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1. Translation

Topic 1.1 Basic laws of motion.

Topic 1.2 Gravity, inertia, springs, dampers, cables and pulleys, drag, friction, FBDs.
Topic 1.3 System analysis techniques.

Topic 1.4 Design case.

Objective 1.1 To be able to develop differential equations that describe translating systems.

1.1 Introduction

If the velocity and acceleration of a body are both zero then the body will be static. If the applied forces are balanced, and
cancel each other out, the body will not accelerate. If the forces are unbalanced then the body will accelerate. If all of the forces act
through the center of mass then the body will only translate. Forces that do not act through the center of mass will also cause rota-
tion to occur. This chapter will focus only on translational systems.

The equations of motion for translating bodies are in Figure 1.1. These state simply that velocity is the first derivative of
position, equation 1.1, and acceleration is the first derivative of velocity with respect to time, equation 1.2. Conversely, the acceler-
ation can be integrated to find velocity, equation 1.3, and the velocity can be integrated to find position, equation 1.4. Therefore, if
we know the acceleration of a body, we can determine the velocity and position. Finally, when a force is applied to a mass, the
acceleration can be calculated by dividing the net force by the mass, equation 1.5.

x,v,a The equations of motion are

" v = (L) can 1

F a(t) (5)2)60) _ (g)v(t) eqn 1.2

v(t) = ja(t)dt eqn 1.3

x(t) = J-V(t)dt = ”a(z)dl eqn 1.4

a(t) = F% eqn 1.5
where,

x(t), v(¢), a(t) = position, velocity, and acceleration
M = Mass of the body
F = an applied force

Figure 1.1 Velocity and acceleration of a translating mass

An example application of these fundamental laws is shown in Figure 1.2. The initial conditions of the system are sup-
plied (and are normally required to solve this type of problem). These are then used to find the state of the system after a period of
time. The solution begins by integrating the acceleration, and using the initial velocity value for the integration constant, equation
1.6. So at t=0 the velocity will be equal to the initial velocity. This is then integrated once more to provide the position of the
object, equation 1.7. As before, the initial position is used for the integration constant. This equation is then used to calculate the
position after a period of time. Notice that units are used throughout the calculations; this is a good practice for any engineer.



Given an initial (t=0) state of x=5m, v=2m/s, a=3ms 2, find the system state 5 seconds later assuming
constant acceleration.

The initial conditions for the system at time t=0 are,

X, =5m

0 iy Note: units are very important and should normally be car-
Vg = 2ms 5 ried through all calculations.
ag = 3ms

The constant acceleration can be integrated to find the velocity as a function of time.

v(t) = |apdt = apt +C = apt+v eqn 1.6 Note:
Jag 0 00 V() = apt+C
v(0) = aO(O) +C
v(0) = C
Next, the velocity can be integrated to find the position as a function of time.
_ _ _ %2
x(t) = [v(tyar = [(ayt+vy)dt = 51 vt xg eqn 1.7
This can then be used to calculate the position of the mass after 5 seconds.
-2
402 _ 3ms

2 -1
x(5) = 7t tvgttx, = (5s) +2ms (5s)+5m =

2

1
1
1
1
1
1
|
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
= 375m+ 10m+5m = 52.5m :
o

Figure 1.2 Example: Calculation for a translating mass, with initial conditions.

1.1 Modeling

When modeling translational systems it is common to break the system into parts. These parts are then described with
Free Body Diagrams (FBDs). Common components that must be considered when constructing FBDs are listed below, and are dis-
cussed in following sections.

Springs - resist deflection.

Dampers and drag - resist motion.

Friction - opposes relative motion between bodies in contact.

Cables and pulleys - redirect forces.

Contact points/joints - transmit forces through up to 3 degrees of freedom.
Inertia - opposes acceleration and deceleration.

Gravity and other fields - apply non-contact forces.

Free Body Diagrams

Free Body Diagrams (FBDs) allow us to reduce a complex mechanical system into smaller, more manageable pieces. The
forces applied to the FBD can then be summed to provide an equation for the piece. These equations can then be used later to do an
analysis of system behavior. These are required elements for any engineering problem involving rigid bodies.

An example of FBD construction is shown in Figure 1.3. In this case there is a mass sitting atop a spring. An FBD can be
drawn for the mass. In total there are two obvious forces applied to the mass, gravity pulling the mass downward, and a spring
pushing the mass upwards. The FBD for the spring has two forces applied at either end. Notice that the spring force, FR1, acting on
the mass, and on the spring have an equal magnitude, but opposite direction.



FBD Mass: FBD Spring:
M = 10kg Fpy
% K =20Y
m
7
F
R1 Mg
Fri

Figure 1.3  Free body diagram example

Mass and Inertia

In a static system the sum of forces is zero and nothing is in motion. In a dynamic system the sum of forces is not zero and
the masses accelerate. The resulting imbalance in forces acts on the mass causing it to accelerate. For the purposes of calculation
we create a virtual reaction force, called the inertial force. This force is also known as D’ Alembert’s (pronounced as daa-lamb-
bears) force. It can be included in calculations in one of two ways. The first is to add the inertial force to the FBD and then add it
into the sum of forces, which will equal zero, equation 1.8. The second method is known as Newton’s equation where all of the
forces are summed and set equal to the inertial force, as shown in Figure 1.10. The acceleration is proportional to the inertial force
and inversely proportional to the mass.

ZF—Ma =0 D’Alembert’s eqn 1.8

ZF = Ma Newton’s eqn 1.9

Figure 1.4 D’Alembert’s and Newton’s equations

An application of Newton’s equation to FBDs can be seen in Figure 1.6. In the first case an inertial force is added to the
FBD. This force should be in an opposite direction (left here) to the positive direction of the mass (right). When the sum of forces
equation is used then the force is added in as a normal force component. In the second case Newton’s equation is used so the force
is left off the FBD, but added to the final equation. In this case the sign of the inertial force is positive if the assumed positive direc-
tion of the mass matches the positive direction for the summation.



Note: Arrows are drawn to represent displacements. How they are drawn shows the positive
direction for the displacement. Systems are normally assumed to start at zero displacement
unless stated. This may be somewhat confusing because the figures may not be drawn that
way.

X
This block will move to the right as x changes in the positive >

direction. Motion to the left would be negative.

X
This block will move to the left as x changes in the positive direction.

These blocks are separated by a relative distance x. A
positive x moves the blocks apart, a negative x moves X
them together. -

Figure 1.5 Arrow directions and sign conventions

D’ Albert’s form: X »
d\? N d\?
Ma = M(J) X F Ty F = F_M(J) x =0

. M . or
- > _F+M(g)2x _ 9

+
szx

Note: If using an inertial force then the direction of the force should be opposite to the positive
motion direction for the mass.

Newton’s Form: X N
d 2
Iy F + ZFx = F = M(d—) X

or d 2
+ ZFx = -F = _M(J) X
€+

Note: If using Newton’s form the sign of the inertial force should be positive if the positive direction
for the summation and the mass are the same, otherwise if they are opposite then the sign should be
negative.

Figure 1.6 Free body diagram and inertial forces

An example of the application of Newton’s equation is shown in Figure 1.7. In this example there are two unbalanced
forces applied to a mass. These forces are summed and set equal to the inertial force. Solving the resulting equation results in accel-



eration values in the ‘x’ and ‘y’ directions. In this example the forces and calculations are done in vector form for convenience and
brevity.

r HE I BN BN BN BN BN BN BN B B B BN B B B B B B B B B B B B B B B B B .. 1
: If both fi h t ) !
I oth forces shown ac _ _ 1
I through the center of mass, F] —4 N F. = / N1
what is the acceleration of the 0 2 -3
U ba 0] 1
1 1
1 |
1 = = |
: ZF a ;T a 5 Ma I
1[5 7 [
I |_4|N+|_3/N = (10Kg)a I
1 1
1 0 0] 1
1 - |
| ] -2 -0.2 Kem) I -0.2 m |
(IOKg) 7|V = _0'7(—2)K_g ~ 70712 I
0 0] ° 0
1 L 1
‘ Il EI EN BN N &N BN BN BN BN BN BN BN BN BN B BN BE BN B B BE BE BE BN B BE B B B . ‘

Figure 1.7 Example: Acceleration calculation

I // A program to sum forces and calculate the acceleration I

I // define the given forces and mass I

| Fl=1(5 -4, 0]; I
F2 = [-7, -3, 01;

I M = 10; I

| |

I function foo=Sum() // The sum of the applied forces I

foo = F1 + F2;

I endfunction I

| |
A = Sum() / M;

I printf ("The acceleration is ( %f, %f, %f) m/s”2 \n", A(l), A(2), A(3)); I

| printf ("The magnitude is |A| = %f m/s”2 \n", norm(A)); |

L-----------------------------‘

Figure 1.8 Example: A Scilab calculation

Gravity and Other Fields

Gravity is a weak force of attraction between masses. In our situation we are in the proximity of a large mass (the earth)
that produces a large force of attraction. When analyzing forces acting on rigid bodies we add this force to our FBDs. The magni-
tude of the force is proportional to the mass of the object, with a direction toward the center of the earth (down).

The relationship between mass and force is clear in the metric system with mass having the units Kilograms (kg), and
force the units Newtons (N). The relationship between these is the gravitational constant 9.81N/kg, which will vary slightly over
the surface of the earth. The Imperial units for force and mass are both the pound (Ib.) that often causes confusion. To reduce this
confusion the unit for force is normally modified to be, Ibf.

An example calculation including gravitational acceleration is shown in Figure 1.9. The Skg mass is pulled by two forces,
gravity and the arbitrary force ‘F’. These forces are described in vector form, with the positive ‘z’ axis pointing upwards. To find



the equations of motion the forces are summed. To eliminate the second derivative on the inertia term the equation is integrated
twice. The result is a set of three vector equations that describe the x, y and z components of the motion. Notice that the units have
been carried through these calculations.

| e e e B B i |
Assume we have a mass that is acted upon by gravity and a second F M = 5Kg
constant force vector. To find the position of the mass as a function of
time we first define the gravity vector and position components for
the system. g

0 0 x(?)
oKﬂz 0 |5 X0 =y F =

g
~9.81 ~9.81|% (1)

g:

I
=~ = o=
=
I
S

Next, sum the forces and set them equal to inertial resistance.

(2o

ZF = Mg+ F

v

/y

=

0
5Kg| ¢ %+

-9.81|%

d 2|x(¢) Note: When an engineer solves a prob-
= 5Kg (d_) (1) lem they will always be looking at the
) equations and unknowns. In this case
z —Z( - there are three equations, and there are 9
f - g constants/givens fx, fy, fz, vx0, vy0,
0 - _J X A\2 x(1) xz0, x0, y0 and z0. There are 4 vari-
0 > + 0.2Kg fy = (67) 0, ables/unknowns x, y, z and t. Therefore

M < < |

~

with 3 equations and 4 unknowns only

| 1
| |
| 1
| 1
| |
| 1
| |
| |
| |
| |
| 1
| 1
| |
| 1
| |
| 1
| 1
| |
| 1
| |
| 1
| 1
| -9.81]% fz |Z (¢ )_ one value (4-3) is required to find all of |
| 1
| |
| |
| 1
| 1
| |
| 1
| |
| 1
| 1
| |
| 1
| 1
| |
| 1
| |
| 1
| |
| 1
| 1
[ o

the unknown values.
Integrate twice to find the position compopents.
- | x
0 /x 0
10 ZKg_I f
0 1277 y

s
—9.81 VA

~

(1)
vl T (5) ;(t)

z(1)

N
<

0 1
oo %+0.2Kg

-9.81|%

x(1)

2
fy t + Vy0l+ yO = y(t)

At

z(1)

N |~
I
< < < 1
=
I
N =
> S
N =
> S

O.Ifxt2 tv, 1tx,

0
x(2) 5
y()| = 0. ]fyt + vy

z(1)

t-l-y m
0 0

(ﬂ +0.1f)t2 +v
2 z z

+
tzo

Figure 1.9 Example: Gravity vector calculations



Like gravity, magnetic and electrostatic fields can also apply forces to objects. Magnetic forces are commonly found in
motors and other electrical actuators. Electrostatic forces are less common, but may need to be considered for highly charged sys-
tems.

Springs

Springs are typically constructed with elastic materials such as metals, and plastics, that will provide an opposing force
when deformed. The properties of the spring are determined by the Young’s modulus (E) of the material and the geometry of the
spring. A primitive spring is shown in Figure 1.10. In this case the spring is a solid member. The relationship between force and
displacement is determined by the basic mechanics of materials relationship. In practice springs are more complex, but the param-
eters (E, A and L) are combined into a more convenient form. This form is known as Hooke’s Law.

(Hooke’s law) L
5= (ga)F
F
: F- (s
L
<_> L >A
o F =Ko

Figure 1.10 A solid member as a spring

Hooke’s law does have some limitations that engineers must consider. The basic equation is linear, but as a spring is
deformed the material approaches plastic deformation, and the modulus of elasticity will change. In addition the geometry of the
object changes, also changing the effective stiffness. Springs are normally assumed to be massless. This allows the inertial effects

to be ignored, such as a force propagation delay. In applications with fast rates of change the spring mass may become significant,
and they will no longer act as an ideal device.

The cases for tension and compression are shown in Figure 1.11. In the case of compression the spring length has been
made shorter than its’ normal length. This requires that a compression force be applied. For tension, both the displacement from
neutral and the required force reverse direction. It is advisable when solving problems to assume a spring is either in tension or



compression, and then select the displacement and force directions accordingly.

Ax = deformed length ~ ASIDE:a spring has a natural or undeformed length. When at this
length it is neither in tension or compression

compression as positive: Fc —>Ax 7
— A
KS % F c KSAx
-
K, A F, = -K Ax
F - Ax
C
#_/\/\/\/—
K, A F, = -K Ax
| 3 i K,
tension as positive: N A A
I<— F, = K Ax
Z t s
Ax
K
Rl
- /  F, = -KAx
Ax
K
&F v Vv S\/
. = 7 F ;= —KSAx
Ax

NOTE: the symbols for springs, resistors and inductors are quite often the same or similar. You will
need to remember this when dealing with complex systems - and especially in this book where we deal
with both types of components.

Figure 1.11 Sign conventions for spring forces and displacements

Previous examples have shown springs with displacements at one end only. In Figure 1.12, springs are shown that have
movement at both ends. In these cases the sign of the force applied to the spring is selected with reference to the assumed compres-
sion or tension. The primary difference is that care is required to correctly construct the expressions for the tension or compression
forces. In all cases the forces on the springs must be assumed and drawn as either tensile or compressive. In the first example the
displacement and forces are tensile. The displacement at the left is tensile, so it will be positive, but on the right hand side the dis-
placement is compressive so it is negative. In the second example the force and both displacements are shown as tensile, so the
terms are both positive. In the third example the force is shown as compressive, while the displacements are both shown as tensile,



therefore both terms are negative.

All force arrows are draw assuming the springs are in tension.

Axl
F SR

¢ F
hl A YA A A |q F = KS(AXI — sz)

Axl
F -

K | F
hl A SA A A |q F = KS(AXI + sz)

Axl

K | %2 F
q A SA A N h F = Ks(*Ax]*sz)

Figure 1.12

Aside: it is useful to assume that the spring is either in ten-
sion or compression, and then make all decisions based on
that assumption.

Examples of forces when both sides of a spring can move
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Consider the two masses below separated by a spring.

K
S
M NN m
—— 3
X X
O O 1 O O /2

The system can be reduced to free body diagrams assuming the spring is tension.

— >
R 2
r—— - - - - - - - - - — — B
| |
| |
L - - - - - |

Note: In this example the spring is assumed to be in tension and the signs of the magnitude are
made negative for terms that result in compression for positive changes.

