)i

(E.3)

E.2 Frequency Scaling

Frequency scaling is the process in which we change the values of the network devices so that at the
new frequency the impedance of each device has the same value as at the original frequency. The fre-
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Appendix E Scaling

quency scaling factor is denoted as K;. This factor is also a real positive number and can be greater or
smaller than unity.

The resistance value is independent of the frequency. However, the complex impedance of any
inductor is sL, and in order to maintain the same impedance at a frequency k; times as great, we must
replace the inductor value by another which is equal to L/k;. Similarly, a capacitor with value C must be
replaced with another having a capacitance value equal to C/k; . For frequency scaling then, the following
transformations are necessary where the subscript f denotes magnitude scaling,

Ri—>R
L
Li—>~
7k (E.4)
C
Ci— K
A circuit can be scaled simultaneously in both magnitude and frequency using the scales values below
where the subscript mf denotes simultaneous magnitude and frequency scaling.

R = kR

_m
bt =g (E.5)

1
mf > i 1 .C

m=f

C

Example E.1

For the network of Figure E.1 compute

250 105H

Figure E.1. Network for Example E.1

a. the resonant frequency o .
b. the maximum impedance Z ...

c. the quality factor Qup .

d. the bandwidth BW.
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e. the magnitude of the input impedance Z, and using MATLAB sketch it as a function of frequency.

f. Scale this circuit so that the impedance will have a maximum value of 5 KQ at a resonant fre-

quency of 5 x 10° rad/s

Solution:

a. The resonant frequency of the given circuit is

0, = 1 = 1rad/s
JLC

and thus the circuit is parallel resonant.

b. The impedance is maximum at parallel resonance. Therefore,
Zoax = 25Q

c. The quality factor at parallel resonance is

C
Qop = % = 0,CR = 1x2%x25 =5
d. The bandwidth of this circuit is
Bw =20 _1_gpp
Qop S

e. The magnitude of the input impedance versus radian frequency ® is shown in Figure E.2 and was
generated with the MATLAB code below:.

w=0.01: 0.005: 5; R=2.5; G=1/R; C=2; L=0.5; Y=G+j.*(w.*C-1./(w.*L));...
magY=abs(Y); magZ=1./magy; plot(w,magZ); grid
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O A U L (A S
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Figure E.2. Plot for Example E.1
f. Using (E.1), we get

R
k, =~ = 2000 _ 5q99
R 2.5
Then,
L, = kL = 2000 x 0.5 = 1000 H
and
C 2 -3
C,=~=—=10"F
™= k.~ 2000

After being scaled in magnitude by the factor k;, = 2000, the network constants are as shown in

Figure E.3, and the plot is shown in Figure E.4.

O

Z— R L N
5KQ 103H | 10°F

Figure E.3. The network of Figure E.2 scaled by the factor k,, = 2000

The final step is to scale the above circuit to 5 x 10° rad/s. Using (E.4), we get:

R = R = 5kQ

L, = L/k; = 1000/(5 x 10° ) = 200 uH

E-4 Circuit Analysis Il with MATLAB Applications
Orchard Publications



Frequency Scaling
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Figure E.4. Plot for the network of Figure E.2 after being scaled by the factor k,, = 2000

C; = C/k = 10°/5x10° = 200 pF

The network constants and its response, in final form, are as shown in Figures E.5 and E.6 respec-
tively.

C
Z — R L PN
5KQ ™7200 pH| 200 pF

Figure E.5. The network of Figure E.2 scaled to its final form
The plot of Figure E.6 was generated with the following MATLAB code:

w=1:10"3: 10" 7; R=5000; G=1/R; C=200.*10. ™~ (-12); L=200.*10. "~ (-6); ...
magY=sqrt(G. ™~ 2+ (w.*C-1./(w.*L)). ~ 2); magZ=1./magy; plot(w,magZ); grid

Check:

The resonant frequency of the scaled circuit is

1 1 1
(DO = = — _6
JC  Jo2x10%x02x10° 02x10

= 5x10° rad/s

and thus the circuit is parallel resonant at this frequency.
The impedance is maximum at parallel resonance. Therefore,

z = 5 KQ

max
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000 T T
4500
4000 : :.
3600
2000
1000 —| 1 '
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0 1 2 3 4 5 g 7 8 g 10

Figure E.6. Plot for Example E.1 scaled to its final form

The quality factor at parallel resonance is

C _
Qpp = % = ©,CR = 5x10°x2x10°x5x10° = 5
and the bandwidth is
6
BW = 20 _5x100 _ 446

Qop 5

The values of the circuit devices could have been obtained also by direct application of (E.5), that is,

R — kR

me—>k—TL

k
Cpi— —C
kf

Ryt = kpR = 2000 x 2.5 = 5 KQ

L k_mL_ 2000

" ke T 5x10°

x 0.5 = 200 pH

_ 1o 1
(= -
™ KKy 2x10% x5 x 10°

C x 2 = 200 pf

and these values are the same as obtained before.
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Example E.2

A series RLC circuit has resistance R = 1 Q, inductance L = 1 H, and capacitance C = 1 F. Use
scaling to compute the new values of R and L which will result in a circuit with the same quality fac-

tor Qqg, resonant frequency at 500 Hz and the new value of the capacitor to be 2 pF.

