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Key Features

Preface

This book introduces students to the theory and practice of control systems
engineering. The text hasizes the practical application of the subject to the
analysis and design of feedback systems.

The study of control systems engineering is essential for students pursuing
degrees i electrical. i aerospace, or chemical engineering. Control
systems are found in a broad range of applications within these disciplines, from
aircraft and spacecraft to robots and process control systems.

Control Systems Engineering is suitable for upper-division college and uni-
versity engineering students and for those who wish to master the subject matter
through self-study. The student using this text should have completed typical lower-
division courses in physics and mathematics through differential equations. Other
required background material, including Laplace transforms and linear algebra, is
incorporated in the text, either within chapter discussions or separately in the ap-
pendixes or on an accompanying CD-ROM. This review material can be omitted
without loss of continuity if the student does not require it.

The key features of this fourth edition are

Standardized chapter organization

Qualitative and itati

Examples, Skill-Assessment Exercises, and Case Studies throughout the text
Control Solutions Powered by JustAsk!©

Cyber Exploration Laboratory experiments

Abundant illustrations

Nuroerous end-of-chapter problems
Emphasis on design

Flexible coverage
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m  Emphasis on computer-aided analysis and design
m  Icons identifying major topics
m  CD-ROM containing additional matenial

Let us look at each feature in more detail.

Standardized Chapter Organization

Each chapter begins with a list of chapter objectives, followed by a list of case
study objectives that relate the chapler objectives to specific student performance
in solving a practical case study problem, such as an antenna azimuth position
control systemn.

‘Topics are then divided into clearly numbered and labeled sections comaining
explanations, examples. and, where appropriate. skill-assessment exercises with
answers. These numbered sections are followed by one or more case studies, as will
be outlined in a few paragraphs. Each chapter ends with a brief summary, several
review questions requiring short answers, and a set of homework problerms.

Qualitative and Quantitative Expl.

Explanations are clear and complete and, where appropriate, include a brief review
of required background material. Topics build upon and support one another in a
logical fashion. Groundwork for new concepts and terminology is carefully laid to
avoid overwhelming the student and o facilitate self-study.

Although itati lutions are obviously important, a itative or intu-
itive understanding of problems and methods of solution is vital to producing the
insight required to develop sound designs. Therefore, whenever possible, new con-
cepts are di d from a qualitati ive before itative analysis and
design are addressed. For example, in Chapter 8 the student can simply look at
the root locus and describe qualitatively the changes in transient response that will
occur as a system parameler, such as gain, is varied. This ability is developed with
the help of a few simple equations from Chapter 4.

Examples, Skill-Assessment Exercises, and Case Studies

Explanations are clearly illustrated by means of numerous numbered and labeled
Examples throughout the text. Where appropriate, a section concludes with Skill-
Assessment Exercises. These are computation drills, most with answers, that test

p ion and provide i iate feedback. Complete solutions can be found
on the accompanying CD-ROM.

Broader examples in the form of Case Studies can be found after the last num-
bered section of every chapter. with the exception of Chapter 1. These case studies
are practical ication p that the concepts introdh in the
chapter. Each case study concludes with a “Challenge™ problem that students may
work in order to test their understanding of the material.

One of the case studies, conceming an antenna azimuth position control system,
is carried throughout the book. The purpose is to illustrate the application of new
materialineachchap physical ighlighting the continuity
of th 1, Another, h i dy, il inganU

Free-Swimming Si ible Vehicle, is d ped the course of five chap
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Control Solutions Powered by JustAsk!

Control Solutions is a Web site that is essentially « tutor serving the needs of both
the student and the professor. A total of over 150 end-of chapter problems and
Skill-Assessment Exercises from the book will have step-by-step solutions. These
problems are worked in detail and explanations of every facet of tbe solutions are
provided. As such. this Web site is a valuable 100l in the use of this book. This site
is password protected and can be accessed by ing The Control Soluti
Companion, ISBN 0471483885. This companion supplies you with an access code
to the Control Solutions Web site as well as instructions on how to use the Web site.
The Control ions Ci fon can be p sed on the book ion Web
site. www.wiley.com/college/nise.

Cyber Exploration Laboratory Experiments

Computer experiments usmg MATLAB, Simulink, and the Control System Tool-
box are found at the end of the Problems section of Chapters 4 through 13 under the
subheading Cyber Exploration Laboratory. The experiments allow the reader
to verify the concepts covered in the chapter via simulation. The reader also can
change parameters and perform “what if " exploration to gain insight into the effect
of parameter and configuration changes. The experiments are written with stated
Objectives, Minimum required software packages, as well as Prelab, Lab, and Post-
Iz tasks and questions. Thus, the experiments may be used for a laboratory course
that accompanies the class.

Abondant Hlustrations

The ability to visualize concepts and processes is critical to the student’s under-
standing. For this reason approximately 750 photos, diagrams, graphs, and tables
appear throughout the book to illustrate the topics under discussion.

Numerous End-of-Chapter Problems

Each chapter ends with a variety of homework problems that allow students to
test their understanding of the material presented in the chapter. Problems vary
in degree of difficulty and complexity, and most chapters include several practical,
real-life to help maintain students™ motivation. Also. the prob-
lems contain a progressive analysis and design problem that uses the sume practical
system to demonstrate the concepts of each chapter.

Emphasis on Design

This textbook places a heavy emphasis on design. Chapters 8, 9, 11, 12, and 13
focus primarily on design. But even in chapters that emphasize analysis, simple
design examples are included wherever possible.

Throughout the book, design examples involving phystcal systems are identi-
fiedby a Dealgn icon. End-of-chapter p thatinvolve the desig;
of physical systerns are included under the separate heading Design Problems and
also, in chapters covering design, under the heading Progressive Analysis and
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Design Problem. In these examples and problems, a desired response is specified,
and the student must evaluate certain system parameters, such as gain, or specify

a system ion along with values. In addition, the text includes
design ples and p (not identified by an icon) that involve

purely malhemaucal systems.
Because vi ion is so vital to und ding design, this text carefully

relates indirect design specifications to more familiar ones. For example, the less
familiar and indirect phase margin is carefully related to the more direct and famil-
iar percent overshoot before being used as a design specification.

For each general type of design problem introduced in the text, a methodology
for solvmg lhe problem is presented—in many cases in the form ofa step by-step

with a of desxgn i

serve to the gy by fol g the makmg simpli-
fying assumptions. and presenting lhe results of lhe design in tables or plots that
compare the performance of the original system to that of the improved system.
This comparison also serves as a check on the simplifying assumptions.

‘Transient response design topics are covered comprehensively in the text. They
include

Design via gain adjustment using the root locus
Design of compensauon and controllers via the root locus

Design via gam adj using i q 'y response methods
Design of on via s i response methods

Design of controllers in state space using pule-placement techniques
Design of observers in state space using pole-placement techniques
Design of digital control systems via gain adjustment on the root locus

Design of digital control system via s-plane design and the Tustin
transformation

Steady-state error design is covered comprehensively in this textbook and
includes
®»  Gamn adjustment
m  Design of compensation via the root locus
= Design of compensation via sinusoidal frequency response methods
m  Design of integral control in state space
Finally, the design of gam to yield stability is covered from the following
perspectives:
m  Routh-Hurwitz criterion
m  Root locus
m  Nyquist criterion
w Bode plots
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Flexible Coverage

The material in this book can be adapted for a one-quarter Or a one-semester course.
The organization is flexible, allowing the instructor to select the material tha best
suits the requirements and time constraints of the class.

‘Throughout the book state-space methods are presented along with the classi-
cal approach. Chapters and sections (as well as examples, exercises, review ques-
tions. and problems) that cover state space are marked bya stateSpace
icon and can be omitted without any loss of continuity. Those wishing to add a
basic introduction to state-space modeling can include Chapter 3 in the syllabus.

In a one-semester course, the di ions of state-space analysis in Chapters 4,
5,6, and 7, as well as state-space design in Chapter 12, can be covered along with
the classical approach. Another option is fo teach state space separately by gather-
ing the appropriate chapters and sections marked withthe ~ state Space  icon
into a single unit that follows the classical approach. Ina one-quarter course, Chap-
ter 13, “Digital Control Systems,” could be eliminated,

Emphasis on Computer-Aided Analysis and Design

Control systems problems, particularly analysis and design problems using the root
locus, can be tedious, since their solution involves trial and error. To solve these
problems, students should be given access to computers or programmable calcu-
lators configured with appropriate software. In this fourth edition, MATLAB®!
continues to be integrated into the text as an optional feature.

Many problems in this text can be solved with either a computer or a hand-
held, programmable calculator. For example, students can use the programmable
calculator to (1) determine whether a point on the s-plane is also on the root lo-
cus, (2) find magnitude and phase frequency response data for Nyquist and Bode
diagrams, and (3) convert between the followi g repi ions of a d-ordk
system,

Pole location in polar coordinates
Pole location in Cartesian coordinates
Characteristic polynomial

Natural frequency and damping ratio
Settling time and percent overshoot

Peak time and percent overshoot
Settling time and peak time

Handheld calcul: have the ge of easy ibility for h k and
exams. Please consult Appendix G, locaied on the enclosed CD-ROM, for a dis-
cussion of computational aids that can be adapted to handheld calculators,
Personal computers are better suited for more computation-intensive applica-
tions, such as plotting time responses, root loci, and frequency response curves,
as well as finding state-transition matrices. These computers also give the student

'MATLARB is a registered trademark of The MathWorks, Inc.
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a real-world environment in which to analyze and design control systems. Those
not using MATLAB can write their own programs or use other programs, such as
Program CC. Please consult Appendix G, on the accompanying CD-ROM, for a
discussion of computational aids that can be adapted for use on computers that do
not have MATLARB installed.

‘Without access to or p it students cannot
obtain meamngful analysis and deslgn results and the learning experience will
be limited.

Icons Identifying Major Topics

Several icons identify coverage and optional material. The icons are summarized
as follows:

The Control Solutions icon i included on the Control So-
lutions Web site powered by JustAsk! These problems are worked in detail and
explanations of every facet of the solution are provided.

The MATLAB icon identifies MATLAB discussi ises, and
bl MATLAB age is provided as an and is not required
lo use the text.

The Simulink icon i and
bl Si coverage is provided as an and is not required to

use the text.

The GUI Tool icon identifies MATLAB GUI Tools discussions, examples, €x-
ercises, and problems. The discussion of the tools, which includes the LTI Viewer,
the Simulink LTI Viewer, and the SISO Design Tool. is provided as an enhance-
ment and is not required to use the text.

The Symbollc Math icon identifies Symbolic Math Toolbox discussions,
., and p Symbolic Math Toolbox coverage is provided
as an enhancement and is not required to use the text.

The State Space icon highli, Lat
and problems. State-space material is opuonal and can be omitted without loss of
continuity.
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D sign The Design icon clearly identifies design p involving physical systems.
Control Solutions  Control Solutions powered by JustAsk! is a Web site that con-
tains step-by-step solutions to over 150 end-of-chapter problems. Details are de-
scribed under Key Features earlier in this Preface.

CD-ROM Containing Additional Material
A CD-ROM disk accompanies the textbook. The disk contains the following:

m PowerPoint®' and Acrobat®? files containing most figures from the textbook.
The files may be used as a convenient method to project graphics on a screen
to enhance lectures.

n ions to skill

m  All M-files used in the MATLAB, Simulink, GUI Tools, and Symbolic Math
Toolbox tutorials

m  Additional computer programs that can be used by readers without access to
MATLAB

m  Copies of Cyber Exploration Laboratory experiments for convenience in print-
ing, for the purpose of including the experiment questions and tasks as a cover
sheet for the lab reports

w  Additional appendixes; topics 1 Table of Contents

w  Alink to the JustAsk! Website

New to this Edition

The following list describes the key changes in this fourth edition.

End-of-chapter problems There is at least a 10% change in the problems at the
end of the chapters.

Control Solutions  Control Solutions powered by JustAsk! is a Web site that con-
tains step-by-step solutions to over 150 end-of-chapter problems. Details arg’de-
scribed under Key Features earlier in this Preface.

MATLAB The use of MATLAB for computer-aided analysis and design con-
tinues to be d into di: jons and prot as an optional feature in the
fourth edition. The MATLAB tutorial has been updated to MATLAB Version 6.5 the
Control System Toolbox Version 5.2, and the Symbolic Math Toolbox Version 3.0
MATLAB’s Simulink?® The use of Simulink to show the effects of nonlineari-
ties upon the time resp of open-loop and closed-loop systems appears again in

'PowerPoint is a registered trademark of Microsoft Corporation.
2Acrobat is a registered trademark of Adobe Systems Incorporated.
3Simulink is a registered trademark of The MathWorks. Inc
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this fourth edition. We also continue to use Simulink to demonstrate how 1o sim-
ulate digital systems. In addition, Simulink has been added to the new subsection
described below—the Cyber Exploration Laboratery. Finally, the Simulink tutorial
has been updated to Simulink 5.

MATLAB’s GUI'Tools  The MATLAB's GUI Tools tutorial has been updated to
include new and revised versions of the LTI Viewer, the Simulink LTI Viewer. and
the SISO Design Tool, which replaces the Root Locus Design GUL

Cyber Exploration Lahoratory New to this edition are computer experiments
using MATLAB, Simulink, and the Control System Toolbox. These experiments
are found at the end of the Problems section of Chapters 4 through 13 under the
subheading, “Cyber Exploration Laboratory.” The experiments may be used for a
laboratory course that accompanies the class. Copies of these experiments can be
found on the accompanying CD-ROM and can be printed for convenience.

Topics moved to CD-ROM  Derivations in Chapters 4 and 5 were moved to the
accompanying CD-ROM. In particular, the derivation of the time domain solution
of state equations, in Section 4.11, in the third edition, now occupies Appendix I
on the accompanying CD-ROM. Also, the derivation of similarity transformations.
previously in Section 5.8, is now in Appendix K on the accompanying CD-ROM.
Sections 4.11 and 5.8 still contain the results of the derivations as well as examples.
Finally, the derivation of a schematic for a dc motor, previously in Appendix F in
the third edition, has been moved to Appendix H on the accompanying CD-ROM.

Book Organization by Chapter

Many times it is helpful to understand an author’s reasoning behind the organiza-
tion of the course material. The following paragraphs hopefully shed light on this
topic.

The primary gnal of Chapter 1 is to motivate students. In this chapter students
learn about the many applications of control systems in everyday life and about
the advantages of study and a career in this field. Control systems engineering
design objectives, such as transient response, steady-state error, and stability, are
introduced, as is the path to obtaining these objectives. New and unfamiliar terms
also are included in the Glossary.

Many students have trouble with an early step in the analysis and design
sequence: transforming a physical system into a schematic. This step requires
many simplifying assumptions based on experience the typical college student
does not yet possess. Identifying some of these assumptions in Chapter 1 helps to
fill the experience gap.

Chapters 2, 3, and 5 address the representation of physical systems. Chapters 2
and 3 cover modeling of open-loop systems, using frequency response lechmques
and state-sp; i Chapters di the and
reduction of systems formed of ik . Only a rep-
resentative sample of physical sysiems can be covered m a textbook of this lengvh
Electrical, h: (both l and ), and el
systems are used as examples of physical systems that are modeled, analyzed and
designed. Linearization of a nonli hnique used by th

to simplify a system in order to it ically—is also i
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Chapter 4 provides an introduction to system analysis, that is, finding and
describing the output response of a system. It may seem more logical to reverse
the order of Chapters 4 and 5, to present the material in Chapter 4 along with
other chapters covering analysis. However, many years of teaching control systems
have taught me that the sooner students see an application of the study of system

ion, the higher their motivation levels remain,

Chapters 6, 7, 8, and 9 return to control systems analysis and design with the
study of stability (Chapter 6), steady-state errors (Chapter 7), and transient response
of higher-order systems using root locus techniques (Chapter 8). Chapter 9 covers
design of compensators und controllers using the root locus.

Chapters 10 and 11 focus on sinusoidal frequency analysis and design. Chap-
ter 10, like Chapter 8, covers basic concepts for stability, transient response, and
steady-state error analysis. However, Nyquist and Bode methods are used in place
of root locus. Chapter 11, like Chapter 9, covers the design of compensators, but
from the point of view of sinusoidal frequency techniques rather than root locus.

An introduction to state-space design and digitai control systems analysis and
design completes the textin Chapters 12 and 13, respectively. Although these chap-
ters can be used as an introduction for students who will be continuing their study
of control systems engineering, they are useful by themselves and as a supplement
to the discussion of analysis and design in the previous chapters. The subject mat-
ter cannot be given a comprehensive treatment in two chapters, but the emphasis
is clearly outbned and logically linked to the rest of the book.