The system can be reduced to free body diagrams assuming the spring is in compression.

M] Ks(xlfxz) M2
— —
* *2
r—— - - - - - - - — - — — B
| |
| |
L - - - - - - = |

Figure 1.13 Drawing FBDs with interconnecting springs

Sometimes the true length of a spring is important, and the deformation alone is insufficient. In these cases the deforma-
tion can be defined as a deformed and undeformed length, as shown in Figure 1.14. In addition to providing forces, springs may be
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used as energy storage devices.

where,
Ax = deformation
/ 0= the length when undeformed
/ ;= the length when deformed
E. = K(Ax)2
P2
where,

K = spring coefficient

Ep = potential energy stored in the spring

Figure 1.14 Using the actual spring length

Consider the springs shown in Figure 1.15. When two springs are combined in this manner they can be replaced with a
single equivalent spring. In the parallel spring combination the overall stiffness of the spring would increase. In the series spring
combination the overall stiffness would decrease.

Parallel z 7 Series Z Y
KS 1\ K S
Ksp
M
Kg
M

Figure 1.15 Springs in parallel and series (kinematically)

Figure 1.16 shows the calculations required to find a spring coefficient equivalent to the two springs in series. The first
step is to draw a FBD for the mass at the bottom, and for a point between the two springs, P. The forces for both of these are then
summed. The next process is to combine the two equations to eliminate the height variable created for point P. After this, the equa-
tion is rearranged into Hooke’s law, and the equivalent spring coefficient is found.
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| First, draw FBDs for P and M and sum the forces assuming the system is static. |
1 7 1
| Ks172 “ "
I p Wy = Ky =Koy =yp) =0 I
| Ksz()’] - y2) |
| eqn 1.10 KS] I
' AKg, (-1 P !
1 F =K —y,)-F_ =0 1
' M wLfy = Ksavpa)= g K Yy
| 1
eqn 1.11
I Ve I
I Next, rearrange the equations to eliminate y2 and simplify, I
| M 1
I equation 1.11 becomes - I
I 9 KSZ(yI_yZ)_Fg_O Y] 1
1 _Fy I
I Y172 T k.- I
I »2 1
F
| = __8 |
y Y eqn 1.12
I 2 1 K 57 I
I equation 1.10 becomes — I
I Kspyo=Ksop=vy) =0 "
1 - eqn 1.13 1
. v (Kgp +Kgp) =y, Kg, ! .
| next equation 1.12 is substituted into equation 1.13. |
1 F 1
| _ _g] = |
v (Ko; +Ko,y) = v,K
I [ 1 KSZ S1 S2 182 I
: T R :
1 1
1 Fo=yl1-—232 |k 1
! Py Ks1* Kso- SZ]K !
1 -] 2 1
; g Kg, +Kg, ) !
| pooy [ Lsits2 '
I g “I\Kg,+Kjg, 1
1 Finally, consider the basic spring equation to find the equivalent spring coefficient. 1
, Ksiks2 :
| K b= == 1
I equiv KS] + KSZ I
L Il BN BN I BN B B B B B B B B B B B B B B B B B BE B B B B B B B B . ‘

Figure 1.16 Example: Calculation of an equivalent spring coefficient for springs in series
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Damping and Drag

A damper is a component that resists motion. The resistive force is relative to the rate of displacement. As mentioned
before, springs store energy in a system but dampers dissipate energy. Dampers and springs are often used to compliment each
other in designs.

Damping can occur naturally in a system, or can be added by design. The physical damper pictured in Figure 1.17 uses a
cylinder that contains a fluid. There is a moving rod and piston that can slide within the cylinder. As the piston moves, fluid is
forced through a small orifice. When moved slowly the fluid moves easily, but when moved quickly the pressure required to force
the fluid through the orifice rises. This rise in pressure results in a higher force of resistance. In ideal terms any motion would result
in an opposing force. In reality there is also a break-away force that needs to be applied before motion begins. Other manufacturing
variations could also lead to other small differences between dampers. Normally these cause negligible effects.

orifice
motion

-

fluid

piston

fluid

Figure 1.17 A physical damper

The standard symbol for a standard damper is shown in Figure 1.18. The basic equation for an ideal damper in compres-
sion is shown in equation 1.14. In this case the force and displacement are both compressive. The force is calculated by multiplying
the damper coefficient by the velocity, or first derivative of position. Aside from the use of the first derivative of position, the anal-
ysis of dampers in systems is similar to that of springs.

X d — _‘}l_ eqn 1.14
F | F Kd(d)x
—> i

7

Aside: The symbol shown is typically used for dampers. It is based on an old damper design called a
dashpot. It was constructed using a small piston inside a larger pot filled with oil.

Figure 1.18 An ideal damper

Damping can also occur when there is relative motion between two objects. If the objects are lubricated with a viscous
fluid (e.g., oil) then there will be a damping effect. In the example in Figure 1.19 two objects are shown with viscous friction
(damping) between them. When the system is broken into free body diagrams the forces are shown to be a function of the relative
velocities between the blocks.
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.
Fg = Kylx;—x,)

e ha
Fg= K x;=x;)

}—»xz

Aside: Fluids, such as oils, have a significant viscosity. When these materials are put in shear they
resist the motion. The higher the shear rate, the greater the resistance to flow. Normally these forces
are small, except at high velocities.

Figure 1.19 Viscous damping between two bodies with relative motion

A damping force is proportional to the first derivative of position (velocity). Aerodynamic drag is proportional to the
velocity squared. The equation for drag is shown in Figure 1.20 in vector and scalar forms. The drag force increases as the square
of velocity. Normally, the magnitude of the drag force coefficient ‘D’ is approximated theoretically and/or measured experimen-
tally. The drag coefficient is a function of material type, surface properties, object size, and object geometry.

v

F F = —D|v

Figure 1.20 Aerodynamic drag

1.1 System Reduction

An orderly approach to system analysis can simplify the process of analyzing large systems. The list of steps below is
based on general observations of good problem solving techniques.

1. Assign letters/numbers to designate force components (if not already done) - this will allow you to refer to com-
ponents in your calculations.

2. Define positions and directions for any moving masses. This should include the selection of reference points.

3. Draw free body diagrams for each component, and add forces (inertia is optional).

4. Write equations for each component by summing forces.

5. (next chapter) Combine the equations to eliminate unwanted variables.

6. (next chapter) Develop a final equation that relates input (forcing functions) to outputs (results).



Note: When deriving differential equations, the final value
can be checked for errors using unit analysis. This method
involves replacing variables with their unit equivalents.
All the units should match.

eg.

x"z(Mz) + x'z(B) +x)(Kp) tx(-K,) = F

A8l ol ) -

~N+(N)+(N)+(-N) = N

The units match, so there are no obvious problems.

coefficient units
F N = Kgm
2
s
% N
s m
Ns
K d -
M Kg

15

Consider the cart in Figure 1.21. On the left is a force that is opposed by a spring and damper on the right. The basic prob-

lem definition already contains all of the needed definitions, so no others are required. The FBD for the mass shows the applied

force and the reaction forces from the spring and damper. When the forces are summed the inertia is on the right side of the equa-
tion in Newton’s form. This equation is then rearranged to a second-order non-homogeneous differential equation.

1 X 1
I - I
1 Given the system diagram; K J I
| F LI |
I ﬁ Ml . I
! O—O)—WW—rp !
1 1
I 7
1 1
1 The FBD for the cart is I
i F X I
—d
| » M1 |
! . | pKx l
| Mx > I
I The forces for the cart are in a single direction and can be summed as, I
1 1
I <t ZFx =—F—Kd)'c—KSx ZM])'C' I
I This equation can be rearranged to a second-order non-homogeneous diff. eqn. |
1 - Kd . KS _ -F !
I X=Xt omx = [
My My M
1 1
1 Aside: later on we will solve the differential equations, or use other methods to determine how 1
| the system will behave. It is useful to have all of the ‘output’ variables for the system on the left |
I hand side, and everything else on the other. |
1 1
‘ Il =N I BN =N BN BN BB BN BN B B B B B B B B B EBE B B B B B B B B B .. ‘

Figure 1.21 Example: A simple translational system
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The example in Figure 1.13 shows two masses separated by a spring. In the first example the spring is assumed to be in
tension. When x1 becomes positive it will put the spring in compression, so it is made negative, however a positive x2 will put the
spring in tension, so it remains positive. In the second case the spring is assumed to be in compression and this time x2 will put it in
tension so it is made negative.

Friction

Viscous friction was discussed before, where a lubricant would provide a damping effect between two moving objects. In
cases where there is no lubricant, and the touching surfaces are dry, dry coulomb friction may result. In this case the surfaces will
stick in place until a maximum force is overcome. After that, the object will begin to slide and a constant friction force will result.

Figure 1.22 shows the classic model for (dry Coulomb) friction. The force on the horizontal axis is the force applied to the
friction surfaces while the vertical axis is the resulting friction force. Beneath the slip force the object will stay in place. When the
slip force is exceeded the object will begin to move, and the resulting kinetic friction force will be relatively constant. (Note: If the
object begins to travel much faster then the kinetic friction force will decrease.) It is common to forget that friction forces are bidi-
rectional, but it always opposes the applied force or motion. The friction force is a function of the coefficient of friction and the
normal force across the contact surfaces. The coefficient of friction is a function of the materials, surface texture and surface shape.

F Block begins to slip and the

Aresult applied force exceeds the resul-
F tant and acceleration begins.
T
F
!
F
S

N

F applied

v, Fr = myN

-t F
ks
N ? F <unN

Note: When solving problems with friction remember that the friction force will always equal the applied
force (not the maximum force) until slip occurs. After that the friction is approximately constant. In addi-
tion, the friction forces direction opposes applied forces, and motion.

Figure 1.22  Dry friction

Many systems use kinetic friction to dissipate energy from a system as heat, sound and vibration.

Cables And Pulleys

Cables are useful when transmitting tensile forces or displacements. The centerline of the cable becomes the centerline for
the force. And, if the force becomes compressive, the cable becomes limp, and will not transmit force. A cable by itself can be rep-
resented as a force vector. When used in combination with pulleys, a cable can redirect a force vector or multiply a force.
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Typically we assume that a pulley is massless and frictionless (in the rotation chapter we will assume they are not). If this
is the case then the tension in the cable on both sides of the pulley are equal, as shown in Figure 1.23.

Iy

For a massless frictionless pulley

T

" A

Figure 1.23 Tension in a cable over a massless frictionless pulley

If we have a pulley that is fixed and cannot rotate, the cable must slide over the surface of the pulley. In this case we can
use the coefficient of friction to determine the relative ratio of forces between the sides of the pulley, as shown in Figure 1.24.

T, Moving toward T1

T, w(a0)

T,

77 Moving toward T2
AB

T
2 T2 er(Ae)

- 2

M

Figure 1.24  Friction of a belt over a fixed drum if the belt is moving towards T,

Although the discussion in this section has focused on cables and pulleys, the theory also applies to belts over drums.

1.2 Systems Examples

A simplified model of an elevator (M1) and a passenger (M2) are shown in Figure 1.25. In this example many of the
required variables need to be defined. These are added to the FBDs. Care is also taken to ensure that all forces between bodies are
equal in magnitude, but opposite in direction. The wall forces are ignored because they are statically indeterminate, and x-axis
force components are irrelevant to the forces in the y-axis.
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| g

1 7 |
| |
| L~ I~ |
I @ M, @ I
| |
| |
| M, |
| |
I Fa I
[ 52 [
| |
1 7 @ 1
| |
| |

S1 7

| |
: 7 :
I Assign required quantities and draw the FBDs I
| |
| |
I M FD = Kd(J’g*yl) M]g 1
| 28 I
[ | 1
| Y2 M.y _ |
I * 1 FSZ = ng(y]*yZ) I
| |
| a |
| ' |
1 fp .. |
I My, I
1 Fg, v, Fgp = Koy 1
| ] ]

Figure 1.25 Example: A multi-body translating system (an elevator with a passenger)

The forces on the FBDs are summed and the equations are expanded in Figure 1.26.

Now, sum the forces in vector form, and substitute relationships,
ZFM1 =Fg tFg+Mg+Fp = Ma,

2 Fm, = ~FoatMag—Fp = Mya,

KSl(fyl) +Ksz()’zfyl) +M1(*9~81) +Kd0’2*)"1) = Mlyl

K oy (y5 =) + My (-9.81) =K (3, — ) = M,y

r

| 1
| 1
| |
| |
| |
I At this point the equations are expanded ]
| |
| 1
| |
| |
[ 5 ol

Figure 1.26 Example: Equations for the elevator
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1.3 Other Topics

Designing a system in terms of energy content can allow insights not easily obtained by the methods already discussed.
Consider the equations in Figure 1.27. These equations show that the total energy in the system is the sum of kinetic and potential
energy, equation 1.15. Kinetic energy is half the product of mass times velocity squared, equation 1.16. Potential energy in translat-
ing systems is a force magnitude multiplied by a distance (that force was applied over), equation 1.17. In addition, the power, or
energy transfer rate is the force applied multiplied by the velocity, equation 1.18.

_ eqn 1.15
E EP+EK
B Mv2 eqn 1.16
Pk =75
1.17
Ep = Fd = Mgd ean
P = FV = iE eqn 1.18
dt

Figure 1.27 Energy and power equations for translating masses

1.1 Summary

» FBDs are useful for reducing complex systems to simpler parts.
» Equations for translation and rotation can be written for FBDs.
» The equations can be integrated for dynamic cases, or solved algebraically for static cases.

1.2 Problems with Solutions

Problem 1.1 Find the acceleration for the given mass and force.,
FBD: Kl
3 0
N M
F, = 4N g = | 98]l= M = 2Kg
] * Kg
0 0
g
Problem 1.2 If a spring has a deflection of 6.00 cm for a static load of 200N, what is the spring constant?
Problem 1.3 Draw the FBDs and the equations of motion for the masses.
K
F S
AN
— —
*1 *2
Q) ¢) @) )
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Problem 1.4 Find F assuming the springs are normally 4m long when unloaded.
Given, , K K
N
K. = 10Y
S m /
Ax = 0.1m F
Ax
Aside: It can help to draw a FBD of
the node between the springs.. 10m
]
Problem 1.5 Find an equivalent spring coefficient to replace the two springs in parallel
7
K
S1 K [
* F
Problem 1.6 Derive the effective damper coefficients for the pairs below from basic principles,
a
Kar
b) Kan K

| i | i

Problem 1.7 Write a differential equation for the mass pictured below.
X
—>
M F
B
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The force is acting on the cylinder, resulting in the velocities given below. What is the applied force?

Problem 1.8
d m d m
Ay, = 01™ Dy, =-03"
dtxl 0 s dtx2 s
N -

F
o e

ky = 015
m
Problem 1.9 Write the differential equations for the system below.
7 *1 *2 ¢
K, }—> K }—» Ka3
N = N = | N =
F
K M K, M, K,

Write the differential equations for the system below. In this system the upper mass, M1, is between a spring and

Problem 1.10
a cable and there is viscous damping between the mass and the floor. The suspended mass, M2, is between the

cable and a damper. The cable runs over a massless, frictionless pulley.

/,
7 L
X1

Find F to start the mass moving up, and then the force required to maintain a low velocity downwards motion of

Problem 1.11
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the mass.

Given,

M 0.35 My = 0.2

M = IKg

Problem 1.12 Write the differential equations for the system below.

Ksl K
] dl

Problem 1.13 Write the differential equations for the system given below.

7
K K
d s
| M —/\/\/\/— M.
I 1 2
By B,
R KR RIHAAR

Problem 1.14 Write the differential equations for the system below.