Solution:

The resonant frequency of the circuit before scaling is

0g = L~ 1radss
JLC

and we want the resonant frequency of the scaled circuit to be 500 Hz or 27 x 500 = 3142 rad/s.

Therefore, the frequency scaling factor must be

Now, we must compute the magnitude scale factor, and since we want the capacitor value to be 2 pF,
we use (E.5), that is,

or
c _ 1

- - = 159
" kCmt  3142x2x10°

k

6

Then, the scaled values for the resistance and inductance are

R, = kyR = 159x 1 = 159 Q

and
Kin 159
Lo = 3L = 335 % 1 = 506 mH
Circuit Analysis Il with MATLAB Applications E-7
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E.3 Exercises

1. A series resonant circuit has a bandwidth of 100 rad/s, Q,, = 20 and C = 50 pF. Compute the

new resonant frequency and inductance if the circuit is scaled
a. in magnitude by a factor of 5
b. in frequency by a factor of 5

c. in both magnitude and frequency by factors of 5

2. A scaled parallel resonant circuit consists of R = 4 KQ, L = 0.1 H,and C = 0.3 uF. Compute

K, and k; if the original circuit had the following values before scaling;

aaR=10QandL =1H

bbR=10Qand C =5F

c. L=1HandC=5F
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E.4 Solutions to the Exercises

1. a. Itis given that BW = 0y/Qgg = 100 and Qpg = 20; then,
®y = BW- Qg = 100 x 20 = 2000 rad/s

Since 0f = 1/LC, Lo p = 1/0:C = 1/(4x10°x50x 10°) = 5 mH, and withk , = 5,

Luew = Knlolp = 5x5mH = 25 mH. Also, Cygy = Cop/Ky = 50 x107°/5 = 10 puF

and 03 ey = 1/LyewCrew = 1/(25 x 102 x 10 x 10°%) = 10%/25 or 0y ygyy = 2000 r/s
b. It is given that Cy 5 = 50 x 10" and from (@) Lo.p = 5 mH. Then, with k; = 5,

Luew = Loip/ki = 5x10°/5 = 1 mH. Also, Cygy = CoLp/K = 50x 10°/5 = 10 puF

and 0f yew = 1/LyewCrew = 1/(10°x10x 10°°%) = 10° or @y ygyy = 10000 r/s

c. Loip = 5 mH and Cg p = 50 x 10™°. Then, from (E.5)
Lyew = (Kn/Kp) - Loip = (5/5)-5 mH = 5 mH. Also from (E.5)
Cnew = (1/(Kykp)) - Cop = 50 uF/(5x5) = 2 uF and
2

03 new = 1/LyewCrew = 1/(5x107° x2x10°°%) = 10° or wg ygy = 10000 r/s

ki = (LoLp/Lnew) - Km = (1/0.1) x 400 = 4000

b. From (a) k;,, = 400 and from (E.5),

ke = (1/K,) - (CoLp/Crew) = (1/400) - (5/0.3x 10°°%) = 41677

c. From (E.5) k/Ky, = Loip/Lygw = 1/0.1 = 10 and thus k; = 10k, (1)
Also from (E.5), K, - k; = Cop/Cpew = 5/03x107° = 5x10°/0.3 (2)

Substitution of (1) into (2) yields 10k, -k, = 5x10°/0.3, k% = 5x10°/3, or k, = 1291,

and from (1) k; = 1291 x 10 = 12910
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NOTES
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Symbols and Numerics

% (percent) symbol in MATLAB A-2
3-phase systems - see
three-phase systems

A

abs(z) in MATLAB A-25

admittance 6-2, 6-8, 6-11, 6-16, 6-17
driving-point 9-5

alpha coefficient 1-3, 1-15

angle(z) in MATLAB A-25

antenna 2-18

antiresonance 2-6

asymptotes 7-6

asymptotic approximations 7-5

Audio Frequency (AF) Amplifier 2-18

bandwidth 2-12, 2-13, 7-3

beta coefficient 1-3, 1-15

Bode Plots 7-5

bode(sys) in MATLAB 7-21
bode(sys,w) in MATLAB 7-21
bodemag(sys,w) in MATLAB 7-21
box in MATLAB A-13