The Teaching Package

The following materials comprise the teaching package for Control Systems Engi-
neering, fourth edition. Be sure to periodically check www.wiley.com/college/nise
for up-to-date information on this publication.
Control Solutions powered by JUSTASK! is a website that is essentally a

tutor serving the needs of both the student and the professor. A totai of over 150

d-of-ch probl and Skill A Exercises covering numerous top-
ics within the chapter will have step-by-step solutions. These problems are worked
in detail, and explanations of every facet of the solution are provided. As such, this
website is a valuable tool in the use of this book. This site is password-protected
site but can be accessed by purchasing the The Control Solutions Companion,
ISBN 0471483885. This companion supplies you with access code to the Contrd
Solutions website as well as instructions on how to use the wehsite. The Con-
trol Solutions Ce ion can be purchased on the book’s companion website,
www.wiley.com/college/nise.
PowerPoint Lecture Graphics Key figures from the text are available as full-
color electronic graphics in Microsoft’s PowerPoint. These files can be found on
the accompanying CD-ROM and at www.wiley.com/college/nise.
Control Systems Engineering Toolbox All MATLAB M-files and Simulink
files used in the appendixes of this textbook can be found on the accompanying CD-
ROM and at www.wiley.com/college/nise.
Solutions Manual for Control Systems Engineering, fourth edition by Norman
S. Nise, this manual contains detailed solutions to most of the problems in the text.
‘The Solutions Manual is available online only to qualifying faculty.
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Chapter Objectives

Introduction

In this introductory chapter we will study the following:

Control system applications

History of control systems

How you can benefit from studying control systems
The basic features and conhigurations of contro} systems
Analysis and design objectives

The design process

Case Study Objectives

You will be introduced to a running case study—an antenna azimuth position
control system—that will serve to illustrate the principles in each subsequent
chapter. In this chapter the system is used to demonstrate qualitatively how

a control system works as well as to define performance criteria that are the
basis for control systems analysis and design.
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Figure 1.1
Simpiified descr phoa
of a control system

1.1 Introduction

Control systems are an integral part of modern society. Numerous applications are
all around us: The rockets fire, and the space shuttle lifts off to earth orbit; in splash-
ing cooling water, a metallic part is i hined; a self-guided vehicle
delivering material to workstations in an acrospace assembly plant glides along the
floor seeking its destination. These are just a few examples of the automatically
controlled systems that we can create.

‘We are not the only creators of automatically controlled systems; these systems
also exist in nature. Within our own bodies are numerous control systems, such
as the pancreas, which regulates our blood sugar. In time of “fight or flight,” our
adrenaline increases along with our heart rate, causing more oxygen to be delivered
to our cells. Our eyes follow a moving object to keep it in view; our hands grasp
the object and place it precisely at a predetermined location.

Even the nonphysical world appears to be automatically regulated. Models
have been suggested showing automatic control of student performance. The in-
put to the model is the student’s available stody time, and the output is the grade.
‘The model can be used to predict the time required for the grade to rise if a sudden
increase in study time is available. Using this model, you can determine whether
increased study is worth the effort during the last week of the term.

Control System Definition

A contro] system consists of subsystems and processes (or plants) assembled for
the purpose of controlling the outputs of the processes. For example, a furnace
produces heat as a result of the flow of fuel. In this process, subsystems called  fueel
valves and fuel-valve actuators are used to regulate the temperature of a room by
controlling the heat output from the furnace. Other subsystems, such as thermostats,
which act as sensors, measure the room temperature. In its simplest form, a control
system provides an output or response for a given input or stimulus, as shown in
Figure 1.1,

Advantages of Control Systems

With control systems we can move large equipment with precision that would oth-
erwise be impossible. We can point huge antennas toward the farthest reaches of
the universe to pick up faint radio signals; controlling these antennas by hand
would be impossible. Because of control systems, elevators carry us quickly to our
destination, automatically stopping at the right floor (Figure 1.2). We alone could
not provide the power required for the load and the speed; motors provide the power,
and control systems regulate the position and speed.

We build control systems for four primary reasons:

1. Power amplification

2. Remote control

Input, stmulis | Control | Output: respomse
Desired response | S¥stem [ Actual response
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3. Convenience of input form
4. Compensation for disturbances

For example, a radar antenna, positioned by the low-power rotation of a knob at
the input, requires a large amount of power for its output rotation. A control system
can produce the necded power amplification, or power gain.

Robots designed by control systemn principles can compensate for human dis-
abilities. Control systems are also useful in remote or dangerous locations. For
example, a remote-controlled robot arm can be used to pick up material in a radioac-
tive environment. Figure 1.3 shows a robot arm designed to work in contaminated
environments.

Contro] systems can also be used to provide convenience by changing the form
of the input. For example, in a temperature control system, the input is a pesition on
a thermostat. The output is kear. Thus, a convenient position input yields a desired
thermal output.

Let us now look at another advantage of a control system, the ability to com-
pensate for disturbances. Typically, we control such variables as temperature in
thermal systems, position and velocity in mechanical systems, and voltage, current,
or frequency inelectrical systems. The system must be able to yield the correct out-
put even with a disturbance. For example, consider an antenna system that points
in a commanded direction. If wind forces the antenna from its commanded posi-
tion, or if noise enters internally, the system must be able to detect the disturbance
and correct the antenna’s position. Obviously, the system’s input will not change to
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Figure 1.3
Rover was built to
work in contaminated
areas at Three Mile
Island in Midleton,
PA, where a nuclear
accident occurred n
1979. The remote-
controlled robot's
long arm can be seen
at the front of the
vehicle.

make the correction. Consequently, the system itself must measure the amount that
the disturbance has repositioned the antenna and then return the antenna to the
position commanded by the input

1.2 A History of Control Systems

Feedback control systems are older than humanity. Numerous biclogical control
systems were built into the earliest inhabitants of our planet. Let us now look at a
brief history of human-designed control systems.!

Liquid-Level Control
The Greeks began engineering feedback systems around 300 BC. A water clock
invented by Ktesibios operated by having water trickle into a measuring container
at a constant rate. The level of water in the measuring container could be used to
tell time. For water to trickle at a constant rate, the supply tank had to be keptata
constant level. This was accomplished using a float valve similar to the water level
control in today’s flush toilets.

Soon after Ktesibios, the idea of liquid-level control was applied to an oil
Tamp by Philon of ium. The lamp isted of two oil i

'See Bennett (1979) and Mayr (1970) for definitive works on the hystory of control systems.



1.2 AHistory of Control Systems 5

vertically. The lower pan was open at the top and was the fuel supply for the flame.
The closed upper bowl was the fuel reservoir for the pan below. The containers
were interconnected by twn capillary tubes and another tube, called a verrical riser,
which was inserted into the oil in the lower pan just below the surface. As the oil
bumed, the base of the vertical riser was exposed to air, which forced oil in the
reservoir above to flow through the capillary tubes and into the pan. The transfer of
fuel from the upper reservoir to the pan stopped when the previous oil level in the
pan was reestablished. thus blocking the air from entering the vertical riser. Hence.
the system kept the liquid level in the lower container constant

Steam Pressure and Temperature Controls

Regulation of steam pressure began around 1681 with Denis Papin's invention of
the safety valve. The concept was further elaborated on by weighting the valve top.
If the upward pressure from the boiler exceeded the weight, steam was released,
and the pressure decreased. If it did not exceed the weight, the valve did not open,
and the pressure inside the boiler increased. Thus, the weight on the valve top set
the internal pressure of the boiler.

Alsointhe 17th century, Cornelis Drebbel in Holland invented a purely mechan-
ical temperature control system for hatching eggs. The device used a vial of alcohol
and mercury with a floater inserted in it. The floater was connected to a damper that
controlled a flame. A portion of the vial was inserted into the incuhator to sense the
heat generated by the fire. As the heat increased. thealcohol and mercury ded,
raising the floater, closing the dnmper and reducing the flame. Lower lemperature
caused the float to descend, opening the damper and increasing the flame.

Speed Control

In 1745 speed control was applied to a windmill by Edmund Lee. Increasing winds
pitched the blades farther back. so that less area was available. As the wind de-
creased, more blade area was available. William Cubitt improved on the idea
1809 by dividing the windmill sail into movable louvers.

Alsoin 18th century, James Watt invented the flyball speed govemor to control
the speed of steam engines. In this device, two spinning flyballs rise as rotational
speed increases. A steam valve connected to the flyball mechanism closes with
the ascending flyballs and opens with the descending flyballs, thus regulating the
speed.

Stability, Stabilization, and Staering

Control systems theory as we know it today began to crystallize in the latter half
of the 19th century. In 1868 James Clerk Maxwell published the stability crite-
rion for a third-urder system based on the coefficients of the differential equation.
In 1874 Edward John Routh, using a suggestion from William Kmgdon Clifford
that was ignored earlier by Maxwell, was able to extend the stability criterion to
fifth-order systems. In 1877 the topic for the Adams Prize was “The Criterion of
Dynamical Stability.” In response, Routh submitted a paper entitled A Freatise
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on the Stability of a Given State of Motion and won the prize. This paper con-
tains what is now known as the Routh-Hurwitz criterion for stability, which we
will study in Chapter 6. Alexandr Michailovich Lyapunov 2lso contributed to the
development and formulation of today’s theories and practice of control system sta-
bility. A student of P. L. Chebyshev at the University of St. Petersburg in Russia,
Lyapunov extended the work of Routh to nonlinear systems in his 1892 doctoral
thesis, entitled The General Problem of Stability of Motion.

During the second half of the 1800s, the development of control systems fo-
cused on the steering and stabilizing of ships. In 1874 Henry Bessemer, using a
8Yro to sense a ship’s motion and applying power generated by the ship’s hydraulic
system, moved the ship’s saloon to keep it stable (whether this made a difference
to the patrons is doubtful). Other efforts were made to stabilize platforms for guns
as well as to stabilize entlre ships, using pendulums to sense the motion.

Twentieth-Century Developments

It was not until the early 1900s that automatic steering of ships was achieved. In
1922 the Sperry Gyroscope Company installed an automatic steering system that
used the elements of compensation and adaptive control to improve performance.
However, much of the general theory used today to improve the performance of
automatic control systems is attributed to Nicholas Minorsky, a Russian born in
1885. Tt was his theoretical di applied to the ic steering of ships
that led to what we call today proportional-plus-integral-plus-derivative (PID), or
three-mode, controllers, which we will study in Chapters 9 and 11.

Inthelate 1920s and early 1930s, H. W. Bode and H. Nyquist at Bell Telephone
Laboratories developed the analysis of feedback amplifiers. These contributions
evolved into sinusoidal frequency analysis and design techniques currently used
for feedback control systems and presented in Chapters 10 and 11.

In 1948 Walter R. Evans, working in the aircraft industry, developed a graph-
ical technique to plot the roots of a characteristic equation of a feedback systemn
whose parameters changed over a particular range of values. This technique, now
known as the root locus, takes its place with the work of Bode and Nyquist in
forming the foundation of linear control systems analysis and design theory. We
will study root locus in Chapters 8, 9, and 13.

Contemporary Applications

Today control systems find widesp ication in the gui igation, and
control of missiles and spacecraft, as well as planes and ships at sea. For example,
modern ships use a ination of electrical, hanical, and hydraulic compo-
nents to develop rudder commands in response to desired heading commands. The
rudder commands, in turn, result in a rudder angle that steers the ship.

We find control systems throughout the process control industry, regulating
liquid levels in tanks, chemical concentrations in vats, as well as the thickness of
fabricated material. For example, consider a thickness control system for a steel
plate finishing mill. Steel enters the finishing mill and passes through rollers. Inthe
finishing mill, X rays measure the actual thickness and compare it to the desired

ol As o

ny di isadjustedby a -down position control that changes
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the roll gap at the rollers through which the steel passes. This change in roll gap
regulates the thickness.

Modern have seen widespread use of the digital computer as
part of control systems. For example, computers are in control systems used for
industrial robots, spacecraft, and the process control industry. It is hard to visualize
amodern control system that does not use a digital computer.

The space shuttle contains numerous control systems operated by an onboard
computer on a time-shared basis. Without control systems, it would be impossible
to guide the shuttle to and from earth orbit or to adjust the orbit itself and support
life on board. Navigation functions programmed into the shuttle’s computers use
data from the shuttle’s hardware to estlmale vehicle position and velocity. This in-
formation is fed to the gui that cal for the shuttle’s
flight control systems, which steerthe spacecraft. In space the flight control system
gimbals (rotates) the orbital maneuvenng system (OMS) engines into a position
that provides thrust in the ion to steer the ift. Within the
earth’s atmosphere, the shuttle is steered by commands sent from the flight control
system to the acerosurfaces. such as the elevons.

Within this large control systemn by and con-
tro] are numerous subsystems to control the vehicle’s funcnom For example, the
elevons require a control system to ensure that their position is indeed that which
was commanded, since disturbances such as wind could rotate the elevons away
from the commanded position. Similarly, in space, the gimbaling of the orbital
maneuvering engines requires a similar control system to ensure that the rotating
engine can accomplish its function with speed and accuracy. Control systems are
also used to control and stabilize the vehicle during its descent from orbit. Numer-
ous small jets that compose the reaction control system (RCS) are used initiatly in
the exoatimosphere, where the acrosurfaces are ineffective. Control is passed to the
aerosurfaces as the orbiter descends into the atmosphere.

Inside the shuttle numerous control systems are required for power and lite
support. For example, the orbiter has three fuel-celt power plants that convert hy-
drogen and oxygen (reactants) into electricity and water for use by the crew. The
fuel cells involve the use of control systems to regulate temperature and pressure.
The reactam tanks are kept at constant pressure as the quantity of reactant dimin-
ishes. Sensors in the tanks send signals to the control systems to turn heaters on or
off to keep the tank pressure constant (Rockwell Intemational, 1984).

Control systems are not limited to science and industry. For example, a home
heating system is a simple contro] system consisting of a thermostat containing
a bimetallic material that expands or contracts with changing temperature. This
expansion or contraction moves a vial of mercury that acts as a switch, turning
the heater on or off. The amount of expansion or contraction required to move the
mercury swiich is determined by the temperature setting.

Home entertainment systems also have built-in control systems. For exam-
ple, in a video disc or compact disc machine, microscopic pits representing the
information are cut into the disc by a laser during the recording process (Figure
1.4). During playback, a refiected laser beam focused on the pits changes intensity.
The light intensity changes are converted to an electrical signal and processed as




8  Chapterl

Figure 1.4
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sound or picture. A control system keeps the laser beam positioned on the pits,
which are cut as concentric circles.

There are countless other examples of control systems, from the everyday to
the extraordinary. As you begin your study of control systems engineering, you will
become more aware of the wide variety of applications and the opportunities they
represent for control systems engineers.

1.3 The Control Systems Engineer

Control systems engineening is an exciting ﬁeld in whlch to apply your engmeer—

ing talents, because it cuts across and

within those disciplines. The control engineer can be found at lhe top level of

large projects, engaged at the P phase in or

cverall system requirements. These requirements include total system performance
and the i ion of these functions, in-

cludmg interface requirements, hardware and software design, and test plans and

procedures.

Many engineers are engaged in only one area, such as circuit design or soft-
ware development. However, as a control systems engineer, you may find yourself
working in a broad arena and interacting with people from numerous branches of
engineering and the sciences. For example, if yuu are working on a biological sys-
tem, you will need to interact with coll n the biological sciences, h
cal engineering, electrical engineering, and computer engineering, not to mention
mathematics and physics. You will be working with these engineers at all levels
of project development from concept through design and, finally, testing, At the
design level the control systems engineer can be performing hardware selection,
design, and interface, including total design to meet specified require-
ments. The control engmeer can be working with sensors and motors as well as

and ic circuits.

The space shuttle provides another example of the diversity required of the
systems engineer. In the previous section we showed that the space shuttle’s con-
trol systems cut across many branches of science: orbital mechanics and propul-
sion, aerodynamics, electrical engineering, and mechanical engineering. Whether
or not you work in the space program, as a control systems engimeer you will apply
broad-based knowledge to the solution of engineering control problems. You will
have the opportunity to expand your engineering horizons beyond your university
curriculum,

‘You are now aware of fuinre opportunities. But for now, what advantages does
this course offer to a student of control systems (other than the fact that you need it
to graduate)? Engineering curricula tend to emphasize botiom-up design. That is,
you start from the components, develop circuits, and then assemble a product. In
10p-i dawn design, a high-level picture nf the requirements is first formulated; then
the fi and required to i the system are determined. You
will be able to take a top-down systems approach as a result of this course.

A major reason for not teaching top-down design throughout the curriculum
is the high level of mathematics initially required for the systems approach. For
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example, control systems theory, which requires differential equations, could not
be taught as a lower-division course. However, while progressing through bottom-
up design courses, it is difficult to see how such design fits logically into the large
picture of the product development cycle.

After completing this control systems course, you will be able to stand back
and see how your previous studies fit into the large picture. Your amplifier course or
vibrations course will take on new meaning as you begin to see the role the design
work plays as part of product development. For example, as engineers, we want
to describe the physical world mathematically so that we can create systems that
will benefit humanity. You will find that you have indeed acquired, through your
previous courses, the ability to model physical systems mathematically, although
at the time you might not have understood where in the product development cycle
the modeling fits. This course will clarify the analysis and design procedures and
show you how the knowledge you acquired fits into the total picture of system

design.
Understanding control systems enables students from all branches of engineer-
ing to speak a common I and develop an appreciation and working knowl-

edge of the other branches. You will find that there really isn't much difference
between the branches of engineering as far as the goals and applications are con-
cerned. As you study control systemns, you will see this commonality.

1.4 Response Characteristics
and System Configurations

In this section we take a closer lock at the response characteristics of control
systems. We alse discuss two major configurations of control systems: open loop
and closed loop. Finally, we show how a digital computer forms part of a control
system’s configuration.

Input and Output

Asnoted earlier, a control system provides an output or response for a given input or
stimulus. The input represents a desired response; the output is the actual response.
For example, when the fourth-floor button of an elevator is pushed on the ground
floor, the elevator rises to the fourth foor with a speed and floor-leveling accuracy
designed for passenger comfort. Figure 1.5 shows the elevator response. The push
of the fourth-floor button is the input and is represented by a step command. Note
that in the interest of passenger comfort, not to mention the limited power available,
we would not want the elevator to mimic the suddenness of the input. The input
represents what we would like the output to be afier the elevator has stopped; the
elevator itself follows the displacement described by the curve marked elevator
response.