7 R
K
H =
K M, Koo
— Wy () W]




Problem 1.15

%
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Write the differential equations for the system below. (Note: This problem differs because the x2 dimension is

relative, not absolute.)
1 *2

K

N =

sl

P

Problem 1.16

Problem 1.17

Problem 1.18

Write the differential equations for the system below.

Ks2 2
7 >
AN My g
Kai B
E X
K M
s1 1
Zi
Write the differential equations for the system below.
] Ks2 *2
S VAV, V) —
M 2 + F
Kd 1 u s° p k
L IE
K1 M, X
%)

Write the differential equations for the system below. Assume that the pulley is massless and frictionless and that
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Problem 1.19

the system begins undeflected.
7

7

K

sl

M —

52

7
Write the differential equations for the system below.
4>
K "1
s1
A —
l"t s’ l"tk \
"\
7
M,

B



25

Problem 1.20 Write the differential equations for the system below. Assume it is in motion.

Ypzzzzzz
T
N___
7
7 Mz
ki
K 7
S1
M 2
1.3 Problem Solutions
Answer 1.1
1.5
P R 1
—7.81| 5
0 S
Answer 1.2 Ks =33.3 N/em =3330 N/m
Answer 1.3
X[ (M) +x(K) +xy(-K) = F
X (K ) +x5(-My) +x5(-K) = 0
Answer 1.4 F=2N
Answer 1.5 Consider that when an object has no mass, the force applied to one side of the spring will also be applied to the
other. The only factor that changes is displacement.
F = (K¢ +Kg)y
Answer 1.6
a) _ b)
Keg = K" Kar « - Kakar
4 K, +K,
Answer 1.7

Answer 1.8 F=-0.02N
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Answer 1.9
FBDs: Mlxl .
K g% — — K p(xp—xy) —» — K%,
M, M,
—Kgpx) —3 — K0 —x) —» — K3,
F— —  Myx,
For M1: . . . .
g Y F = =K yyx =K x =Ky (x) = xp) =Ko (x) —xp) = Myx,
xl(Ml) +x1(Kd1 +Kd2) +x1(Ks1 +KS2) +x2(—Kd2) +x2(—KS2) =0
K, +K K +K K K
- : dl d2 sl s2 : d2 s2|
xlﬂl[ M, ]erl( M, )*’Cz( M1j+x2[M1) -0
For M2:
g D F = K p(xy = xp) K (5 —xp) + F =K 3x) = K3xy = Mpx,
Xg(My) + 25 (K + K g3) 6y (Kp + K3) 21 (K ) 31 (-Kp) = F
o (Kt K Ko tKi) . (Kp Ko F
s v R v R v R L vl B v
2 2 2 2 2
Answer 1.10
FBD MI: FBD M2:
AT
stl S — T .
, M, > M, Myx,
Bx; a—] <))
. ) ‘ Mg ﬁ K%
T 3= —Kpx - Bx;+T = Myx, . .
. (B) (Ksj T + + DF = THE py=Myg = -Mpx,
X tx{|— | tx{|—| = — - :
X 1
M M, M, x2(—M2)+x2(—Kd) =T-Myg

. . . . Kd T_Mzg
xl(M1)+x1(B)+x1(KS) =T Xy Xy A = oI,
For T: if T <=0 then T = ON

ifT>0x1=x2

Answer 1.11

F =981 My
up

9.81N
Fdown eo,z(n)




Answer 1.12
(assuming no gravity

Answer 1.13

Answer 1.14

Answer 1.15

Answer 1.16

)é.1(M1) +x.1(Kd1) Ty (Kgp) +x.2(_Kd1) TR = F

M,

Xo(Mp) + 25 (Kygy + K p) 25 (Ky + Kp) #xy (oK) T3 (5K ) = 0

A

K K X X
) ' 1 <1 . dl sl
Xy +x1(—w—} +x1(7\711—j +x2( M, j +x2( M, j

£z
M,

o

K

sl

x2 + xz[

2

K, +K
4.,

Ksl + K52
2

M,

j oy (_Kdl
1
2

. (K ;+B, K, —K,
Xt M, T M, T2 M -
B K X
. [Py s s| - F
%”4@)”{@]” (ﬁz_] Rz
K K . +K -K
. 1 s1 52 52
x+x[ )'HC( )—HC( J_O
174 1 2
1 1 .
( KSZ KVZ - F
XAt X + Al M,
2 2\My) TAM,) W My) M,
K K X
(B sl s2| _
x1+x1[7‘711~)+x1(M1)+x2(M1J "
K
/B : s| _ F
x1+x1(ﬂ—)+x2+x2( 2)+x2(]‘7'j B il—/[-z—

M.

2

-0

27



28

Answer 1.17
X (M) 2 (Kgp) +xp (K ) = Fro
K K F
I Rl st] _ T'F
B ”1(7\'47} ”1(@7) M
Xy (M) +x5(K,) = F-Fp,
X, +x (&] = FiFF
2 2
M, M,
where, £
|FF| <pM,g 1
- x'lfx'2 .
Frp=wM, [m if
‘x1*x2|
Answer 1.18
if(x=>0) T =
if(x<0) = K x
K
o B) ( sl) T
+xl=]+x—] = =
X x(M \mw) " m
Answer 1.19
if((xy —x1) <0) T=0
if(T>0) Xy =Xy
l'f(x.1 =0) ‘F | <M gu,
oy x.l
if(x, #0) Frp=Mgu—
|"1|
. n & _ TfFF
xp+x; M, = M,
K
- 52 -T
x2+x2[—j = —+g
M,) M,

X1=X2

xl ¢x2



Answer 1.20

Mlj}l

> Fan

Y Fyp =

T
"
M,
7,
# Vi ki

=T -M;g-M;j = 0

My =T -Mg

| =

- 2)'c'—Tz—Mzg/lkz

|x

I
[}

G x
Myx = -T, M2g/1k2|x|

2
T,
Mygu - -
257k 21«
ifl(x-y)>0)
if(x>0)
T
T, 2k
= =
ry
else
T
n_ 2%k
T
else 2
1 =0

29
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1.4 Problems Without Solutions

Problem 1.21 Draw free body diagrams for the following system, and then develop differential equations.

7
Ksl1
? Y1
M1
Ks2
? Y2
M2
Ks3

y

5 A~

Problem 1.22 Find the acceleration of the block for both angles indicated.

=35°

Problem 1.23 Develop the equation relating the input force to the motion (in terms of x) of the left hand cart for the problem

below.
X X
L L
Kai Ko
F H = N =
M, K M, K>




Problem 1.24

Write the differential equations for the systems below.

2
Bx1

-

X
4>
K .
. : 2
—W
K1 M,
—W

) )

31
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2. Analysis of Differential Equations

Topic 2.1 First and second-order homogeneous differential equations.
Topic 2.2 Non-homogeneous differential equations.

Topic 2.3 First and second-order responses.

Topic 2.4 Non-linear system elements.

Topic 2.5 Design case.

Objective 2.1 To develop explicit equations that describe a system response.
Objective 2.2 To recognize first and second-order equation forms.

In the previous chapter we derived differential equations of motion for translating systems. These equations can be used to
analyze the behavior of the system and make design decisions. The most basic method is to select a standard input type (a forcing
function) and initial conditions, and then solve the differential equation. It is also possible to estimate the system response without
solving the differential equation as will be discussed later.

Figure 2.1 shows an abstract description of a system. The basic concept is that the system changes the inputs to outputs.
Say, for example, that the system to be analyzed is an elevator. Inputs to the system would be the mass of human riders and desired
elevator height. The output response of the system would be the actual height of the elevator. For analysis, the system model could
be developed using differential equations for the motor, elastic lift cable, mass of the car, etc. A basic test would involve assuming
that the elevator starts at the ground floor and must travel to the top floor. Using assumed initial values and input functions the dif-
ferential equation could be solved to get an explicit equation for elevator height. This output response can then be used as a guide
to modify design choices (parameters). In practice, many of the assumptions and tests are mandated by law or by groups such as
Underwriters Laboratories (UL), Canadian Standards Association (CSA) and the European Commission (CE).

inputs outputs .
- system > Note: By convention inputs are on
the left, and outputs are on the right.
forcing function differential equation  response function

T~ T

Figure 2.1 A system with an input and output response

There are several standard input types used to test a system. These are listed below in order of relative popularity with
brief explanations.

» Step - a sudden change of input, from off to on and on to off, such as very rapidly changing a desired speed from
OHz to S0Hz. These may repeat.

* Ramp - a continuously increasing input, such as a motor speed that increases constantly at 10Hz per minute.

 Sinusoidal - a cyclic input that varies continuously, such as wave height that is continually oscillating at 1Hz.

+ Parabolic - an exponentially increasing input, such as a motor speed that is 2Hz at 1 second, 4rad/s at 2 seconds,
8rad/s at 3 seconds, etc.

After the system has been modeled, an input type has been chosen, and the initial conditions have been selected, the sys-
tem can be analyzed to determine its behavior. The most fundamental technique is to integrate the differential equation(s) for the
system.

2.1 Explicit Solutions

Solving a differential equation with initial conditions will result in an explicit solution. This equation provides the general
response as a function of time, but it can also be used to find frequencies and other characteristics of interest. This section will
review techniques used to integrate first and second-order homogeneous differential equations. These equations correspond to sys-
tems without inputs, also called unforced systems. Non-homogeneous differential equations will also be reviewed.

The basic types of differential equations are shown in Figure 2.2. Each of these equations is linear. On the left hand side is
the integration variable ‘x’. If the right hand side is zero, then the equation is homogeneous. Each of these equations is linear
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because each of the terms on the left hand side is simply multiplied by a linear coefficient.

Ax+Bx =0 first-order homogeneous

Ax+ Bx = Cf(¢) first-order non-homogeneous
AX+Bx+Cx =0 second-order homogeneous

AX + Bx + Cx = Df{(t) second-order non-homogeneous
A% +Bi+Cx = 0 third-order homogeneous

A% + Bi+ Cx = Df(t) third-order non-homogeneous

Figure 2.2 Standard differential equation forms

A general solution for a first-order homogeneous differential equation is given in Figure 2.3. The solution begins with the
solution of the homogeneous equation where a general form is ‘guessed’. Substitution leads to finding the value of the coefficient
‘Y’. Following this, the initial conditions for the equation are used to find the value of the coefficient ‘X’. Notice that the final
equation will begin at the initial displacement, but approach zero as time goes to infinity. The e-to-the-x behavior is characteristic
for a first-order response.

1 Given the general form of a first-order homogeneous equation, ]
1 1
I Ai+Bx = 0 and *(0) = x I
| Guess a solution form and solve. 1
I thitial condition |
—Yt . —Yt
] x = Xe x = —YXe ]
1 1t v, I
| AG-YXe )+ B(Xe ) =0 Note: The general form below is use- |
| ful for finding almost all homoge- ]
I A-Y)+B =0 neous equations 1
1 1
1 ' g x, (1) = Xe_Yt I
| Therefore the general form is, h |
I ‘f‘ I
I Xy = Xe I
1 1
I Therefore the final equation is, I
| _g ; I
I Xy = Xe I
1 5 1
—=0
1 A 1
I .XO = Xe I
1 1
I Yo =X !
| Next, use the initial conditions to find the remaining unknowns. |
| 2 I
! (1) = E :
I x xpe I
L Il BN BN BN BN BN BN BN BN BN BN BN B BN B B B B B B B B B B B B B B B B B .. ‘

Figure 2.3 Example: General solution of a first-order homogeneous equation
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The general solution to a second-order homogeneous equation is shown in Figure 2.4. The solution begins with a guess of
the homogeneous solution, and the solution of a quadratic equation. There are three possible cases that result from the solution of
the quadratic equation: different but real roots; two identical real roots; or two complex roots. The three cases result in three differ-
ent forms of solutions, as shown. The complex result is the most notable because it results in sinusoidal oscillations. It is not
shown, but after the homogeneous solution has been found, the initial conditions need to be used to find the remaining coefficient
values.

As mentioned above, a complex solution when solving the homogeneous equation results in a sinusoidal oscillation, as
proven in Figure 2.5. The most notable part of the solution is that there is both a frequency of oscillation and a phase shift. This
form is very useful for analyzing the frequency response of a system, as will be seen in a later chapter.

r Il EN BN BN I &S BN B B BN B BN B B B B B B B B B B BN B B B B B B B B B . 1
I Given, I
I Ai+Bi+Cx = 0 x(0) = x, and H0) = v, I
: Guess a general equation form and substitute it into the differential equation, :
Yt Yt Yt
| x, = Xe x; = YXe X, = YZX e |
h h h

1 |
I A xe" + Brxe™y + e’ = 0 I
| |
I A 4B+ C =0 I
| |
I v —BEAB) —44C) _ BB~ 44C I
I 24 24 I
| |
I Note: There are three possible outcomes of finding the roots of the equations: two different real roots, two I
: identical real roots, or two complex roots. Therefore there are three fundamentally different results. I

|
| |
1 If the values for Y are both real, but different, the general form is, 1
1 B Rt R,t I
I TR Ry Xp = Xpe o HXpe I
1 Note: The initial conditions are then used to find the values for X; and X,. 1
| |
] If the value are identical, ]
] _ Rt Rt ]
I Y =RpR, x, = Xje | +X,te "
1 the initial conditions are then used to find the values for X; and X,. 1
| |
| If the values for Y are complex, the general form is, |
| |
| Y = otaj X, = X3eo_tcos(a)t+X4) 1
: the initial conditions are then used to find the values of X5 and Xj. :
| |
I | Note: It is most likely that when you saw differential equations in your applied math class the left hand form ]
| | (with sin AND cos) was used. However this is not useful for engineering analysis. The right hand form is I
1 equivalent (see later in the chapter) and will be the only form acceptable for a final answer. 1
| ot |
] Xy = Acos ot + Bsinawt = X3e cos(a)t+X4) ]
| |
‘ I N BN I IS B BN BN BN BN BN BN B B B B B EE B B B B B B B B B B B B B B = ‘
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Figure 2.4 Example: Solution of a second-order homogeneous equation

| Consider the situation where the results of a homogeneous solution are the complex conjugate pair.

1
Y=Rz(j
This gives the general result, as shown below:

s A
Xe(R C])Z+X26(R Cj)t

1
Rt Cjt Rt —Cjt
x=X,e e +X,e e
1 2
Rt it -Cjt
X =e (Xlecj +X2e CJ)

x = eRt(XI(cos(Ct) + jsin(Ct)) +X2(cos(—Ct) + jsin(—Ct)))

eRt(Xl(cos(Ct) + jsin(Ct)) +X2(c0s((Ct) —Jjsin(Ct))))

=
|

x = eRt((XI +X,)cos(Cr) + j(X, ~ X p)sin(C1))

x = eR[((XI +X,)cos(Cr) + j(X, ~ X)) sin(Ct))

7 2 3
X, 4 X)X, —X
x = eRt/\/( 17X TN (X} +X,)cos(Ct) + (X, —X,)sin(C1))

«/(XI +X2)2 +j2(X] -X,)

Rt\/)gl+2X1X2+Xé ( + 2XX +)(])

X =e ((XI +X2)cos(Ct) +j(X]—X2)sin(Ct))

s 2x,x, e B-(12x,0, 4 )

[4X X
- eR’.__Iz((X] +X,)cos (Ct) +j(X; = X,)sin(Ct))

/4XIX2

(X +X) .(XI_X2) .
x = /4X X2 cos(Ct) + j—=—sin(Ct)
4X.X
172
Rt (X, + X))
= / + _
x e 4X]X2cos(Ct atan((X]X2)
Rt
X =e chos(Ct+X4) where, X3 /4XIX2
frequenCY/ \ X, [(X] +X2)]
h hifi = atan| ———
phase shift 4 (X17X2)

Figure 2.5 Example: Phase shift solution for a second-order homogeneous differential equation
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Note: Occasionally a problem solution might consist of both a sine and cosine term with the same fre-
quency. These should normally be combined to a single term with a phase shift as shown below.