Cc

clc in MATLAB A-2
clear in MATLAB A-2
collect(s) in MATLAB 5-12
column vector in MATLAB A-20
command screen in MATLAB A-1
command window in MATLAB A-1
commas in MATLAB A-8
comment line in MATLAB A-2
complex conjugate pairs 5-5, A-4
complex numbers A-3
complex poles 5-5
complex roots of
characteristic equation B-9
conj(A) in MATLAB C-8
conj(x) in MATLAB C-8
contour integration 4-2
conv(a,b) in MATLAB A-6
convolution
in the complex frequency domain 4-12
in the time domain 4-11
corner frequency - see frequency
Cramer's rule C-16

critically damped - see natural response
D

damping coefficient 1-3, 1-15, 7-14
data points in MATLAB A-15
dB - see decibel
DC isolation - see transformer
decade 7-4
decibel 7-1, A-13
deconv in MATLAB A-6
default color in MATLAB A-16
default line in MATLAB A-16
default marker in MATLAB A-16
delta function 3-8, 3-12
sampling property 3-12
sifting property 3-13
demo in MATLAB A-2
detector circuit 2-18
determinants C-9
differential equations
auxiliary equation B-8
characteristic equation B-8
classification B-3
degree B-3
most general solution B-6
solution by the
method of undetermined
coefficients B-10
method of variation
of parameters B-20
differentiation
in time domain 4-4
in complex frequency domain 4-6
Dirac(t) in MATLAB 3-15
direct term in MATLAB 5-4
discontinuous function 3-2
display formats in MATLAB A-31
distinct poles 5-2
distinct roots of characteristic equation B-9
division in MATLAB
dot division operator A-22
dot convention - see transformer
doublet function 3-15
driving-point admittance - see admittance

E

editor window in MATLAB A-1
editor/debugger in MATLAB A-1
electrokinetic momentum 8-1
eps in MATLAB A-23

exit in MATLAB A-2

exponential order, function of 4-2
exponentiation in MATLAB

dot exponentiation operator A-22
eye(n) in MATLAB C-7

F

factor(s) in MATLAB 5-4
Faraday’s law of

electromagnetic induction 8-2
feedback

negative 7-4

positive 7-4
figure window in MATLAB A-14
filter

low-pass

multiple feed back 1-30

final value theorem 4-10
flux linkage 8-2
fmax in MATLAB A-28
fmin in MATLAB A-28
forced response B-7
format in MATLAB A-31
fplot in MATLAB A-28
frequency

corner 7-9

cutoff 7-3

half-power 2-13

natural

damped 1-3, 1-15, 7-14

resonant 1-3, 2-2, 2-7

response A-13

scaling - see scaling

selectivity 2-5
frequency shifting property 4-3
full rectification waveform 4-36
function file in MATLAB A-26
fzero in MATLAB A-28

G

g parameters 9-29

gamma function 4-15

Gaussian elimination method C-19
generalized factorial function 4-15
geometric mean 2-14

grid in MATLAB A-13

gtext in MATLAB A-14

H

h parameters 9-24
half-power bandwidth -see bandwidth



half-power frequencies - see frequency
half-rectified sine wave 4-28
Heavyside(t) in MATLAB 3-15
homogeneous differential equation 1-1
hybrid parameters 9-24

ideal transformer - see transformer
IF amplifier 2-18

ilaplace function in MATLAB 5-4
imag(z) in MATLAB A-25
image-frequency interference 2-18
impedance matching 8-32
improper integral 4-15

improper rational function 5-1, 5-13, 5-18

impedance 6-2, 6-16
reflected 8-26
initial value theorem 4-9

integration in complex frequency domain 4-8

integration in time domain 4-6
inverse hybrid parameters 9-30
Inverse Laplace transform 4-1

Inverse Laplace Transform Integral 5-1, 5-18

L

L’'Hopital’s rule 1-23, 4-16
Laplace Transformation 4-1
bilateral 4-1
of common functions 4-12
of several waveforms 4-23
left-hand rule 8-2
Leibnitz’s rule 4-6
Lenz's law 8-3
lims =in MATLAB A-28
linear and quadratic factors A-9
linear factor A-9
linear inductor 8-2
linearity property 4-2
line-to-line voltages 10-7
linkage flux 8-4, 8-6
linspace in MATLAB A-14
In A-13
log(x) in MATLAB A-13
log10(x) in MATLAB A-13
log2(x) in MATLAB A-13
loglog(x,y) in MATLAB A-13