Two factors make the output different from the input. First, compare the
instantaneous change of the input against the gradual change of the output in
Figure 1.5. Physical entities cannot change their state (such as position or velocity)
instantaneously. The state changes through a path that is related to the physical
device and the way it acquires or dissipates energy. Thus, the elevator undergoes a
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gradual change as it rises from the first floor to the fourth floor. We call this part of
the response the transient response

After the transient response, a physical system approaches its steady-state re-
sponse, which is 1ts approximation to the commanded or desired response. For the
elevator example, this response occurs when the elevator reaches the fourth floor.
The accuracy of the elevator’s leveling with the floor is a second factor that could
make the output different from the input. We call this difference, shown in Figure
1.5, steady-state error Steady-state error need not exist only in defective con-
trol systems. Often steady-state error is inherent in the designed system, and the
control systems engineer determines whether or not that error leads to significant
degradation of system functions. For example, in a system tracking a satellite, some
steady-state error can be tolerated as long as it is small enough to keep the satel-
lite close to the center of the tracking radar beam. However, for a robot inserting a
memory chip onto a board, the steady-state error must be zero.

‘We now describe two control system configurations—open-loop and closed-
loop. We can vonsider these configurations to be the internal architecture of the
total system shown in Figure 1.1.

Open-Loop Systems

A generic open-loop system is shown in Figure 1.6(c). It starts with a subsystem
called an snput transducer; which converts the form of the input to that used by
the controller. The controller drives a process or a plant. The input is sometimes
called the reference, while the output can be called the controlled variable. Other
signals, such as disturbances, are shown added to the controller and process outputs
via summing junctions, which yield the algebraic sum of their input signals using
associated signs. For example, the plant can be a furnace or air conditioning sys-
tem, where the output variable is temperature. The controller in a heating system
consists of fuel valves and the electrical system that operates the valves.

The distinguishing characteristic of an open-loop system is that it cannot com-
pensate for any disturbances that add to the controller’s driving signal (Distur-
bance | in Figure 1.6(a)). For example, if the controller is an electronic am-
plifier and Disturbance 1 is noise, then any additive amplifier noise at the first
summing junction will also drive the process, corrupting the output with the ef-
fect of the noise. The output of an open-loop system is corrupted not only by
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signals that add to the controller’s commands but also by disturbances at the output
(Disturbance 2 in Figure 1.6(a)). The system cannot correct for these disturbances,
either.

Open-loop systems, then, do not correct for disturbances and are simply com-
manded by the input. For example, toasters are open-loop systems, as anyone with
burnt toast can attest. The controlled variable (output) of a toaster is the color of the
toast. The device is designed with the assumption that the toast will be darker the
longer it is subjected to heat. The toaster does not measure the color of the toast;
it does not correct for the fact that the toast is rye, white, or sourdough, nor does it
correct for the fact that toast comes in different thicknesses.

Other of open-loop systems are ical systems isting of a
mass, spring, and damper with a constant force positioning the mass. The greater
the force, the greater the displacement. Again, the system position will change with
adisturbance, stich as an additional force, and the system will not detect or correct
for the disturbance. Or assume that you calculate the amount of time you need to
study for an examination that covers three chapters in order to get an A. If the
P adds a fourth chapt i are an open-loop system if
you de not detect the disturbance and add study time to that previously calculated.
The result of this oversight would be a lower grade than you expected.

Closed-Loop (Feedback Control) Systems

The disadvantages of open-loop systems, namely sensitivity to disturbances and
inability to correct for these disturbances, may be overcome in closed-loop systems.
‘The generic architecture of a closed-toop system is shown in Figure 1.6(b).
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The input transducer converts the form of the input to the form used by the con-
troller. An output transducer; or sensor, measures the output response and converts
itinto the form used by the controller. For example, if the controller uses electrical
signals to operate the valves of a temperature control system, the input position and
the output temperature are converted to electrical signals. The input position can be
converted to a voltage by a potentiometer; a varizble resistor, and the output tem-
perature can be converted to a voltage by a thermistor, a device whose electrical
resistance changes with temperature.

The first summing junction algebraically adds the signal from the input to the
signal from the output, which arrives via the feedback path, the return path from
the output to the summing junction. In Figure 1.6(b), the output signal is subtracted
from the mput signal. The result is generally called the actuating signal. However,
in systems where both the input and output transducers have unity gain (that is,
the transducer amplifies its input by 1), the actuating signal’s value is equal to
the actual difference between the input and the output. Under this condition. the
actuating signal is called the ervor.

The closed-loop system compensates for disturbances by measuring the
output se, feeding that back through a feedback path, and
comparing that response to the input at the summing junction. If there is any dif-
ference between the two responses, the system drives the plant, via the actuating
signal, to make a correction. If there is no difference, the system does not drive the
plant, since the plant’s response is already the desired response.

Closed-loop systems, then, have the obvious advantage of greater accuracy
than open-loop systems. They are less sensitive to noise, disturbances, and changes
in the environment. Transient response and steady-state error can be controlled
more conveniently and with greater flexibility in closed-loop systems, often by a
simple adjustment of gain (amplification) in the loop and sometimes by redesign-
ing the controller. We refer to the redesign as compensating the system and to
the resulting hardware as a compensator. On the other hand, closed-loop systems
are more complex and expensive than open-loop systems. A standard, open-loop
toaster serves as an example: It is stmple and inexpensive. A closed-loop toaster
oven is more complex and more expensive since it has to measure both color
(through light reflectivity) and humidity inside the toaster oven. Thus. the control
systems engineer must consider the trade-off between the simplicity and low cost
of an open-loop system and the accuracy and higher cost of a closed-loop system.

In summary, systems that perform the previously described measurement and
correction are called closed-loop, or feedback control, systems. Systems that do not

have this property of and ion are called open-loop systems.
C Controlled Sy
In many modern systems, the (or p ) is a digital

The advantage of using a computer is that many loops can be controlled or com-
pensated by the same computer through time sharing. Furthermore, any adjust-
ments of the compensator parameters required to yield a desired response can be
made by changes in software rather than hardware. The computer can also per-
form supervisory functions, such as scheduling many required applications. For
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Figure 1.7

Computer hard disk
drwe, showng disks
and read/write head

example, the space shuttle main engine (SSME) controller, which contains two
digitat computers, alone controls numerous engine functions. It monitors engine
sensors that provide pressures, temperatures, flow rates, turbopump speed, valve
positions, and engine servovalve actuator positions. The controller further pro-
vides closed-loop control of thrust and propellant mixture ratio, sensor excitation,
valve actuators, spark igniters, as well as other functions (Rockwell International,
1984).

1.5 Analysis and Design Objectives

Now that we have described control systems, let us define our analysis and design
objectives,

A control system is dynamic: It responds to an input by undergoing a transient
response before reaching a steady-state response that resembles the input.
‘We have already identified these two responses and cited a position control system
(an elevator) as an example. In this section we discuss three major objectives of
systems analysis and design: producing the desired transient response, reducing
steady-state error, and achieving stability. We also address some other design
concerns, such as cost and the sensitivity of system performance to changes in
parameters.

Transient Response
Transient resp is imp In the f an elevator, a slow transient response
makes i ient, whereas an ssively rapid response makes them

uncomfortable. If the elevator oscillates about the arrival floor for more than a sec-
ond, a disconcerting feeling can result. Transient response is also important for
structural reasons: Too fast a transient response could cause permanent physical
damage. In a computer, transient response contributes to the time required to read
from or write to the computer's disk storage (sec Figure 1.7). Since reading and
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writing cannot take place until the head stops, the speed of the read/write head’s
movement from one track on the disk to another influences the overall speed of the
computer.

In this book we establish quantitative definitions for transient response. We
then analyze the system for its existing transient response. Finally, we adjust
parameters or design components to yield a desired transient response—our first
analysis and design objective.

Steady-State Response

Another analysis and design goal focuses on the steady-state response. As we have
seen, this response resembles the input and is usually what remains after the tran-
sients have decayed to zero. For example, this response may be an elevator stopped
near the fourth floor or the head of a disk drive finally stopped at the correct track.
We are concerned about th acy of the steady-state resp Anelevator must
be level encugh with the floor for the passengers to exit, and a read/write head
not positioned over the commanded track results in computer errors. An antenna
tracking a satellite must keep the satellite well within its beamwidth in order not
to lose track. In this text we define steady-state errors quantitatively, analyze a
system’s steady-state error, and then design corrective action to reduce the steady-
state error—our second analysis and design objective.

Stability

Discussion of transient response and steady-state error is moot if the system does
not have stability. In order to explain stability, we start from the fact that the total
response of a system is the sum of the natural response and the forced response.
‘When you studied linear differential equations, you prohably referred to these re-
sponses as the homogeneous and the particular solutions, respectively. Natural
response describes the way the system dissipates or acquires energy. The form or
nature of this response is dependent only on the system, not the input. On the other
hand, the form or nature of the forced response is dependent on the input. Thus, for
alinear system, we can write

Total response = Nawural response + Forced response (12

For a control system to be useful, the natural response must (1) eventually
approach zero, thus leaving only the forced response, or (2) oscillate. In some sys-
tems, however, the natural response grows without bound rather than diminish to
zero or oscillate. Eventually, the natural response is so much greater than the forced
response that the system is no longer controlled. This condition, called instability,

2 Youmay d by the ient vs. natural, and steady-state vs. forced. ¥ you lock
atFigure 1.5, i P f the total indicated.
“The transient response 1s the sum of the natural and forced responses, while the natural response
is large. If we plotted the natural response by itself, we would get a curve that is different from
the transient portion of Figure 1.5. The steady-state respense of Figure 1.5 is also the sum of the
natural and forced responses, but the natural response is small. Thus, the transient and steady-
state responses are what you actually see on the plot; the natural and forced responses are the
underlying mathematical components of those responses.




16

Chapter 1

Introduction

could lead to self-destruction of the physical device if limit stops are not part of the
design. For example, the elevator would crash through the floor or exit through the
ceiling; an aircraft would go into an uncontroltable roll; or an antenna commanded
to point to a target would rotate, line up with the target, but then begin to oscillate
about the target with growing oscillations and increasing velocity until the motor
or amplifiers reached their output limits or until the antenna was damaged struc-
turally. A time plot of an unstable system would show 2 transient response that
grows without bound and without any evidence of a steady-state response.
Control systems must be designed to be stable. That is, their natural response
must decay to zero as time approaches infinity, or oscillate. In many systems the
transient response you see on a time response plot can be directly related to the
natural response. Thus, if the natural response decays to zero as time approaches
infinity, the transient response will also die out, leaving only the forced response.
If the system is stable, the proper transient response and steady-state error charac-
teristics can be designed. Stability is our third analysis and design objective.

Other Considerations

The three mamn objectives of control system analysis and design have already been
enumerated. However, other important considerations must be taken into account.
For example, factors affecting hardware selection, such as motor sizing to fulfill
Ppower requirements and choice of sensors for accuracy, must be considered early

in the design.
Finances are another consideration. Control system designers cannot create
designs without considering their ic impact. Such i ions as budget

allocations and competitive pricing must guide the engineer. For example, if your
product is one of a kind, you may be able to create a design that uses more expensive

np without appreciably i sing total cost. However, if your design will
be used for many copies, slight increases in cost per copy can translate into many
more dollars for your company to propose during contract bidding and to outlay
before sales.

Another consideration is robust design. System parameters considered con-
stant during the design for transient response, steady-state errors, and stability
cbange over time when the actual system is built. Thus, the performance of the
system also changes over time and will not be consistent with your design. Unfortu-
nately, the it ip between changes and their effect on performance
is not linear. In some cases. even in the same system, changes in parameter values
can lead to small or targe changes in performance, depending on the system’s nom-
inal operating point and the type of design used. Thus, the engineer wants to create
a robust design so that the system will not be sensitive to parameter changes. We
discuss the concept of system sensitivity to parameter changes in Chapters 7 and 8.
This concept, then, can be used to test a design for robustness.
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Introduction to a Case Study

Figure 1.8

The search for
extraterrestrial hfe 1s
being carried out with
radio antennas like the
one pictured here A
radio antenna is an
example of a system
with position contrals.

Now that our objectives are stated, how do we meet them? In this section we will
look at an example of a feedback control system. The system introduced here
will be used in subsequent chapters as a running case study to demonstrate the
objectives of those chapters. A colored band like the one at the top of this page
will identify the case study section at the end of each chapter. Section 1.6, which
follows this first case study, explores the design process that will help us build
our system.

Antenna Azimuth: An Introduction
to Position Control Systems

A position control system converts a position input command to a position out-
put response. Position control systems find widespread applications in antennas,
robot arms, and computer disk drives. The radio telescope antenna in
Figure 1.8 is one example of a system that uses position control systems. [n this
section we will look in detail at an antenna azimuth position control system that
could be used to position a radio telescope antenna. We will see how the system
works and how we can effect changes in its performance. The discussion here
will be on a qualitative level, with the objective of getting an intuitive feeling for
the systems with which we will be dealing.

An antenna azimuth position control system is shown in Figure 1.9(a), with
a more detailed layout and schematic in Figures 1.9(b) and 1.9(c), respectively.
Figure 1.9(d) shows a functional block diagram of the system. The functions are
shown above the blocks, and the required hardware is indicated inside the blocks.
Parts of Figure 1.9 are repeated on the front endpapers for future reference.
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Figure 1.9
Antenna azmuth
position coritrol
system.

a. system concept;
b. detailed layout;
(figure continues}

Introduction
N
Antenna
¥> ”
Potenometer %‘ . )
itn \.—.-»
6o10)
Desred Azmuth
angle
azimuth ngle oot
input
@
Potentiometer
Antenna
61
Desired
imuth angle
nput

output

“erential amplifier
I power amphfier

Motor Potentiometer
®

The purpose of this system is to have the azimuth angle output of the an-
tenna, 6,(1), follow the input angle of the potentiometer, 6,(¢). Let us look at Fig-
ure 1.9(d) and describe how this system works. The input command is an angular
displacement. The potentiometer converts the angular displacement into a volt-
age. Similarly, the output angular displacement is converted to a voltage by the
potentiometer in the feedback path. The signal and power amplifiers boost the
difference between the input and output voltages. This amplified actuating signal
drives the plant.

The system normally operates to drive the error to zero. When the mput
and output match, the error will be zero, and the motor will not turn. Thus, the
motor is driven only when the output and the input do not match. The greater the
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difference between the mput and the output. the larger the motor input voltage,
and the faster the motor will turn,

If we mncrease the gain of the signal amplifier, will there be an increase in the
steady-state value of the output? If the gain is increased, then for a given actu-
ating signal, the motor will be driven harder. However, the motor will still stop
when the actuating signal reaches zero, that is, when the output matches the in-
put. The difference in the response, however, will be in the transients. Since the
motor is driven harder, 1t turns faster toward its final position. Also, because of
the i speed, i could cause the motor to overshoot the
final value and be forced by the system to return to the commanded position.
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Figure 1.10
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Thus, the possibility exists for a transient response that consists of damped
oscillations (that is, a sinusoidal response whose amplitude diminishes with time)
about the steady-state value if the gain is high. The responses for low gain and
high gain are shown in Figure 1.10.

We have discussed the transient response of the position control system.
Let us now direct our attention to the steady-state position to see how closely the
output matches the input after the transients disappear. Figure 1.10 shows zero
error in the steady-state response; that is, after the transients have disappeared,
the output position equals the commanded input position. In some systems the
steady-state error will not be zero; for these systems a simple gain adjustment
to regulate the transient response is either not effective or leads to a trade-off
between the desired transient response and the desired steady-state accuracy.

To solve this problem, a controller with a dynamic response, such as an
elecrrical filter, is used along with an amplifier. With this type of controller, it 15
possible to design both the required transient response and the required steady-
state accuracy without the trade-off required by a simple setting of gain.
However, the controller is now more complex. The filter in this case is called
a compensator. Many systems also use dynamic elements in the feedback path
along with the output transducer to improve system performance.

In summary, then, our design objectives and the system’s performance
revolve around the transient response, the steady-state error, and stability. Gain
adjustments can affect performance and sometimes lead to trade-offs between
the performance criteria. C s can often be designed to achjeve perfor-
mance specifications without the need for trade-offs. Now that we have stated
our objectives and some of the methods available to meet those objectives, we
describe the orderly progression that leads us to the final system design.
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1.6 The Design Process

In this section we establish an orderly sequence for the design of feedback control
systems that will be followed as we progress through the rest of the book. Figure
1.11 shows the described process as well as the chapters in which the steps are
discussed. The antenna azimuth position control system discussed in the last section
is representative of control systems that must be analyzed and designed. Inherent
in Fignre 1.11 is feedback and communication during each phase. For example, if
testing (Step 6) shows that requirements bave not been met, the system must be
redesigned and retested. Si i QI are ing and the design
cannot be attained. In these cases, the il have to be ified and the
design process repeated. Let us now elaborate on each block of Figure 1.11.

Step 1: Transform Requirements into a Physical System

‘We begin by transformmyg the requirements into a physical system. For example,
in the antenna azimuth position control system, the requirements would state the
desire to position the antenna from a remote location and describe such features
as weight and physical di ions. Using the requi design speci

such as desired transient response and steady-state accuracy, are determined. Per-
haps an overall concept, such as Figure 1.9(a), would result.