Recall the double angle formula,

sin(wt+6) = sinmwzcosO + sinBcosw?
This can be written in a more common form,

A(sinwtcosB + sinBcoswt) = Asin(wr+ 0)

AcosOsinwt+ AsinBcoswt = Asin(wt+ 0)

Xsinwt+ Ycoswt = Asin(wt+0)
¥ v where, X = Acos0

A= —=— = i
cos0 sin® Y = Asinf

RS S PR ()
cosO X 0 atan X

Consider the example,

3sinSt+dcosSt = «/32+4zsin(5t+atan(§)) = Ssin(5¢+0.9273)

Figure 2.6 Example: Phase shift solution form

The methods for solving non-homogeneous differential equations builds upon the methods used for the solution of homo-
geneous equations. This process adds a step to find the particular solution of the equation. An example of the solution of a first-
order non-homogeneous equation is shown in Figure 2.7. To find the homogeneous solution the non-homogeneous part of the
equation is set to zero. To find the particular solution the final form must be guessed. This is then substituted into the equation, and
the values of the coefficients are found. Finally the homogeneous and particular solutions are added to get the final equation. The
overall response of the system can be obtained by adding the homogeneous and particular parts. This is acceptable because the
equations are linear, and the principle of superposition applies. The homogeneous equation deals with the response to initial condi-
tions, and the particular solution deals with the response to forced inputs.
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Generally,
Ax + Bx = Cf{(¢) x(0) = X
First, find the homogeneous solution as before, in Figure 2.3.
_B,
_ A
X, = xpe

Next, guess the particular solution by looking at the form of ‘f(t)’. This step is highly subjective, and if an
incorrect guess is made, it will be unsolvable. When this happens, just make another guess and repeat the
process. An example is given below. In the case below the guess should be similar to the exponential forc-
ing function.

For example, if we are given

6i+2x = st

A reasonable guess for the particular solution is,
4t

x, = Cpe %, = 4C]e4t

Substitute these into the differential equation and solve for A.

6(4C1e4t) +2(c1e4’) = 5™

_ . _ 3
24C, +2C, =5 ey = %
Combine the particular and homogeneous solutions.
_5
X =x_+tx, = 5e4t+x62
p hoo26 0

Figure 2.7 Example: Solution of a first-order non-homogeneous equation

The method for finding a particular solution for a second-order non-homogeneous differential equation is shown in Figure
2.8. In this example the forcing function is sinusoidal, so the particular result should also be sinusoidal. The final result is converted
into a phase shift form.



| Generally, I
: Ai + Bi + Cx = DY) x(0) =x) and  #0) = v, :
I 1. Find the homogeneous solution as before. |
| ot |
I Xy = X3e cos(a)t+X4) I
or
I Xp = Xlem+theo—[ I
| or ot Ot |
I x, = X,e ! +X,e ? I
h 1 2
I 2. Guess the particular solution by looking at the form of “(t)’. This step is highly subjective, and if an I
I incorrect guess is made it will be unsolvable. When this happens, just make another guess and repeat the I
process. For the purpose of illustration an example is given below. In the case below it should be similar to
: the sine function. :
: For example, if we are given :
I 2% + 6% + 2x = 2sin(3t + 4) I
| |
I A reasonable guess is made, and the first and second derivatives are written. I
1 x, = Asin(31) + Beos(30) |
| |
: = 34 _3Bsi
I xp 3Acos(3t)— 3Bsin(3t) I
| )'c'p = —94sin(3t) — 9Bcos(3t) |
: Substitute these into the differential equation ans solve for A and B. :
I 2(=9A4sin(3t) — 9Bcos(3t)) + 6(3Acos(3t) — 3Bsin(3t)) + I
1 2(Asin(3t) + Bcos(3t)) = 2sin(3t + 4) 1
1 (=184 —18B + 2A4)sin(3t) + (=18B + 184 + 2B)cos(3t) = 2sin(3t +4) 1
| |
| (— 164 — 18B)sin(3t) + (184 — 16B)cos(3t) = 2(sin3tcos4 + cos3tsind) |
| |
1 (=164 —18B)sin(3t) + (184 —16B)cos(3t) = (2cos4)sin(3t) + (2sin4)cos(3¢t) 1
| —164—18B = 2cos4 184 —16B = 2sind |
| |
-1
| —16 —18||A| — |2cos4 Al - |-16-18 -1.307| _ |-0.0109 |
I 18 —-16||B 2sind B 18 -16 -1.514 0.0823 I
I Next, rearrange the equation to phase shift form. I
g q p
| |
| X, = —0.0109sin(3t) + 0.0823 cos(3t) |
| |
| xp = /\/*0.0]092 + 0. 08232sin (31 + atan (70(')0(;9]2;9)) |
: 3. Use the initial conditions to determine the coefficients in the homogeneous solution. :
‘ Il BN BN BN B B B B BN B B B BN B B B B B B B B B B B EBD B B B B B B . ‘

Figure 2.8 Example: Solution of a second-order non-homogeneous equation

39
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When guessing particular solutions, the forms in Figure 2.9 can be helpful.

Forcing Function Guess

A C

Ax + B Cx+D

eAx CeAx or CxeAx
Bsin(A4x) Csin(Ax) + Dcos(Ax)

or

Bcos(A4x)

or Cxsin(Ax) + xDcos(Ax)

Figure 2.9 General forms for particular solutions

An example of a second-order system is shown in Figure 2.10. As expected, it begins with a FBD and summation of
forces. This is followed with the general solution of the homogeneous equation. Real roots are assumed thus allowing the problem

solution to continue in Figure 2.11.
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Fo T T - S TGS TS S ST .S ST - - -E-E-E-_-_-—-___m-an
Assume the system illustrated to the right starts from rest at a
height ‘h’. At time ‘t=0’ the system is released and allowed
to move.

>~
S
o
L=

=

‘Mg N d
?Mj}' Z

Ksy ? ? Kdy +¢ sz = _Mg+KSy+Kd)> = —My

My +Kj+Ky = Mg

Find the homogeneous solution.

At At 2 At
y, =€ yh:Ae j/'h:Ae

Mj;'Jrde/JrKsy =0
At
M(Aze )JrKd(AeAI)JrKS(eAZ) -0

MA2+K A+KS =0

d
-K,+ /K§—4MK
4 = s
2M

Let us assume that the values of M, K and K lead to the case of two different positive roots. This
would occur if the damper value was much larger than the spring and mass values. Thus,

4 =R, R,
Rt Rt
1 2
yh=C]e +C2e

Figure 2.10 Example: Second-order system

The solution continues by assuming a particular solution and calculating values for the coefficients using the initial condi-
tions in Figure 2.11. The final result is a second-order system that is overdamped, with no oscillation.
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Next, find the particular solution.

v, =¢C =0 =0

M(0) + K 4(0) + K (C) = Mg

c - Mg
Ks
Now, add the homogeneous and particular solutions and solve for the unknowns using the initial con-

ditions.

Rt Rt

M 1 2
Y0 =y, = EHCre T+ Che
S
y(0) = h Y(0) =0
h =%g+C1e0+C2e0
K
S
_ g, Mg
C] +C2 = h—K
S
Rt R,t
Y(t) = R]C]e +R2C26
B 0 0
0 =R,Ce +R2C26
0 =R,C,+R,C 2
= Cc, = —=C
171 27 i R] 2
R
2 -, Mg
fR—c2+c2 =h-T
S
o (Ksh—ng[ R, j o _RZ(Ksh—ng[ R, j
2 , - -
K R, R, 1 R, K, R, R,

Now, combine the solutions and solve for the unknowns using the initial conditions.

o Aing(Ksh—Mg]( R, J6R1t+ﬁ(Ksh—ng[ R, jeth
K Ky J\R =R, R, U Ky J\R; =R,

o Aig+[Ksh—MgJ( R, ]ethJr(Ksh—ng( R, JeRZt
K, Ko J\R;-R, Ko J\R;-R,

Figure 2.11 Example: Second-order system (continued)



Given
Asin(wt + 0) (the desired final form)

A(cos wtsin 0 + sin wtcos )
(A sin @) cos wt + (A cos 0) sin wt

Bcos wt + Csin ot (the form we will start with)

where, B = Asin6

C = Acos @

To find theta,

= tan 6
C Acos@O
_ E)
0 = atan ( C
To find A (method #1)
4= B _ C
sin@  cos@

To find A, (method #2)
A =N 2 + C2

For example,

3cos5t + 4sin5t

«/32 + 42sin(5t + atan%)

Ssin(5t + 0.6435)

Figure 2.12  Proof for conversion to phase form

Note: Unless initial conditions are provided, normally assume that they are all zero. As a student this is
beneficial because it simplifies problem solutions. This is normally used for professional system analy-
sis to determine the reaction when a system is initially turned on. Common terms to indicate that the
conditions are zero include “the system starts at rest”, “initially the system is off”, “the system starts
undeflected”.

2.2 Responses

43

Solving differential equations tends to yield one of two basic equation forms. The e-to-the-negative-t forms are the first-
order responses and slowly decay over time. They never naturally oscillate, and only oscillate if forced to do so. The second-order

forms may include natural oscillation.
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First-Order

A first-order system is described with a first-order differential equation. The response function for these systems is natural
decay or growth as shown in Figure 2.13. The time constant for the system can be found directly from the differential equation. It
is a measure of how quickly the system responds to a change. When an input to a system has changed, the system output will be
approximately 63% of the way to its final value when the elapsed time equals the time constant. The initial and final values of the
function can be determined algebraically to find the first-order response with little effort.

If we have experimental results for a system, we can calculate the time constant, initial and final values. The time constant
can be found two ways, one by extending the slope of the first (linear) part of the curve until it intersects the final value line. That
time at the intersection is the time constant. The other method is to look for the time when the output value has shifted 63.2% of the
way from the initial to final values for the system. Assuming the change started at t=0, the time at this point corresponds to the time

constant.

:

o) =y, +y-y)e ‘ PR

y+dy =y
T

time constant

Vi

OR

Note: The time will be equal to the time
constant when the value is 63.2% of the
way to the final value, as shown below.

A t

- WD) =y, p-ype

y(o) = Y +(J’0_y])eil

WD) =y +(y-v,)0.368
(1) = 1+(0—1)0.368

y(r) = 0.632

Note: The time constant can also be found using the asymptote of the base (not the middle) of the
first order curve. In the simple proof that follows a straight line is extended from the base of the
curve to the steady state asymptote.

0 0
y(r)zyo + Tgry(o) =Y + z‘(yO—y])(—l)e = ) + T(J/O_y])(_lr)e = Vi

Note: Given a first order system the general form can be found knowing the input, steady state out-
put, and time constant. Consider the example below with an input of F and an output of x.

Figure 2.13 Typical first-order responses



The example in Figure 2.14 calculates the coefficients for a first-order differential equation given a graphical output
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response to an input. The differential equation is for a permanent magnet DC motor, and will be examined in a later chapter. If we
consider the steady state when the speed is steady at 1400RPM, the first derivative will be zero. This simplifies the equation and
allows us to calculate a value for the parameter K in the differential equation. The time constant can be found by drawing two lines
over the data curve. The first line is asymptotic to the start of the motor curve, and the second line is asymptotic to the steady state
speed. The time point where the lines intersect is the time constant. This example results in an approximate time constant of 0.8 s.
This can then be used to calculate the remaining coefficient. Some additional numerical calculation leads to the final differential

equation as shown.

For the motor, use the differential equation and the speed curve when Vs=10V is applied:

(Do+(K)o = (£,

1400 RPM
t |
1|s

For steady-state

Go-o

® = 1400RPM = I46.6rads_1

)
+|==1146.6 = | =
0 (53]466 (JR 10
K = 0.0682
1400 RPM
g
790.8s
| >
Is
K| _ 1
JR 0.8s
K 1
0.0682 —) = —
R 0.8s
K _ 18328
JR
1

0+ ——w = 18328V
0.8 s

Figure 2.14 Example: Finding an equation using experimental data

A simple mechanical example is given in Figure 2.15. The modeling starts with a FBD and a sum of forces. After this, the
homogeneous solution is calculated without the non-homogeneous terms. Next, the particular solution is calculated using the com-
plete differential equation. The homogeneous and particular solutions are added for the overall systems response. The initial condi-
tions are used to find the remaining unknown coefficients.
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r---------------------------------1
Find the response to the applied force if the force is applied at t=0s.

Assume the system is initially deflected a height of /. F

_ AT
JA ZFy = —F+Ksy+Kd(d—)y =0
K k(L)
57 d\d Ky+Ky=F
Find the homogeneous solution.

Bt Bt
Yy = Ae yh = ABe

Kd(ABeB[) T KS(AeB[) ~ 0

KdB+KS=0
-K

B =3
Ky

Next, find the particular solution.

e -0
’p ’p
K(0)+K (C) = F c =L
d S K
N

Combine the solutions, and find the remaining unknown.

-K
o
d _F
=y +y, =4 +—
(@) =yt e K,
»(0) = h
F F
= + = h-—
h = Ae e A4 = h X
s s
The final solution is,
-K
o
F) d g
= N +
y(t) (h e e z
s s

Figure 2.15 Example: First-order system analysis

A first-order system tends to be passive, meaning it doesn’t deliver energy or power. A first-order system will not oscillate
unless the input forcing function is also oscillating. The output response lags the input and the delay is determined by the system’s
time constant.
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Second-Order

A second-order system response typically contains two first-order responses, or a first-order response and a sinusoidal
component. A typical sinusoidal second-order response is shown in Figure 2.16. Notice that the coefficients of the differential
equation include a damping factor and a natural frequency. These can be used to develop the final response, given the initial condi-
tions and forcing function. Notice that the damped frequency of oscillation is the actual frequency of oscillation. The damped fre-
quency will be lower than the natural frequency when the damping factor is between 0 and 1. If the damping factor is greater than
one the damped frequency becomes negative, and the system will not oscillate because it is overdamped.

A second-order system, and a typical response to a stepped input.

.. i 2 / 2
y+Xoy+ae,y =F(1t) ——m o=Co, w; =0 NI-C
—ot
A V(1) =y +g=vde  cos(yt+0)

y ad

Yo
|
o, Natural frequency of system - Approximate frequency of response system oscil-
lations.
¢ Damping factor of system - If < 1 underdamped, and system will oscillate. If =1

critically damped. If > 1 overdamped, and never any oscillation (more like a first-
order system). As damping factor approaches 0, the first peak becomes infinite in
height.

o, The actual frequency of oscillation - It is below the natural frequency because of
the damping.

0 The phase shift represents a lag between the input action and output response. At
low frequencies this is often zero.

Figure 2.16 The general form for a second-order system

When only the damping factor is increased, the frequency of oscillation, and overall response time will slow, as seen in
Figure 2.17. When the damping factor is 0 the system will oscillate indefinitely. Critical damping occurs when the damping factor
is 1. At this point both roots of the differential equation are equal. The system will not oscillate if the damping factor is greater than
or equal to 1.
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g =05

underdamped

——————————————— -¢=L -0707
2

(critical)

g =1

p overdamped

Crl

Figure 2.17 The effect of the damping factor

When observing second-order systems it is more common to use more direct measurements of the response. Some of
these measures are shown in Figure 2.18. The rise time is the time it takes to go from 10% to 90% of the total displacement, and is
comparable to a first order time constant. The settling time indicates how long it takes for the system to pass within a tolerance
band around the final value. The permissible zone shown is 2%, but if it were larger the system would have a shorter settling time.
The period of oscillation can be measured directly as the time between peaks of the oscillation; the inverse is the damped fre-
quency. (Note: don’t forget to convert to radians.) The damped frequency can also be found using the time to the first peak, as half
the period. The overshoot is the height of the first peak. Using the time to the first peak, and the overshoot the damping factor can
be found.