magnetic flux 8-2
magnitude scaling - see scaling
matrix, matrices
adjoint of C-20
cofactor of C-12
conformable for addition C-2

conformable for multiplication C-4

congugate of C-8

defined C-1

diagonal of C-1, C-6

Hermitian C-9

identity C-6

inverse of C-21

left division in MATLAB C-24

lower triangular C-6

minor of C-12

multiplication using MATLAB A-20

non-singular C-21

singular C-21

scalar C-6

skew-Hermitian C-9

skew-symmetric C-9

square C-1

symmetric C-8

theory 3-2

trace of C-2

transpose C-7

upper triangular C-5

zero C-2
maximum power transfer 8-32
mesh(x,y,z) in MATLAB A-18
meshgrid(x,y) in MATLAB A-18
m-file in MATLAB A-1, A-26
MINVERSE in Excel C-26
MMULT in Excel C-26
multiple poles 5-8
multiplication in MATLAB

dot multiplication operator A-22

element-by-element A-20
mutual inductance - see transformer
mutual voltages - see transformer

N

NaN in MATLAB A-28
natural response B-7

critically damped 1-3

overdamped 1-3

underdamped 1-3
negative feedback - see feedback
network

bridged 7-35

pie 7-35
non-homogeneous ODE B-6
nth-order delta function 3-15

(o)

octave 7-4

ODE - see ordinary differential equation

one-dimensional wave equation B-3
one-port network 9-1

open circuit impedance parameters 9-19

open circuit input impedance 9-20
open circuit output impedance 9-21

open circuit transfer impedance 9-20, 9-21

Order of differential equation B-3

ordinary differential equation B-3

oscillatory natural response - see
natural response - underdamped

P

partial differential equation B-3
partial fraction expansion method 5-2
alternate method 5-15
PDE - see partial differential equation
plot
magnitude 7-5
phase 7-5
polar A-25
plot in MATLAB A-10
plot3 in MATLAB A-16
poles 5-2, 7-6
repeated 5-8
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preselector 2-18
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Q

quadratic factors A-9
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quality factor at series resonance 2-4
quit in MATLAB A-2
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Radio Frequency (RF) Amplifier 2-18
ramp function 3-9
rational polynomials A-8
real(z) in MATLAB A-25
reciprocal two-port networks 9-34
reciprocity theorem 9-17
reflected impedance - see impedance
residue 5-2, 5-8
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resonant frequency - see frequency
right-hand rule 8-2
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roots of polynomials A-3
roots(p) in MATLAB 5-6, A-3, A-8, A-9
round(n) in MATLAB A-25
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saw tooth waveform 4-36
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frequency E-1

magnitude E-1
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frequency domain 4-4
script file in MATLAB A-26
secord-order circuit 1-1
semicolons in MATLAB A-8
semilog plots

instructions for constructing D-1
semilogx in MATLAB A-13
semilogy in MATLAB A-13
settling time 1-20
short circuit input admittance 9-12
short circuit output admittance 9-13
short circuit transfer admittance 9-13
signal-to-noise ratio (S/N) 2-18
single-phase three-wire system 10-4
solve(equ) in MATLAB 7-24
state equations 1-1
subplot in MATLAB A-19
symmetric network 9-17, 9-35
symmetric rectangular pulse 3-6
symmetric triangular waveform 3-6

T

tee network 9-35
text in MATLAB A-14, A-18
Thevenin equivalent circuit 8-34
three-phase
balanced currents 10-2
computation by reduction
to single phase 10-20
Delta to Y conversion 10-11
four-wire system 10-2
four-wire Y-system 10-3
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Y-connected loads 10-10
instantaneous power 10-23, 10-24
line currents 10-5
line-to-line voltages 10-7
phase currents 10-5
phase voltages 10-7
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power 10-21
power factor 10-21
systems 10-1
three-wire Y-system 10-3
three-wire Delta system 10-4
two wattmeter method of
reading 3-phase power 10-30
Y to Delta conversion 10.12

time periodicity 4-8
time shifting property 4-3
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transfer admittance 9-5
transfer function 6-13, 6-17, 7-4
transformer
coefficient of coupling 8-18
DC isolation 8-20
dot convention 8-8
equivalent circuit 8-33, 8-36
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linear 8-5, 8-20
mutual inductance 8-5, 8-6
mutual voltages 8-8
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self-induced voltages 8-8
self-inductance 8-1, 8-3, 8-5
step-down 8-14
step-up 8-14
windings
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loose-coupled 8-19
triplet function 3-15
two-port network 9-12
two-sided Laplace Transform 4-1
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unit impulse function 3-8, 3-12
unit ramp function 3-8, 3-10
unit step function 3-2

w

wattmeter 10-27

weber 8-2
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