Step 2 Draw a Functlonal Block Diagram

Th now litative description of the system intoa functional
block diagram that describes the component parts of the system (that is, function
and/or and shows their i ion. Figure 1.9(d) is an example of a
functional block diagram for the antenna azimuth position control system. It indi-
cates functions such as input as well as possible
descriptions such as amplifiers and motors. At this point the designer may produce
adetailed layout of the system, such as that shown in Figure 1.9(5), from which the
next phase of the analysis and design sequence, developing a schematic diagram,
can be launched.

Step 1 Step? Step3 Step s Steps Siep 6
Use the.
Determne o If ruluple Analyze,
hematic blocks, reduce design. and test
aphysical Drawa Transtorm 10 obtaina
N - the block to see that
system and functional | _| the physical || block diagram, | | &
b iagramtoa [ requirements
speaifications block system into signal-flow smgle block or and
i atic.
from the diagram. aschemalic diagram, closed-loop specificanons
requirements or state-space
system are met.
. ———— e e e
Analog: Chapter 1 Chaplers 2,3 Chapter S Chapters 4, 6-12
Digital: Chapter 13 Chaprer 13 Chapter 13
Flgure 111

The control system
design process
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Step 3: Create a Schematic
As we have seen, Pposition control systems conslsl of electrical, mechanical, and
After producing the description of a physical sys-
tem, the control syslems engineer lransforms lhe physical system into a schematic
diagram. The control system designer can begin with the physical description, as
contained in Figure 1.9(d), and derive a schematic. The engineer must make
approximations about the system and neglect certain phenomena, or else the
schematic will be unwieldy, making it difficult to extract a useful mathemati-
cal model during the next phase of the analysis and design sequence. The designer
starts with a simple schematic representation and, at subsequent phases of the anal-
ysis and design sequence, checks the assumptions made about the physical system
through analysis and ion. If the ic is too snmple and does
not adequately account far observed behavior, the control systems engineer adds
phenomena to the schematic that were previously assumed negligible. A schematic
diagram for the antenna azimuth position control system is shown in Figure 1.9(c).
‘When we draw the potentiometers, we make our first simplifying assumption
by neglecting their fnctmn or inertia. These mechamcal characteristics yield a dy-

namic, rather than an i hy put voltage. We assume that
these mechanical effects are negligible and lhat the voltage across a potentiometer
changes i ly as the p i shaft turns.

Adifferential i aud apower ifler are used as th toyreld

gain and power amplification, respectively, to drive the motor. Again, we assume
that the dynamics of the lifiers are rapid to the resp time of the
motor; thus, we model them as a pure gain, K.

A dc motor and equivalent load produce the output angular displacement. The
speed of the motor is proportional to the voltage applied to the motor’s armature
circuit. Both inductance and resistance are part of the armature circuit. In showing
just the armature resistance in Figure 1.9(c), we assume the effect of the armature
inductance is negligible for a dc motor.

The designer makes further assumptions about the load. The load consists of a
rotating mass and bearing friction. Thus, the model consists of inertia and viscous
damping whose resistive torque increases with speed, as in an automobile’s shock
absorber or a screen door damper.

The decisions made in ping the ic stem from ledge of:the
physical system, the physical laws governing the system’s behavior, and practical
experience. These decisions are not easy; however, as you acquire more design
experience, you will gain the insight required for this difficult task.

Step 4: Develop a Mathematical Model {Block Diagram}
Once the schematic is drawn, the designer uses physical laws, such as Kirchhoff’s
laws for electrical networks and Newton's law for mechanical systems, along with
simplifying assumptions, to model the system mathematically. These laws are
Kirchhoff's voltage law  The sum of voltages around a closed path equals
zero.
Kirchhoff’s current law The sum of electric currents flowing from a
node equals zero.
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Newtor’s laws  The sum of forces on a body equals zero;® the sum of
moments on a body equals zero.

Kirchhoft’s and Newton’s laws lead to mathematical models that describe the rela-
tionship between the input and output of dynamic systems. One such model is the
linear, time-i iant differential tion, Eq. (1.2):

d'att) 4" oty ") d" 'rn
i S e Fapc(ty = by @ n g
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Many systems can be approximately described by this equation, which relates the
output, c(z), tothe input, r(¢), by way of the system parameters, ¢, and &,. We assume
the reader is familiar with differential equations. Problems and a bibliography are
provided at the end of the chapter for you to review this subject.

Simplifying assumptions made in the process of obtaining 1 mathematical
model usually leads to a low-order form of Eq. (1.2). Without the assumptions the
system modet could be of high order or described with nonlinear, time-varying, or
partial differential i These i i the design process and
reduce the designer’s insight. Of course, all assumptions must be checked and all
simplifications justified through analysis or testing. If the assumptions for simplifi-
cation cannot be justified, then the model cannot be simplified. We examine some
of these simplifying assumptions in Chapter 2.

In addition to the differential equation, the transfer function is another way
of mathematically modeling a system. The model is derived from the linear time-
invariant differential equation using what we call the Laplace transform. Although
the transfer function can be used only for linear systems, it yields more intuitive
information than the differential equation. We will be able to change system pa-
rameters and rapidly sense the effect of lhese changes on the system response. The
transfer function is also useful in the i of by
forming a block diagram similar to Figure 1.9(4 ) but with a mathematical function
inside each block.

Still another model is the stare-space representation. One advantage of state-
space methods is that they can also be used for systems that cannot be described
by linear differential equations. Further, state- -space methods are used to model
systems for si ion on the digital y, this ion turns
an nth-order differential equation into n simultaneous ﬁrsl order d differential equa-
tions. Let this description suffice for now; we describe this approach in more detail
in Chapter 3.

SAhernaiely, 3° forces = Ma. In this text the force, Ma, will be brought to the Ieft-hand side
of the equation to yield > forces = O (D’ Alembert's principle). We can then have a consistent
analogy between force and voltage, and Kirchhoff’s and Newton’s Iaws (that is, > forces = 0;
3 voltages = 0).

“The right-hand side of Eq (I 2) indicates differentiation of the wput, rir). In physical systems,
differentiation of the mput introduces nowe. In Chapters 3 and 5 we show implementations and
interpretations of Eq. (1.2) that do not require chfferentiation of the input.
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Figure 112
Equvalent block
diagram for the
antenna azimuth
position control
system

Finally, we should mention that to produce the mathematical model for a sys-
tem, we require knowledge of the parameter values, such as equivatent resistance,
inductance, mass, and damping, which is often not easy to obtain. Analysis, mea-
surements, or specifications from vendors are sources that the control systems
engineer may use to obtain the parameters.

Step 5: Reduce the Block Diagram

S models are i d to form block d of larger systems,
as in Figure 1.9(d), where each block has a mathematical description. Notice that
many signals, such as proportional voltages and error, are internal to the system.
‘There are also two signals—angular input and angular output—that are extemal
1o the system. In order to evaluate system response in this example, we need to
reduce this large system’s block diagram to a single block with a mathematical
description that represents the system from its input to its output, as shown in Fig-
ure 1.12. Once the block diagram is reduced, we are ready to analyze and design
the system.

Step 6: Analyze and Design

The next phase of the process, following block diagram reduction, is analysis and
design. If you are interested only in the performance of an individual subsystem,
you can skip the block diagram reduction and move immediately into analysis and
design. In this phase the engineer analyzes the system to see if the response specifi-
cations and performance requirements can be met by simple adjustments of system
parameters. If specifications cannot be met, the designer then designs additional
hardware in order to effect a desired performarnce.

Test input signals are used, both analytically and during testing, to verify the
design. It is neither necessarily practical nor illuminating to choose complicated
input signals to analyze a system’s performance. Thus, the engineer usually se-
lects standard test inputs. These inputs are impulses. steps, ramps, parabolas, and
sinusoids, as shown in Table 1.1.

An impulse is infinite at £ = 0 and zero elsewhere. The area under the unit
impulse is 1. An approximation of this type of waveform is used to place initial en-
ergy into a system so that the response due to that initial energy is only the transient
response of a system. From this response the designer can derive a mathematical
model of the system.

A step input represents a constant command, such as position, velocity, or ac-
celeration. Typically, the step input command is of the same form as the output.
For example, if the system’s output is position, as it is for the antenna azimuth
position control system, the step input represents a desired position, and the output

Angular Angular
nput N oulput

description




Table 1.1  Test waveforms used in control systems
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Input Function Description Sketch Use
Impulse E:163) 8(1) = o for 0— <1< 0+ F® Transient response
= Oelsewhere Modeling
0+
&(ndr=1
Io— 8
— t
Step un u(ty = 1fore >0 5 Transient response
=0fort<0 Steady-state error
4
Ramp () () = tfore =0 ® Steady-state error
= Oelsewhere
[
Parabola %rzu(t) %tzu(t) = %11 fort = 0 ) Steady-state error
= Oelsewhere
-~ '
Sinusoid sin et o) Transient response
Modeling

_%.,,

Steady-state error

represents the actual position. If the system’s output is velocity, as is the spindle
speed for a video disc player, the step input represents a constant desired speed,
and the output represents the actual speed. The designer uses step inputs because
both the transient response and the steady-state response are clearly visible and can

be evaluated.
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The ramp input represents a limearly increasing command. For example, i
the system’s output is position, the input ramp represents a linearly increasing
position, such as that found when tracking a satellite moving across the sky a
constant speed. If the system’s output is velocity. the input ramp represents a lin.
early mcreasing velocity. The response to an input ramp test signal yields addi.
tional information about the steady-state error. The previons discussion can be
extended to parabolic inputs. which are also nsed to evaluate a system’s steady-
state error.

Sinusoidal inputs can also be used to test a physical system to arrive at 2
mathematical model. We discuss the use of this waveform in detail in Chapters 1€
and I1.

We conclude that one of the basic analysis and design requirements is to eval-
uate the time response of  system for a given input. Throughout the book you will
learn methods for ishing this goal.

The control systems engineer must take int ideration other istic:
about feedback control systems. For example, contro] system behavior is altered
by fluctuations in component values or system parameters. These variations can be
caused by temperature, pressure, or other environmental changes. Systems must
be built so that expected fluctuations do not degrade performance beyond specified

bounds. A sensitivity analysis can yield the ige of change ina
as a function of a change in a system parameter. One of the Qesigner’s goals, then,
is to build a system with mini itivity over an expected range of environ-

mental changes.

In this section we looked at some control systems analysis and design consid-
erations. We saw that the designer is concerned about transient response, steady-
state error, stability, and sensitivity. The text pointed out that although the basis
of evaluating system performance is the differential equation, other methods, such
as transter functions and state space, will be used. The advantages of these new

hniques over di it ions will become apparent as we discuss them in

later chaprers.

1.7 Computer-Aided Design

Now that we have discussed the analysis and design sequence, let us discuss the
use of thy puter as a i tooln this Th puter plays an
important role in the design of modern control systems. In the past, control system
design was labor intensive. Many of the tools we use today were implemented
through hand calculations or, at best, using plastic graphical aid tools. The process
was slow, and the results not always accurate. Large mainframe computers were
then used to simulate the designs.

Today we are fortunate to have computers and software that remove the
drudgery from the task. At our own desktop computers, we can perform analy-
sis, design, and simulation with one program. With the ability to simulate a design
rapidly, we can easily make changes and immediately test a new design. We can
play what-if games and try altemate solutions to see if they yield better results,
such as reduced sensitivity to parameter changes. We can include nonfinearities
and other effects and test our models for accuracy.
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MATLAB
The computer is an integral part of modern control system design, and many com-
putational tools are available for your use. In this book we use MATLAB and the
MATLAB Control System Toolbox, which expands MATLAB to include control
systemn-—specific commands. In addition, presented are several MATLAB enhance-
ments that give added functionality to MATLAB and the Control Systems Tool-
box. Included are (1) Simulink, which uses a graphical user interface (GUI); (2)
the LTI Viewer, which permits measurements to be made directly from time and
frequency response curves; (3) the SISO Design Tool, a convenient and intuitive
analysis and design tool; and (4) the Symbolic Math Toolbox, which saves labor
when making symbolic calculations required in control system analysis and design.
Some of these ent may require addif 1 software from The
MathWorks, Inc.

MATLARB is presented as an alternate method of solving control system prob-
lems. You are encouraged to solve problems first by hand and then by MATLAB so

that insight is not lost through mechanized use of comp To this end,
many examples throughout the book are solved by hand. followed by suggested use
of MATLAB.

To avoid confusing the teaching of control systems principles with the teach-
ing of computer methods of solution, program-specific instructions and code are
covered only in the appendixes, not in the chapters. Throughout the book various
icons appear in the margin to identify MATLARB references that direct you to the
proper program in the proper appendix and tell you what you will learn. Selected
end-of-chapter problems and Case Study Challenges to be solved using MATLAB
have also been marked with appropriate icons. The following list itemizes the spe-
cific components of MATLAB used in this book, the icon used to identify each, and
the appendix in which a description can be found:

MATLAB MATLAB/Contro] System Toolbox tutorials and code are found in Appendix B and
1dentified in the text with the MATLAB icon shown in the margin.

Simulink Simulink tutonials and diagrams are found in Appendix C and identified in the text
with the Simulink icon shown in the margin.

GUI Tool MATLAB GUI tools, tutorials, and are in Appendix D and identified in
the text with the GUI Tool icon shown in the margin. These tools consist of the LTI
Viewer and the SISO Design Tool.

Symboiic Math _ Symbolic Math Toolbox tutonials and code are found in Appendix E and identified
in the text with the Symbolic Math icon shown in the margin.

MATLAB code itself is not platform specific. The same code runs on PCs and
workstations that support MATLAB. Although there are differences in installing
and managing MATLAB files, we do not address them in this book. Also, there are
many more commands in MATLAB and the MATLAB toolboxes than are covered
in the appendixes. Please explore the bibliographies at the end of the applicable
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appendixes to find out more about MATLAB file management and MATLAB in-
structions not covered in this textbook.

You are d touse ional aids this book. Those not
using MATLAB should consult Appendlx G on the accompanying CD-ROM for a
discussion of other alternatives. Now that we have introduced control systems to
you and lished a need for computational aids to perform analysis and design,
we launch our study of control systems.

Summary

Control systems contribute to every aspect of modern society. In our homes we
find them in everything from toasters to heating systems to VCRs. Control systems
also have widespread applications in science and industry, from steering ships and
planes to guiding missiles and the space shuttle. Control systems also exist natu-
rally; our bodies contain numerous control systems. Even economic and psycho-
logical system ions have been prop based on control system theory.
Control systems are used where power gain, remote control, or conversion of the
form of the input is required.

A control system has an input, a process, and an output. Control systems can be

op or closed-loop. Open-loop systems do not monitor or correct the output

for disturbances; however, they are simpler and less expensive than closed-loop
systems. Closed-loop systems monitor the output and compare it to the input. If an
error is detected, the system corrects the output and hence corrects the effects of
disturbances.

Control systems analysis and design focuses on three primary objectives:

1. Producing the desired transient response
2. Reducing steady-state errors
3. Achieving stability

A system must be stable in order to produce the proper transient and steady-
state response. Transient response is important because it affects the speed of the
system and influences human patience and comfort, not to mention mechanical
stress. Steady-state response determines the accuracy of the control system; it gov-
erns how closely the output matches the desired response.

The design of a control system follows these steps:

Step 1 Determine a physical system and specifications from requirements.

Step 2 Draw a functional block diagram.

Step 3 Represent the physical system as a schematic.

Step 4 Use the schematic to obtain a mathematical model. such as a block

diagram.

Step 5 Reduce the block diagram.

Step 6 Analyze and design the system to meet specified requirements and

specifications that include stability, transient response, and steady-state per-
formance.
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In the next chapter we continue through the analysis and design sequence and learn
how to use the ic to obtain a ical model.

Review Questions
1. Name three applications for feedback control systems.

2. Name three reasons for using feedback contro] systems and at least one
reason for not using them.

=

Give three examples of open-loop systems.
Functionally, bow do closed-loop systems differ from open-loop systems?

State one condition under which the error signal of a feedback control system
would not be the difference between the input and the output.

. It the error signal is not the difference between input and output. by what
general name can we describe the error signal?

Name two advantages of having a computer in the loop.

Name the three major design criteria for control systems.

h &

o

© o N

. Name the two parts of a system’s response.
. Physically, what happens to a system that is unstable?
11. Instability is attributable to what part of the total response?

12. Adjustments of the forward path gain can cause changes in the transient
response. True or false?

13. Name three to the ical
14. Briefly describe each of your answers 1o Question 13,

=
=3

g of control systems.

Problems

. [ 1. A variable resistor, called a potentiometer; is shown in Figure P1.1. The resis-
$ tance is varied by moving a wiper arm along a fixed resistance. The resistance
from A to Cis fixed, but the resistance from B to C varies with the position of
the wiper arm. If it takes 10 tums to move the wiper arm from A to C, draw a
block diagram of the potentiometer showing the input variable, the output vari-
able, and (inside the block) the gain, which is a constant and is the amount by
which the input is multiphed to obtain the output

Figure P1.1 Inpul angle. 6 * 50 volts
Fotenbometer A % A
L B c
= 50 volts
Output

voliage. v ()

1
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2. A temperature control system operates by sensing the difference between the
thermostat setting and the actual temperature and then opening a fuel valve an
amount proportional to this di Draw a functi losed-loop block
diagram similar to Figure 1.9(d) identifying the input and output transducers,
the controller, and the plant. Further, identify the input and output signals of all
subsystems previously described.