Note: This figure is not to scale to make details near the
steady-state value easier to see.

where,
1, = risetime (from 10% to 90%)
t, = settling time (to within 2-5% typ.)
0.5Ax Ax = total displacement
T f d- period and frequency - damped
b = overshoot
0.1Ax tp = time to first peak
> € — steady state error
_ot 4
x = Axe cos(a)dt) D=y eqn 2.1
p
= eqn 2.2
o Ca)n
b _ e_o—tp eqn 2.3
Ax
¢ = N S eqn 2.4
1 \2
(—) +1
t o
P

Figure 2.18 Characterizing a second-order response (not to scale)
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Note: We can calculate these relationships using the complex homogeneous form, and the generic second
order equation form.

A2+2(;oo A+0)2 =0
n n

[ .22 2
72ani 4C co/n740)n

A= :Gijmd

o =2 eqn 2.5

0)27 20)2 = o)i, mn«llfgz = 0y eqn 2.6

n n
NP
2 2 d
¢ C
2
£ =
1 _ O)_d +1 eqn 2.7
QZ c$2
The time to the first peak can be used to find the approximate decay constant
x(1) = Cpe %leos(o 1+ Cy)
0= tE eqn 2.8
p
-Gt
br~Axe P (D)
b eqn 2.8
IH(A—
G = —
t
P

Figure 2.19 Second order relationships between damped and natural frequency

Other Responses

First-order systems have e-to-the-t type responses. Second-order systems add another e-to-the-t response or a sinusoidal
excitation. As we move to higher order linear systems we typically add more e-to-the-t terms, and/or more sinusoidal terms. A pos-
sible higher order system response is seen in Figure 2.20. The underlying function is a first-order response that drops at the begin-
ning, but levels out. There are two sinusoidal functions superimposed, one with about one period showing, the other with a much
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higher frequency.

Figure 2.20 An example of a higher order system response

The basic techniques used for solving first and second-order differential equations can be applied to higher order differen-
tial equations, although the solutions will start to become complicated for systems with much higher orders. The example in Figure
2.21 shows a fourth order differential equation. In this case the resulting homogeneous solution yields four roots. This result is two
real roots, and a complex pair. The two real roots result in e-to-the-t terms, while the complex pair results in a damped sinusoid.
The particular solution is relatively simple to find in this example because the non-homogeneous term is a constant.

Given the homogeneous differential equation

(D) 13(4) e w 3(4) 5 v a2(LD)x 201 = 5

Guess a solution for the homogeneous equation,

At
X, =e
2 At 3 3 At 4 4 At
d._ At (d _ 2 (i) - (i) —
d_txh_Ae (07) xh—Ae v Th A4 e 2 *h A4 e

Substitute the values into the differential equation and find a value for the unknown.

At At At
A v A3 v sudPS a0 = 0

A4+ 13A3 +34A2+42A +20 = 0

A=-1,-10~1-j—1+]

=C eit +C eilOt +C eitcos(t +C

X, =€ 2 3 )

Guess a particular solution, and then solve for the coefficient.
2 3 4
P e @0 @ @
p dr'p a p =0 a p v p

0+ 13(0) + 34(0) + 42(0) + 204 = 5 A =025

Figure 2.21 Example: Solution of a higher order differential equation

The example is continued in Figure 2.22 and Figure 2.23 where the initial conditions are used to find values for the coef-
ficients in the homogeneous solution.
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---------------------------------1
Solve for the unknowns, assuming the system starts at rest and undeflected.

0

x(1) = Cle_t + Cze_j ‘4 Cj,e_tcos(t +Cy) 025

0 = C]+C2+C3cos(C4)+0,25 eqn 2.9
C3c0s(C4) = 7C17C270,25 eqn 2.10

d 0
—Xx

—t -1
7 h(t) = fCle fIOCZe

"o lcos(t+ C )~ Che lsin(i + C )

0 =-C;-10C,-Cjcos(Cy) - Cysin(C ) eqn2.11

Equations (1) and (3) can be added to get the simplified equation below.

0 = -C,—10C,—(~C,— C,—0.25) - C;sin(C,)
0 = -9C,—Cysin(C,) +0.25

Cysin(Cy) = —9C,+0.25 eqn 2.12

10t

2
d —t - —t —t .
(d_) xh(t) = Cle +100C2€ +C36 cos(l+C4)+C3e sm(t+C4)+

C3e7tsin(t + C4) - C3eitcos(t + C4)

2
d —t —10t —t .
(;1—) xh(t) = C]e + 100C2e +2C3e sin(t + C4)

0 = C] + IOOC2 + C3cos(C4) + Cssin(C4) + C3sin(C4)f Cscos(C4)
0 = C,+100C,+2C;sin(C,) eqn 2.13
Equations (4) and (5) can be combined.
0 = C,+100C,+2(-9C, +0.25)
0=C,+82C,+05 eqn 2.14
1 2
(%)3 £ = ~Cre '+ (1000)Coe 0 _2C e sin(t+ C ) + 2C ¢ eos(i + C
p xh() = -Cje (- )C,e —2Cse sin( 2 3¢ cos( 4
0 = eqn 2.15

—C1 + (—IOOO)C2 —2C3 sin(C4) + 2C3 cos(C4)

Figure 2.22 Example: Solution of a higher order differential equation
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Equations (2) and (4) are substituted into equation (7).
0=-C;+ (—100())C2 —2(=9C, +0.25) + 2(—C1 -C,-0.25)
0=-3C;+ (—984)C2— 1
_ (98 1 eqn 2.16
¢; = (53

Equations (6) and (8) can be combined.

(98 i
0 = ((—T")cf}) +82C,+ 0.5

0 = (7246)C2 + 0.166667 CZ = 0.0006775
cr = (224
1~ U 3 1476) 3 C] = —0.5555

Equations (2) and (4) can be combined.

C3sin(C4) _ 79C2 +0.25

C3cos(C4) _CI_C2_0'25

tan(C ) = —9(0.0006775) + 0.25 C4 = 0.6748

4 —(—0.5555) — (0.0006775) — 0.25

Equation (4) can be used the find the remaining unknown.

C3sin(0.6748) = —9(0.0006775) + 0.25 C3 = 0.3904

The final response function is,

0

¥(1) = (~0.5555)e "+ (0.0006775)e 1 1 (0.3904)e " cos (1 + 0.3904) + 0.25

Figure 2.23 Example: Solution of a higher order differential equation (cont’d)

In some cases we will have systems with multiple differential equations, or non-linear terms. In these cases explicit analy-
sis of the equations may not be feasible. In these cases we may use other techniques, such as numerical integration, which will be
covered in later chapters.

2.1 Response Analysis

Up to this point we have mostly discussed the process of calculating the system response. As an engineer, obtaining the
response is important, but evaluating the results is more important. The most critical design consideration is system stability. In
most cases a system should be inherently stable in all situations, such as a car “cruise control”. In other cases an unstable system
may be the objective, such as an explosive device. Simple methods for determining the stability of a system are listed below:

1. If a step input causes the system to go to infinity, it will be inherently unstable.

2. A ramp input might cause the system to go to infinity; if this is the case, the system might not respond well to
constant change.

3. If the response to a sinusoidal input grows with each cycle, the system is probably resonating, and will become
unstable.

Beyond establishing the stability of a system, we must also consider general performance. This includes the time constant
for a first-order system, or damping factor and natural frequency for a second-order system. For example, assume we have
designed an elevator that is a second-order system. If it is under damped the elevator will oscillate, possibly leading to motion sick-
ness, or worse. If the elevator is over damped it will take longer to get to floors. If it is critically damped it will reach the floors
quickly, without overshoot.
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Engineers distinguish between initial setting effects (transient) and long term effects (steady-state). The transient effects
are closely related to the homogeneous solution to the differential equations and the initial conditions. The steady-state effects
occur after some period of time when the system is acting in a repeatable or non-changing form. Figure 2.24 shows a system
response. The transient effects at the beginning include a quick rise time and an overshoot. The steady-state response settles down
to a constant amplitude sine wave.

v ~

Steady-state

/ Transient

-

Note: the transient response is predicted with the homogeneous solution. The steady state
response in mainly predicted with the particular solution, although in some cases the homoge-
neous solution might have steady state effects, such as a non-decaying oscillation.

Figure 2.24 A system response with transient and steady-state effects

2.2 Non-Linear Systems

Non-linear systems cannot be described with a linear differential equation. A basic linear differential equation has coeffi-
cients that are constant, and the derivatives are all first order. Examples of non-linear differential equations are shown in Figure

2.25.
@ Note: the sources of non-lin-
earity are circled.
+x =5
5
i -5

Figure 2.25 Examples of non-linear differential equations

Il
(oY

Examples of system conditions that lead to non-linear solutions are,

* Aerodynamic drag.
» Forces that are a squared function of distance.
» Devices with non-linear responses.
Explicitly solving non-linear differential equations can be difficult, and will typically involve complex solutions for sim-
ple problems.
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Non-Linear Differential Equations

A non-linear differential equation is presented in Figure 2.26. It involves a person ejected from an aircraft with a drag
force coefficient of 0.8. (Note: This coefficient is calculated using the drag coefficient and other properties such as the speed of
sound and cross sectional area.) The FBD shows the sum of forces, and the resulting differential equation. The velocity squared
term makes the equation non-linear, and so it cannot be analyzed with the previous methods. In this case the terminal velocity is
calculated by setting the acceleration to zero. This results in a maximum speed of 126 kph.

r HE HI =N BN BN BN BN B B BN B B BN B B B B B B B B B B B B B B B B B B = 1
1 Consider the differential equation for a 100kg human ejected from an airplane. The aerodynamic drag will

I introduce a squared variable, therefore making the equation non-linear. I
1 1
1 1
I 5 1
| ZFy = 08(y) —Mg = -My I
1 2 1
I 100kgy + 0.8%()'/)2 - 1()()kg9.81£[- I

g
1 m 1
I 2 I
. 100kgy + 0.8]—\%()'/)2 — 98IN .
1 " [
i 100kgy + 0.8kgﬂs—(y')2 = 981kg™ 1
I 2 2 2 I
s m s
I 1005 + 0.8m " (5)° = 981ms > I
1 1
I 51 8x10°m L) = 9.81ms 2 I
1 The terminal velocity can be found be setting the acceleration to zero. 1
1 1
1 -3 - - 1
I (0) + 8x10 3'm ](y)2 = 9.81ms 2 I
-2

| = 9.81ms - - 9.81 3m2s72 _ 350M = poekm 1
! 8x10 °m 1 N8x10” s h 1
1 1
L HE HI =N BN BN BN BN BN B BN B B BN B B B EE B B B B B BE B B B B B B B B = ‘

Figure 2.26 Example: Development of a non-linear differential equation

The equation can also be solved using explicit integration, as shown in Figure 2.27. In this case the equation is separated
and rearranged to isolate the ‘v’ terms on the left, and time on the right. The term is then integrated in Figure 2.28 and Figure 2.29.
The final form of the equation is non-trivial, but contains e-to-t terms, as we would expect.
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r-------------------------------1
An explicit solution can begin by replacing the position variable with a velocity variable and rewriting thqg
equation as a separable differential equation.

1005 + 0.8m ()’ = 981ms >

1009+ 0.8m V2 = 981ms 2

dv
dt
dv

100— = 981ms_2 — 0.8m_1v
dt

2

100 +()48m_1v = 981ms_2

2

100

dv = dt
981ms72 — 0.8m71v

2

100

-1
—0.8m _
TRl
ms

+v
—0.8m71
J'Z —125m 272dv=t+C1
v —1226.25m" s
—125m dv =t+C

1
(v + 35.02’3) (v - 35.02T)
S S

Figure 2.27 Example: Developing an integral



This can be reduced with a partial fraction expansion.

4 + B dv = t+C

(v + 35.02@) (v - 35.02@)
S S

1

AV—A(35.02@) LBy + 3(35.02@) — _125m
S S

v(4 +B) +35.0222 (-4 + B) = —125m
S
A+B =0 A =-B

3502 (-4 +B) = —125m
S

125
—(=B)+ B) = 122 B = -1785
CCEB*B) = 55058 N

A = 1.785s

1.785s _ , _—1.785s dv = t+C1

(v + 35.02’17) (v - 35.02@
S S

The integral can then be solved using an identity from the integral table. In this case the integration con-
stants can be left off because they are redundant with the one on the right hand side.

1.785sin|v + 35.02™| — 1.785sn
S

v—35.02’ﬂ‘ =1+C,
S

v+ 35022
1.785sln|—__ S| =t+C
i =1, _ Inla+ bx|
m t + C
S|l =e
v—35.02"2
s

v+ 35.02™ C, 1.785s
S

v—35.02"
S

Figure 2.28 Example: Solution of the integral
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r HE I BN BN BN BN BN BN BN B B BN B B B B B B B B B B B B B B B B B B . 1

I m t I

1 v+ 3502; B 77855 I
—| = Cye

1 v-35.02" 1

1 S 1

: An initial velocity of zero can be assumed to find the value of the integration constant :

1 1

m 0

| | l

I 0-35. 02; I

1 1

|  This can then be simplified, and the absolute value sign eliminated. I

1 1

+ —_

I vy 117838 I

! v—35.027 1

1 § 1

! 1 7;’53 1 7;5s !

I v+35.027 = +ve 77 135025 [

s s

1 ¢ ¢ 1

1 : : |
W 15788 = 235020755 35001

1 s s 1

1 t 1

1. _

I — 35 02@ Fe 7855‘71 0 = 35 Oz’ﬂ(ﬂ) - (ﬂ) - Q I

1 [ o TUs\VIFl 1+1 2 1

1 _ 1.785s |

I e I

t

: 1.785s | :
v = 35027 &

1 S 4 1

I 1+ el.785s I

‘ HE I BN BN BN BN BN BN BN B B BN BN B B B B B B B B B B B B B B B B B . ‘

Figure 2.29 Example: Solution of the integral and application of the initial conditions

As evident from the example, non-linear equations are involved and don’t utilize routine methods. Typically the numerical
methods discussed in the next chapter are preferred.

Non-Linear Equation Terms

If our models include a device that is non-linear and we want to use a linear technique to solve the equation, we will need
to linearize the model before we can proceed. A non-linear system can be approximated with a linear equation using the following
method.

1. Pick an operating point or range for the component.

2. Find a constant value that relates a change in the input to a change in the output.
3. Develop a linear equation.

4. Use the linear equation for the analysis.

A linearized differential equation can be approximately solved using known techniques as long as the system doesn’t
travel too far from the linearized point. The example in Figure 2.30 shows the linearization of a non-linear equation about a given
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operating point. This equation will be approximately correct as long as the first derivative doesn’t move too far from 100. When
this value does, the new velocity can be calculated.

Assume we have the non-linear differential equation below. It can be solved by linearizing the
value about the operating point

Given,

i 4y = 200 1(0) = 10

We can make the equation linear by replacing the velocity squared term with the velocity times the
actual velocity. As long as the system doesn’t vary too much from the given velocity the model
should be reasonably accurate.

y = +,200— 4y
$(0) = £200—4(10) = +12.65
12.655 + 4y = 20

This system may now be solved as a linear differential equation. If the velocity (first derivative of
y) changes significantly, then the differential equation should be changed to reflect this.

Homogeneous:

12657 +4y = 0

12.654+4 = 0 A = -0.316

v, = Cef().316t
Particular:

=4

’p

12.65(0) +44 = 200 A4 = 50
Initial Conditions 0.316¢

y(t) = Ce + 50

10 = Ce0+50 C = —40
Wy = —40¢ 104 50

Figure 2.30 Example: Linearizing a differential equation
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r HE =N BN =N BN I BN B BN B BN B B B B B B B B B B B B B S B B B . 1
| [Ifthe velocity (first derivative of y) changes significantly, then the differential equation should be |
1 changed to reflect this. For example we could decide to recalculate the equation value after 0.1s. 1
1 1
| |
1 y(0.1) = g0 310D s 0y 1
| |
d -0.316(0.1
: E)’(O-I) = —40(-0.316)e O~ 1325 Note: a small change :
1 , _ 1
1 12.25y' +4y = 20 1
I Now recalculate the solution to the differential equation. I
| |
I Homogeneous: I
1 12259 +4y = 0 1
I 12.254+4 =0 A = -0.327 !
I _ o 03271 I
] Y = Le |
I Particular: !
1 1
[ yp =4 [
1 12.25(0) +44 = 200 A =50 1
I Initial Conditions: 1
| |
| y(t) = Ce70'327t+ 50 |
| 0.1 I
1 11.24 = Ce ™ + 50 C = -35.070575 1
I w1y = —35.07¢ 310 4 59 I
I Notice that the values have shifted slightly, and as the analysis progresses the equations will adjust 1
I slowly. Higher accuracy can be obtained using smaller steps in time. |
| |
‘ Il BN I BN &N I BE B B B B B B B B B B B B B B B BE B B B B B . ‘

Figure 2.31 Example: Linearizing a differential equation

Changing Systems

In practical systems, the forces at work are continually changing. For example a system often experiences a static friction
force when motion is starting, but once motion starts it is replaced with a smaller kinetic friction. Another example is tension in a
cable. When in tension a cable acts as a spring. But, when in compression the force goes to zero.

Consider the example in Figure 2.32 where a mass is pulled by an elastic cable. The right hand side of the cable is being
pulled at a constant rate, while the block is free to move, only restricted by friction forces and inertia. At the beginning all compo-
nents are at rest and undeflected. The solution is done by solving for each stage of motion. At the beginning there is no tension on
the spring, hence no force. As x1 increase, so does the force. The mass remains stationary until the spring from the overcomes
static friction and the mass begins to move. The beginning of this motion requires a new differential equation, and solution. As this
type of analysis continues the end of each motion stage is used to switch to a new set of initial conditions, initial time, directions for
friction forces, and new differential equation. In simple terms, each phase of motion requires the solution of a differential equation.
Needless to say this can be very time consuming.
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| X _ m 1
| K. =1 000;1 |
1 M, = 0.1 Q\/W\—. 1
I k M = 100kg I
I My = 0.3 I
I Z I
I An FBD and equation can be developed for the system. The friction force will be left as a variable at I
I this point. i
1 1
| For the cable/spring in tension |
| ¥p=xy=0 I
| Fr 1
I Bl K (x,-x,) . I
- 1 72 F_=-F.+K - =M
| - M= l0kg |y LIy = T Fpt Ky =xp) = Mx, .
I Mx 2 N( m ) . ]
—FL+1000—=|0.1=¢t— = 100k
I F w2 &% 1
1 ) 1
I 100kgx , + 1000¥x, = 1000¥0.1%1 — F . I
m m N
1 1
F
1 - N N F |
+10—x, = |—1t——
[ 27 Vkem'2 T 'kgs  100kg I
| F 1
- -2 m F
+ = —_ —
: Xyt 10s x, =1 3t T00kg :
s
I For the cable/spring in compression x;-xy < 0 I
| Fr 1
! F_=-F, = Mx. !
. | M = 100kg Y Fy = Fp = Mx, I
| Mx. . 1
I 2 ~Fp = 100kgx, I
: 100kgx, = ~Fp, :
. . FE "
*2 7 TT00kg
1 1
L HE HI =N BN BN BN BN BN B BN B B BN B B B EE B B B B B BE B B B B B B B B = ‘

Figure 2.32 Example: A differential equation for a mass pulled by a springy cable
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I 3 xX; = 0.1 Et I
1 K, = 1000 > I
| m |
M, = 0.1 4/\A/\/\—’
I k M = 100kg I
| My = 0.3 |
1 Z 1
I AnFBDand equation can be developed for the system. The friction force will be left as a variable at I
I this point. |
| N |
I N = 100kg9.81— = 98IN 1
kg
| |
1 static friction d m 1
_x = —_—
1 dr 2 s 1
| |
F
I ‘ F‘ < (,US]\/) I
| J |
I kinetic friction 752 > 0? |
| |
1 F.l = uN = 98IN I
I " = I
‘ HE I BN BN BN BN BN BN BN B B BN BN B B B B B B B B B B B B B B B B B . ‘

Figure 2.33 Example: Friction forces for the mass

Therefore the system is static from 0 to 2.943s

r Il BN BN BN B BN B B B BN B B BN B B B B B B B B B B B D B B B B B B . 1
I The analysis of the system begins by assuming the system starts at rest and undeflected. In this case the

I cable/spring will be undeflected with no force, and the mass will be experiencing static friction. Therefore I

the block will stay in place until the cable stretches enough to overcome the static friction.
I ymp g I
1 1
1 - 1
I X, = 0 X, = 0 FF: 294.3N I
| - -2 m Fp |
+ 10 =]l=t——r
I 2 T IS T00kg [
s
: 0+10s_20:1m ~ 294.3N :
I 3 100kg I
I jm, _ 294.3kgm I
1 3 2 1
s 100kgs

1 1
I t = 2.943s I
1 1
1 1
[ ] ol

Figure 2.34 Example: Analysis of the object before motion begins



After motion begins the object will only experience kinetic friction, and continue to accelerate until the
cable/spring becomes loose in compression. This stage of motion requires the solution of a differential
equation. The value of time will be set equal to zero, t=0s, for this step of the motion. As a result the equa-
tion for the particular equation must be adjusted to have an offset of 2.93s. The time variable ‘t’ is given a
subscript of 2, indicating that it is the second segment of motion.

- -2 m 98.1IN
+ = [ Z=(ty + -
X, 10s X, 1 3(t2 2.9435) T00kg
s
For the homogeneous,
x2 + ]()s_2x2 =0
P05 =0
Xy = C]sin(3.]612 + C2)
For the particular,
x_ = At, +B x
P 2 P

-2 _ m
0+ 10s (At2+B) = I—3(t2+2.943s)—

S
10{2/1 ="
3
S
-2 m 981N
10s “B = 2.93S27100kg

+3.16js
x =20
P
98.1N
100kg
A4 =01"
N
B = 0.1949m

Figure 2.35 Example: Analysis of the object after motion begins
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For the initial conditions, the mass is still at zero position and velocity.

x(0s) = Om ix(Os) =02
dt s
x(tz) = C]sin(3.16t2 + C2) + 0.1%02 +2.943s) + (—0.1949)m
0 = C]sin(3.]6(0s) + C2) + O.I’;n(Os +2.9435) + (-0.1949)m

C,sin(C,) = —0.0994s

d
Ex(tz) = 3.16C cos(3.16t, + C,) + 0.1%

0 = 3.16Ccos(3.16(0) + C,) + 0.12
S

C] cos(Cz) = —-0.0316

C,sin(C,)
157(C3) _9.0994
= — 3.146 = tan(C C, = 1.263
C,cos(C,)  —0.0316 an(C) 2
= 00994 _ 4043

I 5in(1.263)
xX(t5) = ~0.1043sin(3.161, — 1.263) + 0.1t, + 0.0994

d
Tx(ty) = ~0.1043(3.16)cos(3.161) ~1.263) + 0.1

Finally we write the equations, and find the point where the spring becomes slack, in compres-
sion. This is done by setting the newly found equation for ‘x” with the original spring displace-
ment. Note: units are now being removed to simplify calculation.

0.1(ty +2.943) = ~0.10435in(3.161, — 1.263) + 0.11, + 0.0994

sin(3.161, ~ 1.263) = 2029402943

0.1043
. (0.0994 — 0.2943)
R, )
o asm( 0.1043 1.506 e
)= 3716 = undefine

Given that the result is undefined, the spring never becomes slack. Next we check to see if
the mass stops moving. In this case the result is defined so the mass stops moving at 3.7422s.
The next analysis step would be to decide when it begins to slip again.

0 = ~0.1043(3.16)cos(3.161, ~ 1263) + 0.1

0.1
—— + .
. acos((—0.1043)(3.16)) 1.263 ~ 0799
2 3.16 e
(., = 07992 +2.943 = 3.7422s
sticks

Figure 2.36 Example: Analysis of the object after motion begins



2.3 Case Study

A typical vibration control system design is described in Figure 2.37.

65

*FM
'
LR S EE T

The model to the left describes a piece of reciprocating indus-
trial equipment. The mass of the equipment is 10000kg. The
equipment operates such that a force of 1000N with a fre-
quency of 2Hz is exerted on the mass. We have been asked to
design a vibration isolation mounting system. The criteria we
are given is that the mounts should be 30cm high when
unloaded, and 25cm when loaded with the mass. In addition,
the oscillations while the machine is running cannot be more
than 2cm total. In total there will be four mounts mounted
around the machine. Each isolator will be composed of a
spring and a damper.

Figure 2.37 Example: A vibration control system

There are a number of elements to the design and analysis of this system, but as usual the best place to begin is by devel-
oping a free body diagram, and a differential equation. This is done in Figure 2.38.

v

SF, = F—4Ky—4K g+ Mg = My

My'+4Kdy+4Ksy = F+ Mg
4K y 4Ky

Sy d _s_EJrg
M M M

Ky, Ky 1000N

+
10000Kg 10000Kg  10000Kg

§

V.
RS

-2
= sin(2(2x)t) + 9.81ms .
4Ksy 4Kdy Mg

7+ 0.0004Kg*1 K y+ 0.0004Kg*] Ky = 0.1ms > sin(4xt) + 9.81ms >

d

Figure 2.38 Example: FBD and derivation of equation

Using the differential equation, the spring values can be found by assuming the machine is at rest. This is done in Figure

2.39.
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r IHE I I I BN I I B B B B B B B B B B B B B B B B B B B B B B B BB B B .. 1
1 When the system is at rest the equation is simplified; the acceleration and velocity terms both become zero. In addi- I
I tion, we will assume that the cyclic force is not applied for the unloaded/loaded case. This simplifies the differential I
| equation by eliminating several terms. 1
| |
| _] 2 |
1 0.0004Kg Ksy = 9.81ms 1
I Now we can consider that when unloaded the spring is 0.30m long, and after loading the spring is 0.25m long. This 1
|  will result in a downward compression of 0.05m, in the positive y direction. I
| 1
I 0.0004kg " K (0.05m) = 9.81ms > 1
| 1
| = 981 K ms72m71 |
s 0.0004(0.05) %
| ; 1
| K = 491KNm~ |
L Il N BN B BN BN BN BN BN BN BN B BN BN BN BN B B BN BN BN BN BN BN B BN BN BN B BB B B ‘

Figure 2.39 Example: Calculation of the spring coefficient

At this point we have determined the range of motion of the mass. The remaining unknown is the damping factor. This can
be calculated by completing the particular solution of the differential equation and identifying the damped motion term of the equa-
tion. This calculation begins in Figure 2.40.



i+ 0.0004Kg7] K+ 0. 0004Kg*] (491KNm*] Yy = 0.1ms > sin(47t) + 9.81ms >

i+ 0.0004Kg*] K+ 19652 y = 0.1ms > sin(4xt) + 9.81ms >

The particular solution can now be found by guessing a value, and solving for the coefficients. (Note:

The units in the expression are uniform (i.e., the same in each term) and will be omitted for brevity.)

y = Asin(4nt) + Beos(4nt) + C

V' = 4rxAcos(4nt)—4nBsin(4 nt)

y' = —167z2Asin(47zt) - 167r23c0s(47rt)

.'.(7167r2Asin(47rt) - 167r2Bc0s(47rt)) + 0.0004Kd(47rA cos(4rt)— 4 xBsin(4nt))
+ 196(Asin(4nt) + Bcos(4nt) + C) = 0.1sin(4xt) + 9.81

_167°B + 0.0004K 47A + 1964 = 0

B = A(31.8x10_ K+ 1.24)

16754+ 0.0004K J(47B) + 1964 = 0.1

A(—167r2 + 196) +B(—5.0 x10_31<d) = 0.1

A(—167r2 + 196) +A(31.8 <10 %K+ 1.24) (—50 X10*3Kd) = 0.1

d
Y 0.1
2 6 _3
1645 + 196 + (31.8 10K+ 1.24) (75.0 %10 Kd)
Y 0.1
2 9 3
159 X107 ) + K (-6.2x10 ) + 38.1
3.18 x1076Kd7 0.124
B =
& 9 3
159 x10 ) + K (6.2 x10 ) + 38.1
C = 9.81ms72

Figure 2.40 Example: Particular solution of the differential equation

67

The particular solution can be used to find a damping factor that will give an overall oscillation of 0.02m, as shown in Fig-

ure 2.41. In this case Mathcad was used to find the solution, although it could have also been found by factoring out the algebra,
and finding the roots of the resulting polynomial.
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r-------------------------------1
In the previous particular solution the values were split into cosine and sine components. The magnitude
of oscillation can be calculated with the Pythagorean formula.

[ 2 2
magnitude = NA  + B

2
«/(0‘1)2 + ((3.1815 10’6)1<d— 0.124)

magnitude =

S(=159P 10‘9) + K ((6.2P 10_3)) +38.1

The design requirements call for a maximum oscillation of 0.02m, or a magnitude of 0.01m.

2 —6 2
0.1 +((3.18b10 )Kd—0.124)
0.01 =

Kfl(7159 b 10_9) + K ((6.2P 10_3)) +38.1

A given-find block was used in Mathcad to obtain a damper value of,

K d= 341INS Aside: the Mathcad solution
m

Jo.m + (3181074 -~ 0.124]

[t (-150-107% ] + . l-62.107%) + 331

f(K) =

f{ky) = 0.01

find(ky) = 3.411 x 10°

Figure 2.41 Example: Determining the damper coefficient

The values of the spring and damper coefficients can be used to select actual components. Some companies will design
and build their own components. Components can also be acquired by searching catalogs, or requesting custom designs from other
companies.

2.4 Summary

First and second-order differential equations were analyzed explicitly.
First and second-order responses were examined.

The topic of analysis was discussed.

A case study looked at a second-order system.

Non-linear systems can be analyzed by making them linear.
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2.5 Problems With Solutions

Problem 2.1 Solve the following first order differential equation given the initial condition.
X+2x =0 x(0) = 3
Problem 2.2 Solve the following second order homogeneous differential equation given the initial condition.
i+2k+x =0 x(0) = 1 x(0) = 2
Problem 2.3 Solve the following second order non-homogeneous differential equation given the initial condition.
X+ 2% +x =1 x(0) = 0 x(0) = 0

Problem 2.4 Convert the following equation to phase-shift form.

5s8in6¢ + 7 cos6t

Problem 2.5 The following differential equation was derived for a mass suspended with a spring. At time Os the system is
released and allowed to drop. It then oscillates. Solve the differential equation to find the motion as a function of
time.