Figure P1.2
Anrcraft atiitude
defined

y {imh angle et =

Aileron
deflection up

Aileron
deflection down

Yaw angle -

3. An aircraft’s attitude varies in roll, pitch, and yaw as defined in Figure P1.2.
Draw a functional block diagram for a closed-loop system that stabilizes the
roll as follows: The system measures the actual roll angle with a gyro and com-
pares the actual roll angle with the desired roll angle. The ailerons respond to
the roll-angle error by undergoing an angular deflection. The aircraft responds
to this angular deflection, producing a roll angle rate. Identify the input and out-
put transducers, the controller, and the plant. Further, identify the nature of each
signal.

4. Many processes operate on rolled material that moves from a supply reel to a
take-up reel. Typically, these systems, called wenders, control the material so
that it travels at a constant velocity. Beside velocity, complex winders also con-
trol tension, compensate for roll inertia while accelerating or decelerating, and
regulate acceleration due to sudden changes. A winder is shown in Figure P1.3.

Niprolls
Bridle

Force
transducer
Center-driven
unwinder

Surface winder
Dancer-position
feedback

Figure P1.3
Winder
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The force transducer measures tension; the winder pulls against the mp rolls,
which provide an opposing force; and the bridle provides slip. In order to com-
pensate for changes in speed, the material is Jooped around a dancer. The loop
prevents rapid changes from causing excessive slack or damaging the material
If the dancer position is sensed by a potentiometer or other device, speed vari-
ations due to buildup on the take-up reel or other causes can be controlled by
comparing the i voltage to the d speed. The system then
corrects the speed and resets the dancer to the desired position (Ayers, 1988).
Draw a functional block diagram for the speed control system, showing each
component and signal.

In a nuclear power generating plant, heat from a reactor is used to generate
steam for turbines. The rate of the fission reaction determines the amount of
heat generated, and this rate is controlled by rods inserted into the radioactive
core. The rods regulate the flow of neutrons. If the rods are lowered into the core,
the rate of fission will diminish: if the rods are raised, the fission rate will in-
crease. By automatically controlling the position of the rods, the amount of heat
generated by the reactor can be regulated. Draw a functional block diagram for
the nuclear reactor control system shown in Figure P1.4. Show all blocks and
signals

Amphifier,
motor, and
drive system

Rod

Radioactive core
Neutron
detector

A university wants to establish a control system model that represents the stu-
dent population as an output, with the desired student population as an input.
The administration determines the rate of admissions by comparing the current
and desired student populations. The admissions office then uses this rate to ad-
mit students. Draw a functional block diagram showing the administration and
the admissions office as blocks of the system. Also show the following signals:
the desired student population, the actual student population, the desired student
rate as determined by the adminisiration, the actual student rate s generated by
the admissions office, the dropout rate, and the net rate of influx.

‘We can build a control system that will automatically adjust a motorcycle’s
radio volume as the noise generated by the motorcycle changes. The noise
generated by the motorcycle increases with speed. As the noise increases, the
system increases the volume of the radio. Assume that the amount of noise can
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be by a voltage by the cable, and the volume
of |he radio is controlled by a dc voltage (Hogan, 1988). If the dc voltage repre-
sents the desired volume disturbed by the motorcycle noise, draw the functional
block diagram of the automatic vohnme control system, showing the input trans-
ducer, the volume control circuit, and the speed transducer as blocks. Also show
the following signals: the desired volume n input, the actual volume as an
output, and voliages representing speed, desired volume, and actual volume.

*®

Your bathtub at home is a control system that keeps the water level constant. A
constant flow from the tap yields a constant water level, because the flow rate
through the drain increases as the water level increases, and decreases as the
water level decreases. Afier equilibrium has been reached, the level can be con-
trolled by controlling the input flow rate. A low input flow rate yields a lower
level, while a higher input flow rate yields a higher level.

a.  Sketch a control system that uses this principle to precisely control the fluid
level in a tank. Show the intake and drain valves. the tank, any sensors and

s, and the i ion of all

b. Draw a functional block diagram of the system, identifying the input and
output signals of each block.

9.

A dynamometer is a4 device used to measure torque and speed and 1o vary the
load on rotating devices. The dynamometer operates as follows to control the
amount of torque: A hydraulic actuator attached to the axle presses a tire against
arotating flywheel. The greater the displacement of the actuator. the more force
that is applied to the rotating ftywheel. A strain gage load cell senses the force.
The displacement of the actuator is controlled by an electrically operated valve
whose displacement regulates fluid flowing into the actuator (D’Souza, 1988).
Draw a functional block diagram of a closed-loop system that uses the described
dynamometer to regulate the force against the tire during testing. Show all sig-
nals and systems. Include amplifiers that power the valve, the valve, the actuator
and Joad, and the tire.

Dunng amedical operanon an aneslhesmlogls‘ controls the depth of uncon-

by the of i in a vaporized mixture
with oxygen and nitrous oxide. The depth of anesthesia is measured by the pa-
tient’s blood pressure. The iologist also regulates ilation, flud bal-

ance, and the administration of other drugs. Tn order to free the anesthesiologist

to devote more time to the latter tashs, dnd in the interest of the patient’s safety,

we wish to the depth of by ing the control of isoflu-
rane concentration. Draw a functional block diagram of the system showing per-
tinent signals and subsystems (Meier, 1992).

11. The vertical position, x(#), of the grinding wheel shown in Figure P1.5 1s con-
trolled by a closed-loop system. The input to the system is the desired depth of
grind, and the output is the actual depth of grind. The difference between the
desired depth and the actual depth drives the motor, resulting in a force applied
to the work. This force results in a feed velocity for the grinding wheel (Jenkins,
1997). Draw a closed-loop functional block diagram for the grinding process,
showing the input, output. force, and grinder feed rate.
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FigPL5 xaxs
Gnder system  servo motor

waas

- Force transducer
servo motor e
\

F—{ pmac
[—1 motor
Cupped ntrol
grnding -— 7 s
-
Workpiece ™ 7T s Eddy
i Shaft  current probe
i encoder
2-axis
$€rvo motor

12. A high-speed proportional solenoid valve is shown in Figure P1.6. A voltage
proportional to the desired position of the spool is applied to the coil. The
resulting magnetic field produced by the current in the coil causes the armature
to move. A push pin connected to the armature moves the spool. A linear voltage
differential transformer (LVDT) that outputs a voltage proportional to displace-
ment senses the spool’s position. This voltage can be used in a feedback path to
implement closed-loop operation (Vaughan, 1996). Draw a functional block
diagram of the valve, showing input and ougput positions, coil voltage, coil cur-
rent, and spool force.

Figure PL.6
Highspeed Sleeve
preportonzl i
solenoid valve

Pressure tube
Spoot Bearings  Armalure LVDT

13. Given the electric network shown in Figure PL.7,

‘Write the differential equation for the network if v(¢) = uif), a unit step.

4

Solve the differential equation for the current. i{f). if there is no initial
energy in the network.

¢. Make a plot of your solution if R L = 1.
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Figure PL7
RL network

Figure P18
RLC netwark

Introduction

0000
~

v ()

14. Repeat Problem 13 using the network shown in Figure PI.8. Assume R =
1Q.L =05H.and 1 LC = 30.

Vin iy c

15. Solve the following differcntial equations using classical methods. Assume zero
initial conditions.

LA

é +7x = Scos2t

2
%m +8x = 5sin3f
‘;: + 8 o+ 255 = 10us)

. 16. Solve the folluwmg differential equations using classical methods and the given
initial conditions:

23 .

= +ZE +2x = sin2¢t
dx

x(0) = 2; E(O) =-3

& L dx
—+2= +x=52+
de? atr se !

dx
0 -2 ZO -
dZ

ﬁ+4x—11

dx
x0) =15 E(O) =2
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Catenary

| Progressive Analysis and Design Problem

17. High-speed rail pantograph. Some high-speed rail systems are powered by
electricity supplied to 4 pantograph on the train’s roof from a catenary overhead,
as shown in Figure P1.9. The force applied by the pantograph to the catenary is
regulated to avoid loss of contact due to excessive transient motion. A proposed
method to regulate the force uses a closed-loop feedback system, whereby a force,
Fyp, is applied to the bottom of the pantograph. resulting in an output force ap-
plied to the catenary at the top. The contact between the head of the pantograph
and the catenary is represented by a spring. The output force is proportional to the
displacement of this spring, which is the difference between the catenary and pan-
tograph head vertical positions (O"Connor, 1997). Draw a functional block diagram
showing the following signals: the desired output force as the input; the force, Fyp,
applied to the bottom of the pantograph; the difference in displacement between
the catenary and pantograph head: and the output contact force. Also, show blocks
representing the input transducer, controller. actuator generating Fyp, pantograph
dynamics, spring descnibed above, and output sensor. All forces and displacements
are measured from equilibrium.
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Chapter Objectives

Modeling in the
Frequency Domain

In this chapter you will

Review the Laplace transform

Learn how to find a mathematical model, called a transfer function, for linear,
time-nvariant electrical, hanical, and hanical systems

Learn how 1o linearize a nonlinear system m order to find the transfer
function

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown on the front
endpapers, you will be able to find the transfer function of each subsystem.
Given a model of 2 human leg, or a nonlinear electrical circuit, you will be
able to linearize the model and then find the transfer function.
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Figure 2.1
. Block diagram
representation of a
system;

b. block diagram
representation of an
mierconnection of
subsystems

2.1 Introduction

In Chapter 1 we discussed the analysis and design sequence that included obtaining
the system’s s‘chemauc and demonstrated this step for a position control system. To

obtainasch Lsyst \gi must often make many simplifying
assumptions in order to keep the ensuing model manageable and still approximate
physical reality.

The next step is 1o develop ical models from ics of physical

systemns. We will discuss two methods: (1) transfer functions in the frequency do-
main and (2) state equations in the time domain. These topics are covered in this
chapter and in Chapter 3, respectively. As we proceed, we will notice that in every
case the first step in developing a mathematical model is to apply the fondamental
physical laws of science and engineering. For example, when we model electri-
cal networks, Ohm’s law and Kirchhoff’s laws, which are basic laws of electric
networks, will be applied initially. We will sum voltages in a loop or sum cur-
rents at a node. When we study mechanical systems, we will use Newton's laws
as the fundamental guiding principles. Here we will sum forces or torques. From
these equations we will obtain the relationship between the system’s output and
input.

In Chapter | we saw that a differential equation can describe the relationship
between the input and output of a system. The form of the differential equation
and its coefficients are a formulation or description of the system. Although the
differential equation relates the system to |ls input and output, it is not a satis-
fying rep ion from a system persp . Looking at Eq. (1.2), a general,
nth-order, linear, time-invariant differential equation, we see that the system pa-
rameters, which are the coefficients, as well as the ouput, c{1). and the input. r{t),
appear throughout the equation.

‘We would prefer a mathematical representation such as that shown in Figure
2.1(a), where the input, output, and system are distinct and separate parts. Also, we
would like to rep: ly the i ion of several suk: For
example, we would like to repres msmded i ions, as shown in Figure
2.1(b), where a mathematical function, called a transfer function, is inside each

Tnput Output
System
® on

@
Input Output
(0 (t)
®

Note. The input, r(£), stands for reference mpur.
The output, (#). stands for controlled variable.



2.2 Laplace TransformRevew 39

block, and block functions can easily be combined to yield Figure 2.1(a) for ease
of analysis and design. This convenience cannot be obtained with the differential
equation.

2.2 Laplace Transform Review

A system represented by a differential equation is difficult to model as a block dia-

gram. Thus, we now lay the groundwork for the Laplace transform, with which we

can represent the input, output, and system as separate entities. Further, their inter-

relationship will be simply algebraic. Let us first define the Laplace transform and

then show how it simplifies the representation of physical systemns (Nilsson, 1996).
The Laplace transform is defined as

Sipnl - Fo =J Fe ™ dr @n
0-

where s = ¢ + jw, u complex variable. Thus, knowing f(r) and that the integral m
Eq. (2.l]) exists, we can find a function, F(s), that is called the Laplace transform
of f(z).

The notation for the lower limit means that even if f(r) is discontinuous at
t = 0, we can start the integration prior to the discontinuity as long as the in-
tegral converges. Thus, we can find the Laplace transform of impulse functions.
This property has distinct advantages when applying the Laplace transform to the
solution of differential equations where the initial conditions are discontinuous at
¢ = 0. Using differential equations, we have to solve for the initial conditions after
the discontinuity knowing the initia] conditions before the di inuity. Using the
Laplace transform we need only know the initial conditions before the discontinu-
ity. See Kailath (1980) for a more detailed discussion.

The inverse Laplace transform, which allows us to find f(z) given F(s), is

| fon
PRS- I Fis)e" ds
27 ),
— flontny 22
where
u(®) =1 t>0
=0 <0

is the unit step function. Multiplication of £(1) by u(1) yields a time function that is
zero for r < 0.

"The Laplace transform exists if the integral of Eq. (2.1) converges. The mtegral will converge
if [o” Ll de < . If |f())] < Me™. 0 < 1 < =, the integral will converge if = > oy > 0.
We call o, the abscissa of convergence, and it is the smallest value of @, where s = o + je, far
which the integral exists.
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Example 2.1

Table 2.1 Laplace transform table

Item no. fit) Fis)
1. 80 1
2 u(t) ;
1
3. w(t) 2
nt
4. 1ty o
5. e %u(r) 5 :_ -
. w
6. sin eon(s) e
7 cos wfu(?) S
. s itdt) T+ o?

Using Eq. (2.1). it is possible to derive a table relating £(s) to F(s) for specific
cases. Table 2.1 shows the results for a ive sample of i If we
use the tables, we do not have to use Eq. (2.2), which requires complex integration,
to find £(1) given F(s). In the following example we ate the use of Eq.
{2.1) 1o find the Laplace transform of a time function.

Laplace transform of a time function

Problem Find the Laplace transform of f(r) = Ae™%u(f).

Solution Since the time function does not contain an impulse function, we can
replace the lower limit of Eq. (2.1) with 0. Hence,

F(s) = I fe'dt = J’ Ae e dt = AJ’ e tra gy
0 0 0

A

= — e
s+a

A
-0 Sta @3

In addition to the Laplace transform table, Table 2.1, we can use Laplace trans-
form theorems, listed in Table 2.2, to assist in transforming between £(f) and F(s).
In the next example, we demonstrate the use of the Laplace transform theorems
shown in Table 2.2 to find f(r) given F(s).



Example 2.2

2.2 Laplace Transform Review 41

Table 2.2 Laplace transform theorems

hemno. Theorem Name
1. SLflN) = Fis} = [ ftne™'dr Definition
o
2. 01 = kF(s) Linearity theorem
3. LA + 0] = Fi(s) + Fa(s) Linearity theorem
4. e "f(n] = Fs+a) Frequency shift theorem
5. Hfe—-TN = e TF) Time shift theorem
6 HAfa) = %p(g) Scaling theorem
df ’ .
7 4 Vi = sF(s) — fl0-) Differentiation theorem
&L 2 ; y 5
8. k4 7 = s°F(s) — sf(0—) — f(0—)  Differentiation theorem
&f L kg " -
9 <[ = &"F(s)— > " **"Y0-) Differentiation theorem
k=1
'
10. % U f(-r)d'r] = %S) Integration theorem
o
11. ) = li"ll) sF(s) Final value theorem!
ek
12 FO+) = lim sF(s) Initial value theorem?
]

! For this theorem to yield correct finite results, all roots of the denommator of F(s) must have
negative real parts, and no more than one can be at the origin.

2For this theorem to be valid, f(r} must by orhave a step atg = O (that
iis, no impulses of their derivatves at f = 0).

Inverse Laplace transform

Problem Find the inverse Laplace transform of Fi(s) = 1, (s + 3)%.

Sohution For this example we make use of the frequency shift theorem, Item 4 in
Table 2.2, and the Laplace transform of f{f) = fu(f), Item 3 of Table 2.1. If the
inverse transform of F(s) = 1+ 2 is fu(s), the inverse transform of F(s + a) =
L.'(s + a)? is e “su(s). Hence, fi(£) = e >'tu(p).
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Partial-Fraction Expansion

To find the inverse Laplace transform of a complicated function, we can convert the
function to a sumof simpler terms for which we know the Laplace transform of each
term. The result is called a partial-fraction expansion. If Fy(s) = N(s); D(s), where
the order of N(s) is less than the order of D(s), then a partial-fraction expansion can
be made. If the order of N(s) is greater than or equal to the order of D(y), then
N(s) must be divided by D(s) successively until the result has a remainder whose
numerator is of order less than its denominator. For example, if

S +22 +65+7

A = —a0 s

2.4)
we must perform the indicated division until we obtain a remainder whose numer-
ator is of order less than its denominator. Hence,

Fi()=s+1+ 25)

sS4+5+5
‘Taking the inverse Laplace transform, usmg ltem 1 of Table 2.1, along with the
differcntiation theorem (Item 7) and the linearity theorem (Item 3 of Table 22y we
obtain

déu)

fly = ( +8ny+ ¥ '[ 2.6)

o]

2+s+5
Using partial-fraction expansion, we will be able to expand functions like F(s) =
2 (s* + s + 5)into a sum of terms and then find the inverse Laplace transform for
each term. We will now consider three cases and show for each case how an F(s)
can be expanded into partial fractions.