Z +
4 ZFy =Ky-Mg = -Mj

K, = IOON
’ " (IOOJVD 1K (9 81 N) = (-1Kg)y
y—(1Kg)(9. Ko = (-1Kg)y

y

M = 1Kg (1N—Z’)y+(100%9y ~ 981N
s

(1Kg)y+(1oo@)y - 9g1%em
FBD: I% ms> 2
A &y
M

j}+(100s72)y = 9.81m572

Yo = Om571

*Mg yOZOm

Problem 2.6 Find the differential equation equations using the response when a step input of Vs=12V is applied:

1800 rad/s 4 Kz) X
— 4+ | — = [ =
(d) @ (JR @ (JR) s
—
0.2s 0.4s 0.6s
Problem 2.7 Use the general form given below to find the final solution without solving the differential equation. Assume the
system starts at y=-20.
!
. T
y+10y =5 p VO =y FOh-ye

Problem 2.8 Determine the first order differential equation given the graphical response shown below. Assume the input is a
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step function.

X

, A

| | | Y
| | | I
0 1 2 3
Problem 2.9 What are the damping coefficient and damped frequencies for the equations.
F
- -2 m F
+ = _—f — —
X, 10s x P 1 3t T00kg
s
P F
2 100kg

Problem 2.10 Solve the following differential equation with the three given cases. All of the systems have a step input ‘y’ and
start undeflected and at rest.

initial conditions v =
jé+2(;con5c+coix =y =0
x =20
1 y=1
case 1. £ =0.50 o, =10
case 2: =10 ©, =10
case 3: =20 o =10

Problem 2.11 Write the homogeneous differential equation for a second order system with the first peak at 1s and 10% over-
shoot. The system variable is ‘x’.

Problem 2.12 The second order response below was obtained experimentally. Determine the parameters of the differential



Problem 2.13

Problem 2.14

Problem 2.15

Problem 2.16

Problem 2.17

Problem 2.18

2.0

10.0
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equation that resulted in the response assuming the input was a step function.

A 0.5s

1.0s

t(s)

A system is to be approximated with a mass-spring-damper model using the following parameters: mass 28N,
viscous damping 6Ns/m, and stiffness 36N/m. Calculate the undamped natural frequency (Hz) of the system, the
damping ratio and describe the type of response you would expect if the mass were displaced and released. What
additional damping would be required to make the system critically damped?

M)'c'+Kd)'c+Kx =F
s

Solve the differential equation below using homogeneous and particular solutions. Assume the system starts
undeflected and at rest with no acceleration.

0 +400+200+20 = 4

Solve the following differential equation with the given initial conditions and draw a sketch of the first 5 sec-
onds. The input is a step function that turns on at t=0.

0.5V _+0.6V +21V_ = 3V.+2 initial conditions =5
o o o 1

V.
l
V=0
[
Vo =0
[

A spring mass system supports a mass of 34N. If it has a spring constant of 20.6N/cm, what is the systems natu-
ral frequency?

Using a standard lumped parameter model the weight is 36N, stiffness is 2.06%10"3 N/m and damping is 100Ns/
m. What are the natural frequency (Hz) and damping ratio?

Write the differential equation for a first order system with a variable ‘x’. The system has the response shown in
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the graph below for an input of F=6.

X

A

5
t(s)
| | | >
0 1 2 3

Problem 2.19 The mass, M, illustrated below starts at rest. It can slide across a surface, but the motion is opposed by viscous
friction (damping) with the coefficient B. Initially the system starts at rest, when a constant force, F, is applied.
Write the differential equation for the mass, and solve the differential equation. Leave the results in variable
form.

X
4>
M F
B
RSB
7

Problem 2.20 Write a differential equation for a system that has a time constant of 2 s. For an input of 3, the steady state output
is 6.

Problem 2.21 A system is tested with a step input of F = IN. The resulting output y’ is shown in the graph below. a) Find the
differential equation for the system. b) Find the explicit response (i.e., solve the differential equation) for an input
of F=sin(t)N.

y(® A
t(s)
0 -
_6 \
T ——
0 2
Problem 2.22 Solve the following differential equation with the three given cases. All of the systems have a sinusoidal input ‘y’



Problem 2.23

Problem 2.24

Problem 2.25

Problem 2.26
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and start undeflected and at rest.

56+2Cc0n)'c+0)ix —y initial conditions: =0
x=0
) y = sin(?)
case I £ =05 ©, =10
case 2: =1 ®, = 10
case 3: C=2 o =10

Solve the following differential equation with the given initial conditions and draw a sketch of the first 5 sec-
onds. The input is a step function that turns on at t=0, and the system undeflected and at rest.

05V +0.6V +21V =3V.+2 initial conditions: V.=5
0 o o ! !

V,=10

Vo o=1

o

What is the differential equation for a second-order system that responds to a step input with an overshoot of
20%, with a delay of 0.4 seconds to the first peak?

What would the displacement amplitude after 100ms for a second order system having a natural frequency of 13
rads/sec and a damping ratio of 0.20. Assume an initial displacement of 50mm, and a steady state displacement

of Omm. The system is release from rest. (Hint: Find the response as a function of time.)

Explain with graphs how to develop first and second-order equations using experimental data.
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Problem 2.27 Develop equations (function of time) for the first and second order responses shown below.

X (m)
5m
t(s)
Om I | | | | | I >
0.1s 0 Es 0 gs 0 Js 8.55 0.6s 0.7s 0.8s

Sm —

0m I I /\VW»
Is \/ 3s v t(s)

-10m

Problem 2.28 Find the explicit response of the following differential equation to the given step input. Assume the initial condi-
tions are all zero. (Note: u(t) simply means that the value is zero before t=0.)

¥+ 10% + 100 + 1000x = 4F F(t) = 10u(?)

Problem 2.29 A mass-spring-damper system has a mass of 10 kg and a spring coefficient of 1KN/m. Select a damper coeffi-
cient so that the system will have an overshoot of 20% for a step input.

2.6 Problem Solutions

Answer 2.1
x(1) = 3¢
Answer 2.2
x(t) = eit+ 3teit
Answer 2.3
x(t) = — et 41
Answer 2.4

8.602sin(6¢+ 0.951)



Answer 2.5

Answer 2.6

Answer 2.7

for y0 =0m :

75

homogeneous: (we make a guess At . At : 2 At
g ( & ) y, = e yh=Ae yh=Ae
A2+ (10052 = 0
A% = 10052 A = +10js |
Yy, = Cycos(10t+ C,)
Particular: (we make a guess) _ - .
y, =4 yp =0 Yy =0
-2 -2
(0)+(100s )4 = 9.81ms
(1005 2)4 = 9.81ms >
-2
4= 28 0.0981m
100s
Yp = 0.0981m
y = yh+yp = Clcos(10t+C2)+0.0981m
¥ = -10C;sin(10z + C,)
Initial Conditions:
for d/dt y0 =0m :
0 = -10C;sin(10(0) + C,) C, =0

0 = C,cos(10(0)+(0)) +0.0981m

~0.0981m = C,cos(0)

y(t) = (-0.0981m)cos(10¢) + 0.0981m

d) | 1800
o+ —p =
(d O O5° T 120015) s

w(1) = 0.5-205¢ 1%

C, = —0.0981m
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Answer 2.8

Answer 2.9

Given the equation form,

X+ lx =4
T
The values at steady state will be

x=0 x=4

So the unknown ‘A’ can be calculated.

0+14 = 4 4=4
x+%x:4
Xx+x =4

%+ 105 Cxy = £+ 520, 0) +x(mi)

2 -2
o = 10s wn_mm_d
20 L =10 =0
_ / 2 _ rad
w,; = o, 1-¢ _mn_mT
— i +(2>
X, =X x( conC) xlo,
2
®, =0 ®, =0
20 £ =10 =0

t(s)



Answer 2.10
case 1:
case 2:
case 3:
Answer 2.11

X(1) = —0.0115¢ > cos(8.66¢—0.524) +0.010

x(1) = —0.010e %0102 "+ 0.010

x(1) = 775 - 10 03732

X+4.605x +15.171x = 0

—0.0108e

—2.679¢

+0.010

77
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Answer 2.12

For the first peak:

b _ P
Ax ¢
T
2 _ -c05 (’szt_
10 P
2) _
1n(10 c0.5
_ 2) -
c 21n(10 3.219
For the damped frequency: =

These values can be used to find the damping factor and natural frequency

3.219
c=Co, w, = —
0, = O)n/\/1 fgz
3.219 2
2 = 22201 -
C g
(2 )2 17
3.219 2
g
2 =
(3227;9) 1= Lz :
' g
_ 3219 _ 3219 _
no ¢ 0as60 0%

This leads to the final equation using the steady state value of 10
.. . 2
¥+t20o, xt+to x = F
X +2(0.4560)(7.059)x + (7.059)2x =F

$+6.438%+49.83x = F
(0) + 6.438(0) + 49.83(10) = F

X+6.438x +49.83x = 498.3

= 0.4560

F = 4983



Answer 2.13

Given,

M= BN sske

9.81—
kg

3=

The typical transfer function for a mass-spring-damper systems is,

K K
d) (s)_F
+il =] +x| =] = =
xx(M xM M

The second order parameters can be calculated from this.

54 %(260,) +x(02) = (1)

N
_J[Z_,36a_
© = |8 - -

n NM  N285kg

2
— J12.6357% = 355799 _ 061z
N

K
G __ o
6= 20, rad = 0.296

no2(3.55)"°2.85kg

0g = o, 1-¢ = 33074

If pulled and released the system would have a decaying oscillation about 0.54Hz

A critically damped system would require a damper coefficient of....

(K
A/;,) Ka _ 202N
C - _ Ky = 202

~ 1.00
2o, 2(3.55)V“sz.85kg

79
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Answer 2.14

0 +400+200+20 = 4

Homogeneous
—39.495¢ —0.1379¢ -0.3672¢
0,(t) = Cie +C,e +Cze
Particular
Op(t) = 2.0

Initial Conditions are zero

0(1) = €, 2045t 0 O, o 03Ty
C,+Cy+Cy =20
0(r) = ~39.495C,¢ 013790, " 0367205 T
~39.495C,~0.1379C,~0.3672C; = 0
B(r) = (39.495)°Cre > 1 (0.1379)7 Cae P 4 (03672)° Cye T
(39.495)"C1 +(0.1379)"C2+(0.3672)"C; = 0
In Scilab:
A=[1, 1, 1;-39.495] ; [-0.1379, 0.3672] ; [(-39.495)"2, (-0.1379)°2, (-0.3672)"2]
B=[-2;0;0]
inv(A)*B
0(t) = *65.8X1076e_39'495t+ (73'214)6—0.1379t+ (1'214)6—0.3672t+ 20

Answer 2.15

V(1) = 8.465¢ ' gin(1.960¢ + 1.274) + 8.095

or
V(1) = -8.465¢ % cos(1.960¢— 0.2971) + 8.095

Answer 2.16 24.37 rad/sec
Answer 2.17 fn=3.77Hz, damp.=0.575

Answer 2.18

. 1
+—x = 0.
X 0.9x 0.926F
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Answer 2.19
B,
B B
Answer 2.20
. 1 3
Pyt 2V, = CV,
for steady state,
(0)+%(6) - C(3) C=1
Vo405V =V,
Answer 2.21
a) y+0.5y = -3F
—0.5¢ .
b) y(£) = 2.40¢ "+ 2.683sin(1— 1.107)
Answer 2.22
1: _
case (1) = —0.00117¢ ' sin(8.66/— 1.061) + 0.0101 sin(¢— 0.101)
2: 3 _ _ _
case X(6) = (196 - 10 )e %4 9.9.10 ) e %+ (9.9 10)sin(z— 0.20)
case 3: -3 _ 6 — _
X0 = (35-10 e 2 (1810 e 373 4 (9.4 10 ) sin(r - 0.382)
Answer 2.23
—0.6¢
V(i) = -8.331¢ " cos(1.961—0.238) + 8.095
Answer 2.24
§+8.0485%+77.88x = F(f)
Answer 2.25

6

$(1) = 0.0510¢ =% cos(12.741— 0.201)

1(0.1s) = 0.0188m

Answer 2.26 Key points:
First-order: find initial final values, find time constant with 63% or by slope, and use these in standard equation
Second-order: find damped frequency from graph, find time to first peak, and use these in cosine equation
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Answer 2.27
=t
x(t) =5 1—60'18 x(t) = —10.24e70'693tcos(m—0.217)
Answer 2.28
x(1) = 0.040—o.ozoe’m’_(wsin(l(wr E)
NG 4
Answer 2.29
Given,
N b
M = 10k K. = 10002 b _ oo
g s p” ™

The differential equation for a mass spring damper system with known terms is,

R S (Kd>. (Ks) . (Kd). 100
V+ 2oy +oy =i+ 30y +(77)y =V +15)7 +(100)y

®, = /100 = 10”’Td K, = M2, = 20,0008

The overshoot can be used with the approximation equations to find the damping factor.

b —ot
L - P oo ot = —In(0.2)
Ax p
¢ = 12 = 1 — = 05278
\/(ti) 1 «/(fln(O.Z)) +1
O

The overshoot can be used with the approximation equations to find the damping factor.

L - P-oo2 o, = ~In(0.2)

>
|

_ Ns
4 = 20,000C = 10556;

2.7 Problems Without Solutions

Problem 2.30 Solve the following differential equation to obtain an explicit function of time. Assume the equation describes a
system that starts at rest and undeflected.

X+ 10)'c2 =10

Problem 2.31 Write a function of time for the graph. (Note: measure, using a ruler, to get values.) Find the natural frequency



and damping factor to develop the differential equation. Using the dashed lines determine the settling time.

A

2.2

AL

2.0 \/ v N

0 ] >
4.0 3.0
t<4 y(t) = 0
t>4 y(t) =

2.8 Review of Basic Algebra

83

* Although well known, it is easy to make mistakes with simple operations. This is more true when the methods have not

been used in a long while.
* These operations are generally universal, and are described in sufficient detail for our use.

* Basic properties include,

commutative a+b = b+a
distributive a(b+c) = ab+ac
associative a(bc) = (ab)c at(btc) =(at+tb)tc

Figure 2.42 Basic algebra properties

* The quadratic equation appears in almost every engineering discipline, therefore is of great importance.

2
ax2+bx+c=0=a(x_r1)(x_r2) _ —b*Nb —4ac

"’ T 2a

Figure 2.43  Quadratic equation
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Problems

Problem 2.32 Are the following expressions equivalent?

a) A(5+B)-C = 54+B-C
b) A+B _ A4 B

cC+D C D

4

¢) 5(5 ):55
9 (x+6)(x—06) :x2+36
e) 6

(El S M S

(x+1)

Problem 2.33 Simplify the following expressions.

a) X(x+2)° = 3x 2 0
(x+3)(x+1)x
®) +1 2
(x+1)x h)
c) ?—2
15 3 i)
d) 2128
4 j)
¢) )

f) A 4x2 -8 y4 k)

Problem 2.34 Simplify the following expressions.

a) A+ B
AB
b) AB
A+ B
((x y )]
2
X
Answer 2.34
ans: a) A+B:i+£:l+l
AB AB AB B 4

b)

B N
118 cannot be simplified
4 5,3
9 (o) 253 _ 615
S22 = @) =y
X



Problem 2.35

Answer 2.35

Problem 2.36

Answer 2.36

Problem 2.37

Answer 2.37

Rearrange the following equation so that only ‘y’ is on the left hand side.

rix o x+2
ytz
ans: Yirx _ 4o
ytz
ytx = (x+2)(y+2)
ytx =xy+txz+2y+2z

y—xy—-2y =xz+2z—x

y(=x-1) = xz+2z—
_xz+2z—x
-x-1
Solve the following equation to find ‘x’.
2)62 +8x = -8
2
ans: 2x +8x = -8

rdx+d =0

Manipulate the following equation to solve for ‘x’.

x2+3x = -2

x2+3x = -2

x2+3x+2 =0

3+ 32-4)2)  —3+.9-8  —3+1

2(1) 2 2

X

=-1,-2

85
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2.9 Trigonometry Review

* The basic trigonometry functions are,

1
g =% -
st r cscO
X 1
0=2%=-
cos r secH
_y_ 1 _ sin®
tan® X cotO cosO

Pythagoreans formula:

222

* Graphs of these functions are given below,

Sine - SIN

| Tl

-270° 450°
1.0 —
Cosine - COS A

1.0
| | / \ /\ -
| Y
90N, 180°

|
-270°N -180° -90° 09
-1.0

450°
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Tangent - TAN

1.0

A o S
-t — - — -
-— - - — — — -

|
|
|
|
|
| -
-270° 30° -90° ) 90° 80° 270° 60° 45%)o
|
|
|
|
|
|
| |
|

* NOTE: Keep in mind when finding these trig values, that any value that does not lie in the right hand quadrants of Car-
tesian space, may need additions of £90° or +180°.