Case 1. Roots of the Denominator of F(s) Are Real and Distinct An example
of an F(s) with real and distinct roots in the denominator is

F(s) = @n

2
s+)s+2)
The roots of the denominator are distinct, since each factor is raised only to unity
power. We can write the partial-fraction expansion as a sum of terms where each
factor of the original d i forms the i of each term, and con-
stants, called residues, form the numerators. Hence,

_ 2 _ K K g
=53 D6+D " G+D e+ D @8
To find K, we first multiply Eq. (2.8) by (s + 1), which isolates K. Thus.
2 (s + DKy
t+n Mt ey 29

Letting s approach — 1 eliminates the last term and yields K, = 2. Similarly, K»
can be found by multiplying Eq. (2.8) by (s + 2) and then letting s approach —2;
hence, K; = —2.
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Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(#) is the sum

of the inverse Laplace transform of each term, or
0 = (267 — 27l (2.10)

In general, then, given an F(s) whose denominator has real and distinct roots,
a partial fraction expansion.

Mo _ N

B = By = Grpls +p) G+ P G+ Fn)
I SN SR
G TG pz) (s +pm) (s+pn)

@1
can be made if the order of N(s) 1s less than the order of D(s). To evaluate each
residue, K,, we multiply Eq. (2.11) by the denominator of the corresponding partial
fraction. Thus. if we want to find K,,. we multiply Eq. (2.11) by (s + px) and get

(5 + pm)N(s)
m)F(s) =
{5+ pm)F(s) (s +p)s+p2)---(s+Pm)-- (s +pr)
= Py P K
K
+(s+ pm)m @12

If we let s approach —py, all terms on the right-hand side of Eq. (2.12) go to zero
except the term K, leaving

(APmNS) |

= Kpn 2.13)
(S+P|)(X+P2)"'W§)---(S+pn)|

5= —pm

The following example demonstrates the use of the partial-fraction expansion
to solve a differential equation. We will see that the Laplace transform reduces the
task of finding the solution to simple algebra.

Laplace transform solution of a differential equation

Problem Given the following differential equation, solve for y(#) if all mitial con-
ditions are zero. Use the Laplace transform.

oy + l2dy

PR & + 32y = 32u(n 2.14)

Solution Substitute the corresponding F(s) for each term in Eq. (2.14), using Item
2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(#) and
dy(8); dt, given by Y(0—) = 0 and 3(0—) = 0, respectively. Hence, the Laplace
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transform of Eq. (2.14Vis

SPY(s) + 125¥(s) + 32¥(s) = 3?2 2.15)

Solving for the respunse, Y(s), yields

_ 32 B 32
T s(2+125+32)  ss+ D+ 8)

¥s) (2.16)

To solve for y(#), we notice that Eq. (2.16) does not match any of the terms in Table
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
each of the resulting terms with F(s) in Table 2.1. Therefore,

32 K K K

MO e 6T e S Teed a1
where, from Eq. (2.13),
32
= B, @18
32
R R (2.18b)
32
K= m . 1 (2.18¢c)
Hence,
1 2 1
¥ = < ThT e (219

Since each of the three component parts of Eq. (2.19) 1s represented as an
F{(s) in Table 2.1, (#) is the sum of the inverse Laplace transforms of each term.
Hence.

MO = (1~ 27 + e ¥yuq) 220

MATLAB Students who are using MATLAB should now run ch2p] through ch2p8 in Appendix B. This is
0 your first MATLAB exercise. You will Iearn how to use MATLAB to (1) represent polynomials,
(2) find roots of ials, (3) multiply and {4) find partiaHraction expansions

Finally, Example 2.3 will be solved using MATLAB.

The a(7) in Eq. (2.20) shows that the response 1s zero until £ = 0. Unless
otherwise specified. all inputs to systems in the text will not start until 7 = 0.
‘Thus, output responses will also be zero until # = 0. For convenience, we will
leave off the u(z) notation from now on. Accordingly, we write the output re-
sponse as

M) =1-2e% ;¥ @21
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Case 2. Roots of the Denominator of F(s} Are Real and Repeated  Anexample
of an F(s) with real and repeated roots in the denominator is

F(s) = 2.22)

2
(s+ Dis+2P
The roots of (s + 2)? in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case the denominator root at —2 is a multiple
root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each fac-
tor of the i forms the i of each term. In addition, each mul-
tiple root g i terms isting of i factors of reduced
multiplicity. For example, if

K L LS 2.23)

2
F) =G D6+ G+D G+ 6+D

then K; = 2, which can be found as previously described. K3 can be isolated by
multiplying Eq. (2.23) by (s + 2)?, yielding

2 2 Ki
FES I o

+ Kz + (s + 2)Kx 2.2

Letting s approach —2, K; = —2. To find K3 we sce that if we differentiate Eq.
(2.24) with respect 1o s,

Pt 122 = ml{, + Ka (2.25)
Kj is isolated and can be found if we let s approach 2. Hence, K3 = —2.

Each component part of Eq. (2.23) is an F(s) in Table 2.1: hence, f(?) is the
sum of the inverse Laplace transform of each term, or

f@) =2 — 2™ — 27 (2.26)

If the denominatoer root is of higher multiplicity than 2., successive differentiation
would isolate each residue in the expansion of the multiple root.

In general, then, given an F(s) whose denominator has real and repeated roots,
a partial-fraction expansion,

F(s) = %
_ Ns)
CGHpYGEp) s +p)
K KB K&
G+p)y  G+py! (s+p1)
Kt K,

—_— 2
G+p Grom @2
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can be made if the order of N(s) is less than the order of D(s) and the repeated
roots are of multiplicity r at —p;. To find K; through K for the roots of multiplicity
greater than unity, first multiply Eq. (2.27) by (s + p1 )" getting Fy(s), which is
Fils) = 6 +p)FE)
_ G +pyNE)
S +p1Yes+p)---(s+pn}
=K+ +p)ke+ 5 +pVKa+ -+ s+ p) 'K,
c Bty | Kls+p)
(s+p2) (s +pa)

(2.28)

Immediately, we can solve for K, if we let s approach —py. We can solve for K,
if we differentiate Eq. (2.28) with respect to s and then let s approach —p). Sub-
sequent differentiation will allow us to find K through K. The general expression
for K through K, for the multiple roots is

_ 1 d7lRs)
B P
5= P

i=1L2..,n O0=1 (229

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary
An example of F(s) with complex roots in the denominator is

3
o~ s @30
This function can be expunded in the following form:
3 K, K»s+ K3 @3n

S+25+5 s Tv2+5
K is found in the usual way to be % K, and K3 can be found by first multiplying

Eq. (2.31) by the lowest common denominator, s(s2 + 2s + 5), and clearing the
fractions. After simplification with K; = 3, we obtain

3= (Kz + %)sz + (K1 + g)s +3 232

Balancing coefficients, (Kz + ) = 0 and (K; + %) = 0. Hence K3 — -3 and
K3 = —§_ Thus,

Fs) =

=22 @33

3._'5 3 s+2
s 58242545

3
s(s2+25+5)
‘The last term can be shown to be the sum of the Laplace transforms of an

expunentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and
4 in Table 2.2, we get

Als +a)

—at _
HJAe ¥ cos ] Crafral

234
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Similarly,
Bw
—at g -
Y[Be “sinwt) = Graf+ol 2.35)
Adding Eqgs. (2.34) and (2.35), we get
_, _ar Als+a)+ Bw
at a -
F[Ae™ cos wr + Be™ sin wi] Gralt el {2.36)
‘We now convert the last term of Eq (233 o the form suggested by Eq. (2.36)
by completing the squares in the and adj termsin the
without changing its value. Hence,
3,5 3D+,
Fe) = 5 12+ 22 @3n
Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find
_3 3., 1.
fo = H ge (cos 2t+ 3 stt) (2.38)
In order 0 v1suallze the solution, an alternate form of c{(#), obtained by trigono-
metric i isp ble. Using the i of the cos and sin terms, we

factor out /12 + ( 1 2)? from the term in parentheses and obtain

3 3 1 1,2
o) =z —2J/12+(1.2%" cos2t + ! n 2t
=575 o2 (‘/127”1/2)2 N )

239

Letting 1, /12 + (1/2)2 = cosp and (1. 2), /12 + (1, 2)* = sin g,

) = % - g V12 + (1: 2)%¢"(cos ¢p cos 2t + sin ¢ sin2r) (2.40)
or
cft) = 0.6 — 0.671e " cos (2t — ) 41

where ¢ = arctan0.5 = 26.57° Thus, c{z) is a constant plus an exponentially
damped sinusoid.
Ingeneral, then, given an £(s) whose denominator has complex or purely imag-
inary roots, a partial-fraction expansion,
N _ M)
D) G+p)s2+as+b)---
__ K, (KK
G+p) (2+as+b)

242)

can be made if the order of N(s) is less than the order of D(s), p is real, and
(52 + as + b) has complex or purely imaginary roots. The complex or imaginary
roots are expanded with (K2s + K3) terms in the numerator rather than just simply
K,, as in the case of real roots. The K;’s in Eq. (2.42) are found through balancing
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the coefficients of the equation after clearing fractions. After completing the
squares on (s2 + as + b) and adjusting the numerator, (Kzs + Ks) (52 + as + b)
can be put into the form shown on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if @ = 0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction ex-
pansion of F(s) with real roots in the denominator can be used for complex and
imaginary roots. However, the residues of the complex and imaginary roots are
themselves complex conjugates. Then, after taking the inverse Laplace transform.
the resulting terms can be identified as

8 4 oIt
S — e 243)
and
&t — 8 .
_Zj— = siné 2.44)
For example, the previous F(s) can also be expanded in partial fractions as
3 3
) = E v 5T - Wl G+ 1-72)
_kK K K
TS tsrieptiviop @9
Finding K>,
3 3 .
k=i T B2 (2.46)

Similarly, K; is found to be the complex conjugate of K,, and K; is found as pre-
viously described. Hence,

35 3( 2+ j1 . 2-j1 ) @41

F=""-% sSt1+2 s+i1—j2

from which
3_3 iDe- 0D ihe—(1-721
FO = 5 35|@+i0e P4 2= e

3 3 T ferny g e 2 — g2t
=35 [4(T o (2.48)

Using Egs. (2.43) and (2.44), we get
3 3, 1. -
fn = 5° ge cos2t + 3 sin2¢) = 0.6 ~ 0.671e ‘cos(2r — ¢) (249

where ¢ = arctan0.5 = 26,57°.
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Symhbolic Math Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Math Toolbox should now run ch2spl and ch2sp2 in Appendix E. You
will learn how to construct symbolic objects and then find the inverse Laplace and Laplace
transforms of frequency and time functions, respectively. The examples in Case 2 and Case
3 this section will be solved using the Symbolic Math Toolbox.

Skill-Assessment Exercise 2.1
Problem Find the Laplace transform of f(r) =
Answer F(s) =1 (s +5)?
The complete solution is on the accompanying CD-ROM.

Skill-Assessment Exercise 2.2
Problem Find the inverse Laplace transform of F(s) = 10 [s(s + 2)(s + 371

10 o 40
+
o°

Answer f(1) = = 75(: 2y

The complete bululmn 15 on the accumpanying CD-ROM.

2.3 The Transfer Function

In the previous secuon we defined the Laplace transform and its inverse. We pre-
sented the idea of the partial-fraction expansion and applied the concepis to the
solution of differential equations. We are now ready to formulate the system repre-
sentation shown in Figure 2.1 by establishing a viable definition for a function that
algebraically relates a system’s output to its input. This funciion will allow sepa-
ration of the input, system, and output into three separate and distinct parts, unlike
the dlftcrenual equation. The function will also allow us to algebraically combine
of 1o yield a total system representation.

Letus hegm by writing a general nth-order, linear. time-invariant differential

equation,

d"c(t) d"e(n)
O g A1 g

d"ny & nny
g O g
where ¢{r) 1s the ourpuy, r(1) is the input, and the a;’s. &s and the form of the
differential equation represent the system. Taking the Laplace transform of both
sides,

+ - 4 anclt)

+ 0+ byr() (2.50)

2,5"C(s) + a1 5" C(5) + -~ - + apC(s) + initial condition
terms involving ()
= buS"R(S) + br_15"'R(s) + -+ + byR(s) + initial condition
terms involving ri#)  (2.51)
Equation (2.51) 1s a purely algebraic expression. If we assume that all initial con-
ditions are zero, Eq. (2.51) reduces to

+ap)C(s) = (bs™ + By 8"+ - BOIR(S)  (252)

(@ns" + 8y 15"+ -
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Figure 2.2
Black diagram of a
transfer function

Example 2.4

MATLAR

Symbolic Math

R(s)

Now form the ratio of the output transform, C(s), divided by the input transform,
R(s):
Coy Gis) = Bus” + by 15" ' 4+ 4 by)
Re) T o +a, ¢ T+

(2.53)

Notice that Eq. (2.53) separates the output, C(s), the input, R(s), and the system, the
ratio of polynomials in s on the right. We call this ratio, G(s), the transfer function
and evaluate it with zero inittal conditions.

The transfer function can be represented as a block diagram, as shown in Fig-
ure 2.2, with the input on the left, the output on the right, and the system transfer
function inside the block. Notice that the denominator of the transfer function is
identical to the ch istic polynomial of the diffc ial equation. Also, we can
find the output, C(s), by using

Clsy = R(IG(s) (2.54)

Letus apply the concept of a transfer function to an example and then use the result
to find the response of the system.

Transfer function for a differential equation
Problem Find the transfer function represented by
%’2 +2¢(t) = 1) (2.55)

Solution  Taking the Laplace transform of both sides, assuming zero initial condi-
tions, we have

SC(s) + 2C(s) = R(s) (2.56)
The transfer function, G(s), is

o 1

GO = jar ~ 532

257

Students who are using MATLAB should now run ch2p9 through ch2p11 n Appendix B. You
willlearn how to use MATLAB to create transfer functions with numerators and denominators
in polynomial or factored form. You will also learn how to convert between polynomial and
factored forms.

Students who are performing the MATLAB exercises and want to explore the added capabilty
of MATLAB's Symbolic Math Toolbox, should now run ¢h2sp3 in Appendix E. You will learn
how to use the Symboiic Math Toolbox to simplify the mput of complicated transfer functions
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Symbollc Math as well as improve readability. You will learn how to enter a symbolic transfer function and
- convert it to a linear time-invaniant {LTI} object as presented n Appendix B, ch2p9.

Example 2.5
System response from the transfer function
Problem Use the result of Example 2.4 to find the response. (1), to aninput. r{f} =
(), a unit step. assuming zero initial conditions.
Solution To solve the probtem, we use Eq. (2.54), where G(s) = 1 (s + 2) as

found in Example 2.4. Since r{?) = 1), R(s) = 15, from Table 2.1. Since the
initial conditions are zero.

1
C(s) = R(s)G(s) = e (2.58)
Expanding by partial fractions, we get
12 12
C(s) = S si2 2.59)
Finally, taking the inverse Laplace transform of each term yields
_1
) = 5 "¢ 2.60)

Skill-Assessment Exercise 2.3
Problem Find the transfer function. G(:) — C(s) R(s), corresponding 1o the dif-

ferential equation %,T +3—0= dtz 4 7 Pt 5¢ =

Cs _ s2+4s+3
Rs) S+32+7s5+5
‘The complete solution is on the accompanying CD-ROM.

Answer G(s) =

Skill-Assessment Exercise 2.4

Problem Find the diffc ial equation corresp g to the transfer function,
Gs) = 25+ 1
T2 46542°

Answer Z—z+6 +2c—2 T i

The complete solution is on the accompanying CD-ROM.
Skill-Assessment Exercise 2.5
Problem  Find the ramp response for a system whose transfer function is G(s) =
[y — m Fi p resp Y ©)
(s+4)(s+8)°
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1 1 4,1 &
T + 3¢
The complete solution is on the accompanying CD-ROM.

Answer o(f) =

In general, a physical system that can be represented by a linear, time-invariant
differential equation can be modeled as a transfer function. The rest of this chap-
ter will be devoted to the task of modeling individual subsystems. We will ledm
how 1o represent electrical networks, translational systems, i

ical systems, and ical systems as transfer functions. As the
need arises, the reader can consult the Bibliography at the end of the chapter for dis-
cussions of other types of systems, such as pneumatic, hydraulic, and heat-transfer
systems (Cannon, 1967).

2.4 Electric Network Transfer Functions

In this section we formally apply the rransfer function 1o the mathemancal modeling
of electric circuits including passive networks and operational amplifier circuits.
Subsequent sections cover mechanical and electromechanical systems.

Equivalent circuits for the electric networks that we work with first consist
of three passive linear p - resistors. itors, and indt rs.2 Table 2.3

izes the p and the relationships between voltage and current and
between voltage and charge under zero initial conditions.

‘We now combine electrical components into circuits, decide on the input and
output, and find the transfer function. Our guiding principles are Kirchhoff’s laws.
‘We sum voltages around loops or sum currents at nodes, depending on which tech-
nique involves the least effort in algebraic manipulation, and then equate the result

Table 2.3 Voltage-current, voltage-charge, and for resistors, and inductors
Impedance  Admittance
Z(s) = Yis) =
C ltage it C t-voltags Voltage-charge  V(s} Ks) Iis} Vis}
g o (y) 1 1
L vit) = fL indr i) = VD = gt & cs
Capacitor
. ! dgit)
i) = Ri(s) i(n = v W = R—— R
Resistor & &
ditn dquy 1
vy =L—— itn = 71- v(T)d7 W) = L—~ Ls T
Inductor a a Ls

Note: The following set of symbols and umts s uscd throughout this book: v{r) = V (volts), #(r) — A (amps),
4} = Q (coulombs), € = F (farads), R = Q {ohms), G = U (mhes), L = H (hennes).

2Passive means that there 1s no mternal source of energy.
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Figure 2.3
RLC network
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to zero. From these relationships we can write the differential equations for the
circuit. Then we can take the Laplace transforms of the differential equations and
finally solve for the transfer function.

Simple Circuits via Mesh Analysis
Transfer functions can be obtained using Kirchhoff’s voltage law and summing
voltages around loops or meshes.? We call this method Ioop or mesh analysis and
demonstrate it in the following example.

Transter function—single loop via the differential equation

Problem Find the wansfer function relating the capacitor voltage, Vets), to the
input voltage, V(s), in Figure 2.3.

Solution In any problem the designer must first decide what the input and out-
put should be. In this network severa] variables could have been chosen to be the
output—for example, the inductor voltage, the capacitor voltage, the resistor volt-
age, or the current. The problem statement, however, is clear m this case: We are
to treat the capacitor voltage as the output and the applied voltage as the input.

Summing the voltages around the loop, assuming zero initial conditions, yields
the integrodifferential equation for this network as

d'(') TR+ & J D dr = D) @6
Changing variables from current to charge using i) = dg(t) dt yields
JZZU) dq‘ D, q(t) = @62
From the voltage-charge relationship for a capacitor in Table 2.3,
g0 = Cve () (2.63)
Substituting Eq. (2.63) into Eq. (2.62) yields
LC% - RC% e = v (264

A particular loop that resembles the spaces in a screen or fence is called a mesh.
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Figure 2.4
Block diagram of
series RLC electncal
network

viv) ic V()
LC | ¥ -

x7+;—fs+ﬁ

Taking the Laplace transform assuming zero imtial conditions, rearranging terms,
and simplifying yields

(LCS* + RCs + WV (s) = Ws) (2.65)
Solving for the transfer function, Ve (s); V(s), we cbtain

Ve 1LC
Vo 24 Bs + L 6o
L ILC

as shown in Figure 2.4.

Let us now develop a techmque for simplifying the solution for future
problems. First, take the Laplace transform of the equations in the voltage-current
column of Table 2.3 assuming zero initial conditions.

For the capacitor,
Vo) = elts) @6n
For the resistor,
V(s) = RI(s} (2.68)
For the inductor,
V(s) = Lsk(s) (2.69)

Now define the following transfer function:

Vi
)

Notice that this function is similar to the dehmition of resistance, that is, the
ratio of voltage to current. But, unlike resistance, this function is applicable to ca-
pacitors and inductors and carries mformauon on the dynamic behavior of the

since it rep an ial equation. We call this
pamcular transfer function xmpedance The impedance for each of the electrical
elements is shown in Table 2.3.

Let us now demonstrate how the concept of impedance simplifies the solution
for the transfer function. The Laplace transform of Eq. (2.61), assuming zero initial
conditions, is

= Z(s) {270)

(L: FR+ l)l(s) = v @)
Cs
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Laplaceransformed
network
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Ls 3

e
Vis) e Vets)

H(s) =

Notice that Eq. (2.71), which 1s m the form
[Sum of impedances] /(s) = [Sum of applied voltages] 2.72)

suggests the series circuit shown in Figure 2.5. Also notice that the circuit of Fagure
2.5 could have been obtained immediately from the circuit of Figure 2.3 simply by
replacing each element with its impedance. We call this altered circuit the trans-
Jormed circuit. Finally, notice that the transformed circuit leads immediately to Eq.
(2.71) if we add impedances in series as we add resistors in series. Thus, rather than
writing the differential equation first and then taking the Laplace transform, we can
draw the transformed circuit and obtain the Laplace transform of the differential
equation simply by applying Kirchhoff’s voltage law to the transformed circuit. We
summarize the steps as follows:

1. Redraw the original network showing all time variables, such as v(#), i(r), and
v (t), as Laplace transforms V(s), /(s), and V¢ (s), respectively.

Replace the component values with their imp values. This rep

is similar to the case of dc circuits, where we represent resistors with their re-
sistance values.

»

‘We now redo Example 2.6 using the transform methods just described and bypass
the writing of the differential equation.

Transfer function—single loop via transform methods

Problem Repeat Example 2.6 using mesh analysis and transform methods without
writing a differential equation.

Solution Using Figure 2.5 and writing a mesh equation using the impedances as
we would use resistor values in a purely resistive circnit, we obtain

1
(Lt +R+ a)lm = Vs 2.73)
Solving for I(s)/V{(s),
Ks) _ 1
VO T T T 274
+R+ —

Cs
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Example 2.8

Example 2.9

But the voltage across the capacitor, Ve (s), is the product of the current and the
impedance of the capacitor. Thus.

1
Vees) = I(S)E 2.75)

Solving Eq. (2.75) for K(s), substituting /(s} into Eq. (2.74), and simplifying yields
the same result as Eq. (2.66).

Simple Circuits via Nodal Analysis

Transfer functions also can be obtained using Kirchhoff’s current law and summing
currents flowing from nodes. We call this method nodal analysis. We now demon-
strate this principle by redoing Example 2.6 using Kirchhoff’s current law and the
transform methods just described to bypass writing the differential equation.

Transfer i ingle node via methods

Problem Repeat Example 2.6 using nodal analysis and withont writing a differ-
ential equation.

Selution The transfer function can be obtained by summing currents fiowing
out of the node whose voltage is Vc(s) in Figure 2.5. We assume that currents
leaving the node are positive and currents entering the node are negative. The
currents consist of the current through the capacitor and the current fiowing
through the series resistor and inductor. From Eq. (2.70). each /(s) = V(s} Z(s).
Hence,

Vels) | Vels) — V) _
1/Cs R+Ls

where Ve (s) (1 Cs) is the current flowing out of the node through the capacitor,
and |V (s)— W(s)t (R+ Lsyis the current flowing out of the node through the series
resistor and inductor. Solving Eq. (2.76) for the transfer function, Ve (s) V4(s), we
arrive at the same result as Eq. (2.66).

0 (2.76)

Simple Circuits via Voltage Division
Example 2.6 can be solved directly by using voltage division on the transformed
network. We now demonstrate this technique.

Transfer function—single loop via voltage division
Problem Repeat Example 2.6 using voltage division and the transtormed circuit.

Solution The voltage across the capacitor is some proportion of the input volt-
age, namely the impedance of the capacitor divided by the sum of the impedances.
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Thus,

1/C:
Vel = 2V @
(Ls +R+ a)
Solving for the transfer function, Vts) V(s), yields the same result as Eq. (2.66).
Review Examples 2.6 through 2.9. Which method do you think is easiest for
this circuit?

The previous example involves a simple, single-loop electrical network. Many
electrical networks consist of multiple loops and nodes, and for these circuits we
must write and solve si differential equations in order to find the transfer
function, or solve for the output.

Complex Circuits via Mesh Analysis
To solve complex electrical networks—those with multiple loops and nodes—using
mesh analysis. we can perform the following steps:

- Replace passive element values with their impedances.

. Replace all sources and time variables with their Laplace transform.
. Assume a transform current and a current direction in each mesh
‘Write Kirchhoff’s voltage law around each mesh.

Solve the simultaneous equations for the ourput.

Stk W

Form the transfer funcuon.

Let us look at an example

Transfer function—muitiple loops
Problem Given the network ot Figure 2.6(a), tind the transfer tunction, 12(s); V(s).

Solution The first step in the solution is to convert the network into Laplace trans-
forms for impedances and circuit variables, assuming zero initial conditions. The
result is shown in Figure 2.6(b). The circuit with which we are dealing requires
two simultancons equations to solve for the transfer function. These equations can
be found by summing voltages around each mesh through which the assumed cur-
rents, Iy(s) and £(s), flow. Around Mesh 1, where I,(s) flows,

RyIy(s) + Lshy(s) — Lsh(s) = V(s) (2.78)
Around Mesh 2, where F2(s) flows,

Lsky(s) + Ralo(s) + élz(s) —Lshi(s) =0 2.79)
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Figure 2.6
a. Twooop electrical
network,

b. transformed
twoloop electrical
network;

. block diagram

¥

+
vn c 1ol

nin -— —~ i) - T
R,
Viis) 2

Visy Ls = J{
Ist = I(s) - ,I\
®)

Ws) LCs?
R+ R)LCs2+(RiR,C+ s+ Ry

©

Combining terms, Egs. (2.78) and (2.79) become simultaneous equations in Iy(s)
and Ir(s):

Ry + L)y(s) — Lsh(s) = V(s) (2.80a)
~ Lshy(s) + (Lv +R+ é)lz(s) =0 (2.800)

‘We can use Cramer’s rule (or any other method for solving simultaneous equa-
tions) to solve Egs. (2.80) for k(5). Hence,

(R +Ls) V(s)

_ | -Ls 0 | _ LsV(s)
bL(s) = —a = "a 381y
where
(R + Ls) —Ls
= 1
—Ls (L: + R + a)

“See Appendix F (Section F.4) on the accompanymg CD-ROM for Cramer's rule.
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Forming the transfer function, G(s), yields

bis) _ Ls _ LCs?
V) A& (R +R)LCE + (RiR,C + Ds + Ry

G(s) — (2.82)
as shown in Figure 2.6(c).

We have succeeded in modeling a physical network as a transfer function: The
network of Figure 2.6(a) is now modeled as the transfer function of Figure 2.6(c).
Before leaving the example, we notice a pattern first illustrated by Eq. (2.72). The
form that Egs. (2.80) take is

Sum of et Sum of applied
impedances [I(s) - mp! I5(s) = | voltages around | (2.83a)
common to the
around Mesh 1 Mesh 1
two meshes
.mSI;g‘a;"f:e; Sum of Sum of applied
—| P ® |nes)+| impedances |I(s) = {voltages around | (2.83b)
commion to the
around Mesh 2 Mesh 2
two meshes

Recognizing the form will help us write such equations rapidly; tor example, me-
chanical equations of motion (covered in Sections 2.5 and 2.6) have the same form.

Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Math Toolbox should now run ch2sp4 n Appendix E, where Example
2.10 is solved. You will learn how to use the Symbolic Math Toolbox to solve simultaneous
equations using Cramer's rule. Specifically, the Symbolic Math Toolbox will be used to solve
for the transfer function in Eq. {2.82) using Egs. (2.80).

Complex Circuits via Nodal Analysis
Often, the easiest way to find the transfer functwn is to use nodal analysis rather
than mesh analysis. The number of si ions that must be
written is equal to the number of nodes whose voltage is unknnwn In the previous
example we wrote simultaneous mesh equations vsing Kirchhoff’s voltage law
For multiple nodes we use Kirchhoff’s current law and sum currents flowing from
each node. Again, as a convention. currents flowing from the node are assumed to
be positive, and currents flowing into the node are assumed to be negative.

Before progressing to an example, let us first define admitiance, ¥(s), as the
reciprocal of impedance, or

1 Ks)
=== .84
9= 725 = vy @89
‘When writing nodal equations, it can be more convenzent to represent crrcuit €l-
ements by their admittance. Admittances for the basic electrical components are
shown in Table 2.3. Let us look at an example.
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Example 2.11

Figure 2.7
Block diagram of the
network of Figure 2.6

Transfer function—multiple nodes

Problem Find the transfer function, V- (s) 'V(s). for the circuit in Figure 2.6(b).
Use nodal analysis.

Solution For this problem we sum currents at the nodes rather than sum voltages
around the meshes. From Figure 2.6(b) the sum of currents flowing from the nodes
marked V;(s) and V¢ (s) are, respectively,

Vi) - Vi) | Vi) | Vi)~ Ve (s} _

0 2.
R Ls ) 2859
Coven + Ve Vi) _ (2.85b)
R2
Rearranging and exp g the resit as 5 Gy = 1°R and
G> = 1 R,, we obtain,
1
(Gl +G2+ E_)VL(J) — GiVc(s) = V(G (2.86a)
—G2Vi(5) + (G2 + Cs)Veis) = 0 (2.86b)
Solving for the transfer function. Ve (s); V(s), yields
Gles
Ve ) C
= (2.87)
V(s) 2, GGL+C G
(Gt + Gy)s +¥L(‘ S+LC
as shown in Figure 2.7.
GG,
Vis) s Vetn)
(G|+Gz)sz+%y+f—é

Another way to write node equations is to replace voltage sources by current
sources. A voltage source presents a constant voltage to any load; conversely, a
current source delivers a constant current to any load. Practically, a current source
can be constructed from a voltage source by placing a large resistance in series
with the voltage source. Thus, variations in the Joad do not appreciably change the
current, because the current is determined approximately by the large series resistor
and the voltage source. Theoretically, we rely on Norton's theorem, which states

S geseral. admittance 1s complex. The real part 1s called conductance and the maginary part
is called susceptance. But when we take the reciprocal of resistance to obtain the admittance, a
purely real quantity results. The reciprocal of resistance is called conductance.
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Figure 2.8
Tronsformed
network ready for
fodal analysis
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that a voltage source, V(s), in series with an impedance, Z(s), can be replaced by
acurrent source. I(s) = V(5): Z(s), in parallel with Z(s).
In order to handle multiple-node electrical networks, we can perform the fol-
lowmg steps:
. Replace passive element values with their admittances.
. Replace all sonrces and time variables with their Laplace transform.
. Replace transformed voltage sources with transformed current sources.
. Write Kirchhoff’s current law at each node.

. Solve the simultaneous equations for the output.

S T R S

. Form the transfer function.

Let us look at an example.

Transfer function—multiple nodes with current sources

Problem For the network of Figure 2.6, find the transfer function, V¢ (s): V(s),
using nodal analysis and a transformed circuit with current sources.

Solution Convert all impedances to admittances and all voltage sources in series
with an impedance to current sources in parallel with an admittance using Norton’s
theorem.

Redrawing Figure 2.6(b) to reflect the changes. we obtain Figure 2.8, where
G = 1 R, Gz = 1, R, and the node voltages—the voltages across the induc-
tor and the capacitor—have been identified as Vi(s) and Ve (s), respectively.
Using the general relationship, f(s) = ¥(s)V(s), and summing currents at the
node Vi(s),

1
GVie) + 7 Vi) + G [Vigs) — Ve ()] = VI9G, (2.88)

Summing the currents at the node V¢ (s) yields
CsVes) + G2 [Ve(s) — Vi(s)] = 0 (2.89)

Combining terms, Eqgs. (2.88) and (2.89) become simultaneous equations in V¢ (s)
and Vi(s), which are identical to Egs. (2.86) and lead to the same solution as Eq.
2.87).
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An advantage of drawing this circuit lies in the form of Egs. (2.86) and its
direct relationship to Figure 2.8, namely

Sum ot admittances

Sum of admittances _ _ | Sum of applied
connccted to Node 1] V() | common to the two | V() = oy o ot Node 1
rodes
(2.90a)
Sum of admittances . .
_ Sum of admittances _ | Sum of applied
mm"“::):j::he two V() + [connecled to Node 2] Vet = [cun‘ents at Node 2

(2.90b)

A Problem-Solving Technique

In all of the previous examples, we have seen a repeating pattern in the equations
that we can use 1o our advantage. If we recognize this pattern, we need not write the
p we can sum impedances around a mesh in the
case of mesh equations or sum admittances at a node in the case of node equations.
Let us now look at a three-loop electrical network and write the mesh equations by
inspection to demonstrate the process.

Example 2.13
Mesh equations via inspection
Problem Write, but do not solve, the mesh equations for the network shown in
Figure 2.9.

Figure 2.9

Threeloop electncal

network

Solution Each of the previous problems has illustrated that the mesh equations
and nodal equations have a predictable form. We use that knowledge to solve this
three-loop problem. The equation for Mesh 1 will have the following form:
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Sum of
Sum of impedances
i 11(s) — [ common to |42(s)
around Mesh 1 Mesh | and
Mesh 2

Sum of
impedances Sum of applied
—| common to |f3ts) = | voltages around | (2.91)
Mesh I and Mesh |

Mesh 3

Similarly, Meshes 2 and 3, respectively, are

Sum of
impedances Sum ot
—| commonto i(s) +| impedances |[f2(s)
Mesh | and around Mesh 2
Mesh 2
Sum of
impedances Sum of applied
— | commonto [/a(s) = | voltages around | (2.92)
Mesh 2 and Mesh 2
Mesh 3
and
Sum of Sum of
impedances impedances
—| common to [1(s) — | common to [F2(s)
Mesh 1 and Mesh 2 and
Mesh 3 Mesh 3
Sum of Sum of applied
+| impedances [f3(s) = | voltages around | (2.93)
around Mesh 3 Mesh 3
Substituting the values from Figure 2.9 into Egs. (2.91) through (2.93) yields
+(25 + DI(s) — 25 + Dhy(s) —Is) — Vs)  (294a)
—(25 + DIi(s) + (95 + Dh(s) —4shi(s) =0 (2.94b)
—I(s) - 4sh(s) + (4s +14 ;)’g(s) =0 (2.94c)

which can be solved simultaneously for any desired transfer funcuon, for example,
I3(s); V(s)-
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Figure 2.10
a. Operatonal
amplifier;

b. schematic for an
nverting operational
amplfier;

c. inverting
aperational ampiifier
configured for transfer
function reabzation.
Typically, the amplifier
gan, A, 1s omitted.