Cosine Law:

¢ = "+ ~2abcos,

Sine Law:

a b c

sineA sineB sinGC

* Now a group of trigonometric relationships will be given. These are often best used when attempting to manipulate
equations.
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sin(—0) = —sin6

sin® = cos(0—-90°) = cos(90°-0) = etc.

sin(6,+£6,) = sin®;cosB, = cosH,sinb,
cos(6,+£6,) = cosBcosb, F sinB; sin6,

tane1 + tane2
tan(0,+0,) = ————=
an (6, +6,) 1 7 tan@, tan6,

cotelcot92$ 1
J,- R —————————
COt(el _92) tanGzi tane1

sin? = + /1 —cos0
2 2

cos? = + /1+ cos6
2 2

O  sinO  1-cosO
tan- =

2 1+cos®  sin®

(cos0)> + (sin0)° = 1

* Numerical values for these functions are given below.

cos(—0) = cosHO

OR

OR

tan(—0) = —tan0

sin(20) = 2sinBcos0O

cos(20) = (cose)2 - (sine)2

-ve if in left hand quadrants

0 (deg) sin@ cos0 tan©
-90 -1.0 0.0 -infinity
-60 -0.866 0.5
-45 -0.707 0.707 -1
-30 -0.5 0.866
0 0 1 0
30 0.5 0.866
45 0.707 0.707 1
60 0.866 0.5
90 1.0 0.0 infinity




Problems

Problem 2.38 Find all of the missing side lengths and corner angles on the two triangles below.

/><1\00

Problem 2.39 Simplify the following expression.

cos0cosO — sinBsin® =

Answer 2.39

cosBOcosO — sinBsin® = cos(0+0) = cos(20)

Problem 2.40 Manipulate the following equation to solve for ‘x’.

sinx = cosx

Answer 2.40

sinx = cosx

sinx _ 1
cosx
tanx = 1
x = atanl
x = ...,—135°,45°,225° ...
Problem 2.41 Simplify the following expression.
(c0s20)”
siHZO(L + sinZO)
sin26
Answer 2.41
2
. (c0s20) e ) _ 2+ . 2 _
sm26(——sinze sin20 (c0s20)” +(sin20) 1

89
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2.10 Review of Basic Calculus

* NOTE: Calculus is very useful when looking at real systems. Many students are turned off by the topic because they
"don’t get it". But, the secret to calculus is to remember that there is no single "truth" - it is more a loose collection of tricks and
techniques. Each one has to be learned separately, and when needed you must remember it, or know where to look.

Differentiation

* The basic principles of differentiation are,

Both u, v and w are functions of x, but this is not shown for brevity. Also note that C is used as a con-
stant, and all angles are in radians.

d
E(C) =0

d . d
=(Cu) = (O)=(w)

4

4oy 4
dx(u+v+...) = dx(u)+dx(v)+...

d%(un) = (nun_l)d%c(u)

d%(uV) = (”)dix(v)-‘r(v)%(u)

) = (FEe-(55e

c%c(“"w) - (“V);%C(W) + (uW)d%(V) + (VW);?;(M)

4o — o
673'6()’) = du(y)dx(u) chain rule

d. .1
oI
dux
d
do - )
) T a
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« Differentiation rules specific to basic trigonometry and logarithm functions

d _ 2d
d%lc(sinu) _ (Cosu)dii(u) dx(cotu) (—cscu) dx(u)

d oo - 4
C%C(cosu) _ (—sinu)‘%lc(u) dx(secu) (tanusecu)dx(u)

d LY
E;C(tanu) = (—— ;Z')—C(u)

4 osen) - d
coS d—)-c(cscu) = ( cscucotu)dx(u)

d u _ ud
) = (@) dii(sinhu) - (coshu)d%lc(u)

==

2 (nx) = J d
dx —(coshu) = (sinhu)—(u)
dx dx

d -~ 2d
dx(tanhu) = (sechu) dx(u)

» L’Hospital’s rule can be used when evaluating limits that go to infinity.

2
i (1) = iy (Gho) () w

x lim 3
x—>a8 x—)a(g)g(x) x—)a(c_cll_r) 2(x)

*» Some techniques used for finding derivatives are,

Leibnitz’s Rule, (notice the form is similar to the binomial equation) can be used for finding the
derivatives of multiplied functions.

(f;—)n(uv) - (j@o(u)(%)n(vw (’f)(dﬁ’;) l(u)(dii-)nf ‘o
()L  w(L) (VD) (4 o)
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Integration

» Some basic properties of integrals include,

In the following expressions, u, v, and w are functions of

angles are radians.

JCdx =ax+C

j Cf(x)dx = cf f(x)dx

I(u+v+w+...)dx = Iudx+fvdx+fwdx+...

f udv = uvfjvdu = integration by parts

[ficax = Lfwda  u = cx

X. in addition to this, C is a constant. and all

_ d _ (Fw) u = f(x)
_[F(f(x))dx jF(u) = (x)du j oo
n+1 1
andx = +C I—dx = Inlx| +C
n+1 X
x X X
Jaxdx:a—-i-C Iedx:e-i-C
Ina
» Some of the trigonometric integrals are,
. 4 3x | sin2x | sindx
= _ ===y
J‘smxdx cosx +C J(cosx) dx 2 ) ) C
ne - (sing)" !
jcosxdx = sinx+C fcosx(sinx) de =389 ¢
n+1

J-(sinx)zdx _ smxcgsx-ﬁ-x+ c
j(cosx)zdx _ smxc;sx+x+ C

3 cosx((sinx)2 +2)
J-(sinx) dx = — : +C

3 sinx((cosx)2 +2)
j (cosx) dx = 3 +C

_cos(ax) , x .
J-xcos(ax)dx == + asm(ax) +C
2 2xcos(ax) | a>x>—2

Ix cos(ax)dx = x0052 ) x3 sin(ax)+ C

a a

Jsinhxdx = coshx+C

Jcoshxdx = sinhx+ C

Jtanhxdx = In(coshx)+ C



* Some other integrals of use that are basically functions of x are,

" n+1
Ix dx = % +C
n+l1
J‘(a+bx)71dx = M*—C
2. -1 1 Ja+2.J-b
(a+bx”) dx = In +C,a>0,b<0
I 2./(=b)a (J&xﬁ)

2
In(bx™ +a) e

2~
J-x(a-i-bx) dx = 5

-1
Ixz(a+bx2) dx =24 atan(@) +C
b p.Jab a

-1
I(az —xz) dx = Lln(a +x) + C, a2 >x2
2a \a-

[eax+ ) ax - iln(ax L h)+C

1

2 )
Ix(xziaz) dx = xziaz-i-C
-1
I(a+bx+cx2) dx = %1n|:/\/a+bx+cx2+xﬁ+if}+C,c>0

c 24c

—2¢cx—b

fxlbz —4ac

2.1 1.
I(a+bx+cx ) dx = —asin
N—c

:|+C,c<0
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1 3

2. 2 2
j(a+bx) dx = 55(a+ bx)

1 3

2, _ 2 2
j(a+bx) dx = 35 (a+bx)

! ;
Jx(a+bx)2dx _ _2(2a73bx)§a+bx)

15b

N —

1 In x+(-—l§+x2)
2 a

1
5 x(1+a2x2) +
22 a
(1+ax") dx =
2
3
2
L a5e)
2
Jx(1+a2x2) dx = 2 3
1 3 1
2 2 2
[*+a’) ax - f’-’-‘(—l—+ 2) 3+ dih
4\ 2 2
a 8a
1 1
2 2 ;
(17a2x2) dr = 1 x(lfazxz) N asin(ax)
2 a
1 3
222 a(l 2)2
JAx(lfa x7) dx = -3 - X
a
1 3 1
2 2 2
sz(az—xz) dx = —ﬁ(az—xz) +21—; x(az—xz)
1 1
2 2

J(1+a2x2) dx lln x+(i+x2)
a a2

1

2
_[(1 —azxz) dx = iasin(ax) = —Ll—zacos(ax)

* Integrals using the natural logarithm base ‘e’,

ax

Ieaxdx =% 4C
a

ax
J-xeaxdx = e—z—(ax -DH+C
a

1 2
In x+(-—-2—+x)
a

N jr—

8a3

2 .
+a asm(ﬁ



Problems

Problem 2.42 Find the derivative of the function below with respect to time.

2t
3t 2+e

2+

Answer 2.42

(@5 = (Do oD (e = saro™ s 2
2+0)

Problem 2.43 Find the following derivatives.

a) g-t( sinz + cost)
d -2
b) Z(t+2) )
d 8t
c) E(Ste )
d) 6%(5 In7)
Answer 2.43
a) g_ 1 = ﬁi_ 1 + _d_ = o
dt( sint + cost) dt( sint) dt( cost) = cost— sint
b) 0%((¢+ )%y = 2(1+2)
0) 45168 = 568 1 4016
dt
d) d 5
071(5 Int) = ;
Problem 2.44 Find the following integrals
2) [orar
b) [14e" ar
¢) j sin(0.5¢)dt

d) Jédx
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Answer 2.44

Problem 2.45

Problem 2.46

Answer 2.46

Problem 2.47

Answer 2.47

Problem 2.48

2 2 3
a) J-6t dt=6(§)=2t +C
Tt 7 Tt
b) j14e dt=14(g7—l)+c=2e +C
o) [sin(0.50)ar = w +C = —2cos(0.50)+C
d)

Find the following derivative.

Find the following derivatives.

a)

b)

b)

Solve the following integrals.

Jédx = Sln(x)+C

d 4t -3
— +(t+
dt(Ste (t+4) )

1_1_)
dx\x+1

g;(e_tsin(2t74))

ﬁi_( 1): -1
dx\x +1 (x+1)2

c%(e’tsin(ztf 4)) = —¢ 'sin(2—4)+2¢ 'cos(2t—4)

2
2) [ear b) [(sin6+ cos30)d0
2) [*lar = 05¢*+C
b) [ (sin6 + cos30)d0 —cosO+%sin36+C

Find the response x’ + 5x = 0 if x(0) = 4.

x+5x =0 x(0) =4



Answer 2.48

X+5x =0 x(0) =4
Homogeneous:
X, = CeAt
caeM v s5ce™y = o 4=
X, = Cei5t

Initial Conditions:

x(t) = Ce '+ no particular solution
x(0) = ce > =4 C=4
x(t) = 4e_5t

Problem 2.49 Find the homogeneous solution for x” + 4x” +20x =0

X+4x+20x =0

Answer 2.49

X+4x+20x =0
Homogeneous:

At
X, = Ce

At
ca’e” vacact v 20ceM = 0

A2 +44420 = 0

x, = Cpe lsin(4t+Cy)
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3. Numerical Analysis

Topic 3.1 State variable form for differential equations.

Topic 3.2 Numerical integration with software and calculators.

Topic 3.3 Numerical integration theory: first-order, Taylor series and Runge-Kutta.
Topic 3.4 Using tabular data.

Topic 3.5 A design case.

Objective 3.1 To be able to solve systems of differential equations using numerical methods.

For engineering analysis it is always preferable to develop explicit equations that include symbols, but this is not always
practical. In cases where the equations are too costly to develop, numerical methods can be used. As their name suggests, numeri-
cal methods use numerical calculations (i.e., numbers not symbols) to develop a unique solution to a differential equation. The
solution is often in the form of a set of numbers, or a graph. This can then be used to analyze a particular design case. The solution
is often returned quickly so that trial and error design techniques may be used. But, without a symbolic equation the system can be
harder to understand and manipulate.

This chapter focuses on techniques that can be used for numerically integrating systems of differential equations.

3.1 The General Method

The general process of analyzing systems of differential equations involves first putting the equations into standard form,
and then integrating these with one of a number of techniques. State variable equations are the most common standard equation
form. In this form all of the equations are reduced to first-order differential equations. These first-order equations are then easily
integrated to provide a solution for the system of equations.

State Variable Form

(di) x = Ax + Bu state variable equation

y = Cx+ Du output equation

where,
x = state/output vector (variables such as position)
u = input vector (variables such as input forces)
A = transition matrix relating outputs/states
B = matrix relating inputs to outputs/states
y = non-state value that can be found directly (i.e. no integration)
C = transition matrix relating outputs/states

D = matrix relating inputs to outputs/states

Figure 3.1 The general state variable form

At any time a system can be said to have a state. Consider a car for example, the state of the car is described by its position
and velocity. Factors that are useful when identifying state variables are:
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* The variables should describe energy storing elements (potential or kinetic).
* The variables must be independent.
* They should fully describe the system elements.

After the state variables of a system have been identified, they can be used to write first-order state variable equations.
The general form of state variable equations is shown in Figure 3.1. Notice that the state variable equation is linear, and the value
of x is used to calculate the derivative. The output equation is not always required, but it can be used to calculate new output values.

An example of a state variable equation is shown in Figure 3.2. As always, the FBD is used to develop the differential
equation. The resulting differential equation is second-order, but this must be reduced to first-order. Using the velocity variable, ‘v’
the second-order differential equation can be reduced to a first-order equation. An equation is also required to define the velocity as
the first derivative of the position, ‘x’. In the example the two state equations are manipulated into a matrix form. This form can be
useful, and may be required for determining a solution. For example, HP calculators require the matrix form, while TI calculators
use the equation forms. Software such as Mathcad can use either form. The main disadvantage of the matrix form is that it will only
work for linear differential equations.

Given the FBD shown below, the differential equation for the system is,

F . v ) de . . )
< < ZFx = —F—de—KSx = MXx
X S ) g
—»M).C. —F—de—KSx Mx

The equation is second-order, so two state variables will be needed. One obvious choice for a state vari-
able in this equation is ‘x’. The other choice can be the velocity, ‘v’. Equation (1) defines the velocity
variable. The velocity variable can then be substituted into the differential equation for the system to
reduce it to first-order.

X =v eqn 3.1
Mx = —F—Kd)'c—K X
S
Mv = —F—Kdv—K X
S
K K

SR NE

equation 3.1 and equation 3.2 can also be put into a matrix form similar to that given in Figure 3.1.

4 0 1 0

a x| — x| 4

arl,| | Es Rl £
M M M

Note: To have a set of differential equations that is solvable, there must be the same number of state
equations as variables. If there are too few equations, then an additional equation must be devel-
oped using an unexploited relationship. If there are too many equations, a redundancy or over con-
straint must be eliminated.

Figure 3.2 Example: A state variable equation

Consider the two cart problem in Figure 3.3. The carts are separated from each other and the wall by springs, and a force
is applied to the left hand side. Free body diagrams are developed for each of the carts, and differential equations developed. For
each cart a velocity state variable is created. The equations are then manipulated to convert the second-order differential equations
to first-order state equations. The four resulti