+vylt) viir)
vlt)
+vp()
@ ®
Zs)

Passive electrical circuits were the topic ol discussion up to this point. We now
discuss a class of active circuits that can be used to implement transfer functions.
These are circuits built aronnd an operational amplifier.

Operational Amplifiers

Anoperational amplifier; pictured in Figure 2.10{(a), is an electronic amplifier nsed
as a basic building block to impl transfer i It has the following char-
acteristics:

1. Differential input, va(z) — vi(1)
2. High input impedance, Z, = c (ideal)
3. Low output impedance, Z, = 0 (ideal)
4. High constant gain amplification, A = = (ideal)
The output, v4(?), is given by
Volt) = Avy() — mi(e) 295
Inverting Operational Amplifier

If v3(2) is grounded, the amphifier is called an mverting operational amplifier, as
shown in Figure 2.10(b). For the inverting operational amplifier, we have

ve() = —An () 2.96)

If two i are d to the i g ional amplifier as
shown in Figure 2.10(c), we can derive an interesting resull if the amplifier has
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Figure 2,11
Ivertng operational
ampifier circut for
Example 2.14
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the characteristics in the beginning of this ion. If the mput
impedance to the amplifier is high, then by Kirchhoff's current law Z(s) = 0
and Ii(s) = —Ix(s). Also, since the gain A is large, vi(?) = 0. Thus, Ii(s)=
Vi(s) Zi(s),and —I(s) = —V,(s) Zz(s). Equating the two currents, Vo(s) Za(s)=
—Vi(s) Z,(s), or the transfer function of the inverting operational amplifier config-
ured as shown in Figure 2.10(c) is

Vi) _ 2
Vst Zin

@297

Transfer function—inverting operational amplifier circuit

Problem Find the transfer function, V,(s) Vi(s), for the circuit given in Figure
2.11.

Ry= =
= 220k 0.1 uF

Solution The transfer function of the operational amplifier circuit is given by Eq

(2.97). Since the i of parallel add, Zi(s) is the
the sum of the admittances, or
360 x 10°
Zus) — — L T = Y ! T = 2?)(:6: Tl @9
C|s+ITI 56x10 S+—360><103
For Z,(s) the impedances add, or
Zy(5) = R, + L apxiers 19 (2.99)
2 E R os T s -

Substituting Egs. (2.98) and (2.99) into Eq. (2.97) and stmplifying, we get

2
Vols) _ | pqp s+ 45955 + 2255 2100
Vils) 5

The resulting circuit is called a PID controller and can be used to improve the
performance of a control system. We explore this possibility further in Chapter 9.
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Figure 2.12
General normwerting
cperational amplifer

circut

Example 2.15

Vi)

% "

Noninverting Operational Amplifier

Another circuit that can be analyzed for its transfer function is the noninverting
operational amplifier circuit shown in Figure 2.12. We now derive the transfer func-
tion. We see that

Vo(s) = A(Vi(s) — V() 2.101)
But, using voltage division,

Zi(s)
Zy($) + Za(s)
Substituting Eq. (2.102) into Eq. (2.101), rearranging, and simplifying, we obtain

Vols) _ A

Vi(s) = Vol(s) 2.102)

_———— (2,103
Vi) " TR AT G + 2o )
For large A, we di unity in the d i and Eq. (2.103) becomes
V) _ Zy(s) + Z(s) 2104

V(s) Zi(s)

Let us now look at an example.

Transfer function—noninverting operational ampilifier circuit

Problem Find the transfer function, V(s)/V,(s), for the circuit given in Figure
2.13.

Selution  We find each of the impedance functions, Z;. (5) and Z(s), and then sub-
stitute them into Eq. (2.104). Thus,

Zi(s) = R + (2.105)

L
Gis
and

Ry(1'Cys)

2= B a Gy

(2.106)
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Figwre2.13 c,
Nonnvertng I(
operabonal ampifer )
outfor R,
Exomple 215

el 10
1 :‘>L

Substituting Egs. (2.105) and (2.106) into Eq. (2.104) yields

Vo($) _ GORRis” + (CR2 + iRy + CiR)s + 1
Vi(s) CORRS? +(CR + CiR)s + 1

(2107

Skill-Assessment Exercise 2.6
Problem Find the transfer tunction, G(s) = Vi(s). V(s), for the circuit given in
Figure 2.14. Solve the problem two ways—mesh analysis and nodal analysis. Show
that the two methods yield the same result.

Figure 2.14 fob’o’o’\

Electnc circuit for
SkikAssessment H
d
1Q 1Q
Exercise 2.6

"n H 1H yi

Answer  Vi(s), V(s) = (s2+ 25 + 1)/(s2 + 55+ 2)
The complete solution is on the accompanying CD-ROM.
Skill-Assessment Exercise 2.7

Problem If Z;(s) is the impedance of a 10 uF capacitor and Z5(s) is the imped-
ance of a 100 k{} resistor, find the transfer function, G(s) = V,(s) 'V;(s), if these
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components are used with (a) an inverting operational amplifier and (b) a nonin-
verting amplifier as shown in Figures 2.10(c) and 2.12, respectively

Answers  G(s) = —s for an nverung operational amphifier; G(s) = s + 1 for a
noninverting cperational amplifier.

The complete solution is on the accompanying CD-ROM.

In this section we found transfer functions for multiple-loop and multiple-node
electrical networks, as well as i iplifier circuits. We d )ped mesh
and nodal equations, noted their form, and wrote thern by inspection. In the next
section we begin our work with mechanical systems. We will see that many of the
concepts applied to electrical networks can also be applied to mechanical systems
via analogies—from basic concepts to writing the describing equations by inspec-
tion. This revelation will give you the confidence to move beyond this textbook and
study systems not covered here, such as hydraulic or pneumatic systerns.

2.5 Translational Mechanical System
Transfer Functions

‘We have shown that electrical networks can be modeled by a transfer function,
G(s), that algebraically relates the Laplace transform of the output to the Laplace
transform of the input. Now we will do the same for mechanical systemns. In this
section we on i hanical systerns. In the next section we
extend the concepts to rotational mechanical systems. Notice that the end product,
shown in Figure 2.2, will be mathematically indistinguishable from an electrical
network. Hence, an electrical network can be interfaced to a mechanical systern by
cascading their transfer functions, provided that one system is not loaded by the
other.®

Mechanical systems parallel electrical networks to such an extent that there
are analogies between electrical and mechanical components and variables. Mc-
chanical systerns, like electrical networks, have three Ppassive, linear components.
Two of them, the spring and tbe mass, are energy-storage elements: one of them,
the viscous damper, dissipates energy. The twu energy-storage elements are analo-
gous to the two electrical energy-storage elernents, the inductor and capacitor. The
energy dissipator is anals 1o electrical resi Let us take a look at these
mechanical elements, which are shown in Table 2.4. In the table, K, S, and M are
called spring constant, coefficient of viscous friction, and mass, respectively

We now create analogies between electrical and mechanical systems by com-
paring Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4 to the
voltage-current column of Table 2.3, we see that mechanical force 1s analogous
to electrical voltage and hanical velocity is to electrical current.
Comparing the force-displacement column of Table 2.4 with the voltage-charge
column of Table 2.3 Jeads to the analogy between the mechanical displacement
and electrical charge. We also see that the spring is analogous to the capacitor, the
viscous damper is analogous to the resistor, and the mass is analogous 10 the induc-
tor. Thus. summing forces written in terms of velocity is analogous 10 summing

“The concept of Ioading 1s explained further in Chapter 5.
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Table 2.4 Forcevelocity, force- and
for springs, viscous dampers, and mass
Force- Force- Impedance
Component velocity displacement Zy(s) Fis) Xis)
Spring
—I - x(n .
=K I vr)dr 1) = Kx(ny K
w o
K
Viscons damper
- xi) dx()
w S = fvin fin= vl fis
5
Mass
(0 2.
dvi(r) _ 450 2
M=y fuy=M=3 Ms

) =
oo

Note: The following set of symbols and umits is nsed throughoul this book: f(f)
(newtons), x(f) = m (meters), v(f) — m‘s (meters/second), K = N‘m (newlons; meter), f. =
N-s m (newton-seconds; meter). M = kg (kilograms = newlon-seconds? meter).

voltages written in terms of current, and the resulting mechanical differential equa-
tions are analogous to mesh equduons If the forces are written in terms of displace-
ment, the resulting but are not to, the
mesh equations. We, however, w1|| use this model for mechanical systems so that
we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of Ta-
ble 2.4 to the current-voltage colurnn of Table 2.3 in reverse order. Here the analogy
is between force and current and between velocity and voltage. Also, the spring is
analogous to the inductor, the viscous damper is analogous to the resistor, and the

mass is anall tothe itor. Thus, ing forces written in terms of veloc-
ity is analogoua to aummmg currenl: written in terms of voltage and the resulting
are to nodal eq We will discuss

these analogies in more detail in Section 2.9.
‘We are now ready to find transfer ions for tr i ical sys-

terns. Our first example, shown in Figure 2.15(a), is similar to the simple RLC
neiwork of Example 2.6 (see Figure 2.3). The mechanical systern requires just
one differential equation, called the eguation of motion, to describe it. We will
begin by assuming a positive direction of motion, for example, to the right. This
assurned positive direction of motion is similar to assuming a current direction in
an electrical loop. Using our assurned direction of positive motion, we first draw
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Example 2.16

Figure 2.15

a. Mass, spong, and
damper systen;

b. block diagram

Figure 2.16

a. Free body diagram
of mass, sprng, and
damper system;

b. transformed free-
body diagram

a free-body diagram, placing on the body all forces that act on the body either
in the direction of motion or opposite to it. Next we use Newton’s law to form a
differential equation of motion by summing the forces and setting the sum equal
to zero. Finally, assuming zero initial conditions, we take the Laplace transform of
the differential equation, separate the variables, and arrive at the transfer function.
An example follows.

Transfer function—one equation of motion
Problem Find the transfer function, X(s). F(s), for the system of Figure 2.15(a).

Solution Begin the solution by drawing the free-body diagram shown in Figure
2.16(a). Place on the mass all forces felt by the mass. We assume the mass is trav-
eling toward the right. Thus, only the applied force points 10 the right; all other
forces impede the motion and act to oppose it. Hence, the spring, viscous damper,
and the force due to acceleration point to the left.

- xin Xisy
Kx() KX(s)
S M g XY= M e F
d%
M o Ms2X(s)
@ ®)

‘We now write the differential equation of motion using Newton's law 10 sum
10 zero all of the forces shown on the mass in Figure 2.16(a):

nE0 (2O | kg - pi @109
Taking the Laplace transform, assuming zero mnttial conditions,
Ms?X(s) + £,5X(s) + KX(s) = F(s) (2.109)
or
(Ms + fi5 + K)X(s) = F(s) (2110
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Solving for the transfer function yields

X©) _ 1

6 = Fs) MsI+fs+K

Q@1
which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the
writing of differential equations and by defining impedances for mechanical com-
ponents? 1f so. we can apply to mechanical systems the problem-solving tech-
niques learned in the previous section. Taking the Laplace transform of the force-
displacement column in Table 2.4. we obtain for the spring

Fis) = KX(5) (2.112)
for the viscous damper
Fls) = fi5X(s) 2.113)
and for the mass
F3)  MYX(is) .14
If we define i for i as (Raven, 1995)
Z = 2 @ns)

and apply the definition to Egs. (2.112) through (2.114), we arrive at the impedances
of each component as summarized in Table 2.4.”

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in
the format

F(3) = Zy(s)X(3) .16

we obtain Figure 2.16(b), from which we could have obtzined Eq. (2.109) immedi-
ately without writing the differential equation. From now on we use this approach.
Finally, notice that Eq. (2.110) is of the form

Sum of impedances | X(s) = [ Sum of applied forces @117
P

which is similar. but not analogous. to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-toop and multiple-node
electrical networks, where more than one simultaneous differential equation is re-
quired to describe the system. In mechanical systems, the number of equations of
motion required 15 equal to the nurnber of linearly independent motions. Linear

"Notice that the rmpedance columa of Table 2.4 is not adirect analogy to the impedance column of
Table 2.3, si of Eq.{2.115) s di Adirect bedenved
by defimng mechamcal wpedance m terms of velocity as F(s) V(s). We chose Eq. (2.115) as a
converuent defimtion for writing the equations of molion in terms of displacement, rather than
velocity. The alternative, however, is available.
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Example 2.17

Figure 2.17
a. Two-degreesf-
freedom translational
mechanical system:
b. block diagram

independence implies that a point of motion in a system can still move if all other
points of motion are held still. Another name for the number of linearly indepen-
dent motions is the number of degrees of freedom. This discussion is not reant to
imply that these motions are not coupled to one another; in general, they are. For
example, in a two-loop electrical network, each loop current depends on the other
loop current, but if we open-circuit just one of the loops. the other current can still
exist if there is a voltage source in that loop. Sirilarly, in a mechanical system with
two degrees of freedom, one point of motion can be held still while the other point
of motion moves under the influence of an applicd force.

In order to work such a problem, we draw the free-body diagram for each
point of motion and then use superposition. For each free-body diagram we begin
by holding all other points of motion still and finding the forces acting on the body
due only to its own motion. Then we hold the body still and activate the other
points of motion one at a time, placing on the original body the forces created by
the adjacent motion.

Using Newton's law, we sum the forces on each body and set the sum to zero.
The result is a system of simultaneous equations of motion. As Laplace transforms,
these equations are then solved for the output variable of interest in terms of the
input variable from which the transfer function is evaluated. Example 2.17 demon-
strates this problem-solving technique.

Transfer function—iwo degrees of freedom
Problem Find the transfer function, Xa(s)/ F(s), for the system of Figure 2.17(a).

20}

NINNIA

Solution The system has two degrees of freedom, since each mass can be moved
in the herizontal direction while the other is held still. Thus, two simultaneous

*Friction shown here and throughout the book, unless otherwise indicated, 15 viscous friction
Thus, £, and £,, are not Coulomb friction, but anse because of a viscous mtcrface.
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a.Forces on M, due
oy to motion of M,
b.forces on M due
oy to motion of My,
c.allforces on M,

Figwe2.19
a. Forces on M, due
etlytomoton ol M;
b.forces on M, due

etlytomoton of My;
c.dforces on M,
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KX

£5X1() FsXals) KX(s)
My KaXy(s)
Fo fesXals)
Mystxs)
(@) [t2]
(K + KXy
[ERTAD D) K3Xols)
Fis) £,5%(5)
Mys2Xy(s) )
{©)

equations of motion will be required to describe the system. The two equations
come from free-body diagrams of each mass. Superposition is used to draw the
free-body diagrams. For example, the forces on M are due to (1) its own motion
and (2) the motton of M, transmitted to M, through the system. We will consider
these two sources separately.

1f we hold M, still and move M, to the right, we see the forces shown in Figure
2.18(a). If we hold M| still and move M, to the right, we see the forces shown in
Figure 2.18(b). The total force on M| is the superposition, or sum, of the forces just
discussed. This result is shown in Figure 2.18(c). For M, we proceed in a similar
fashion: First we move M3 to the right while holding M, still; then we move M| to
the right and hold M, still. For each case we evaluate the forces on M,. The results
appear in Figure 2.19.

The Laplace transform of the equations of motion can now be written from
Figures 2.18(c) and 2.19(c) as

[Mis? + (fyy +fi)s + Ky + KDIX(S) — (o5 + Kn¥a(s) = F(s)  (21188)
(s + K Xi(8) + [Mos® + (i, +Fs)s + (Ko + KDPo(s) = 0 (2.118b)
KpXAs)
5 X;(s X5}
£ My KXo
Fi5%05) X
M,s2Xa(s)
(@ ®)
(K3 + K1) X(5)
Jo5Ki(s)
(it hi)s¥Xots)
KX(s)
Mos2X(s)

©
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From this, the transfer function, X,(s) F(s), is

X(s) _ _ s+ Ky
F5) = G(s) ’T 2.119)
as shown n Figure 2.17(b) where
[M.f + (fiy Hh5)s + (K + Kz)] = s + K2)
— (fu,s + K2) [M2s2 + U, HhIs +H (K + Ks)]

Notice again, i Egs. (2.118), that the form of the equations is similar to elec-
trical mesh equations:

Sum of

impedances Su;" of Sum of
connected  [Xi{s) — "‘;"‘ ANCES Io(s) = | applied forces | (2.1202)
to the motion ctween at x;
atx xp and x2
Sum of
im?;:?a:ies impedances S_um of
1 between 1(s) +| connected |X25) = | applied forces | (2.120b)
o the motion atxg
X1 and xp aix,

The pattern shown in Egs. (2.120) should now be tamnhar lo us. Let us u%e lhe
concept to write the ions of motion of a three-deg
network by inspection, without drawing the free-body dlagram.

Example 2.18
Equations of motion by inspection
Problem Write, but do not solve. the equations of motion for the mechanical net-
work of Figure 2.20.
Figure 2.20 j:»a,u)
Three-degrees-of- I
freedom translational P
mechanical system v My fi
HI'*""(” DY - atn)

e L
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Solution The system has three degrees of freedom, since each of the three masses

can be moved independentiy while the others are held still. The form of the equa-
tions will be similar 10 electrical mesh equations. For M;.

Sum of Sum of
impedances § - -
connected 1s) — (28’
to the motion ;)exgexn
atx, ! 2

Sunel Sum of
__| impedances _ >
between [V spplid forces @21
x) and x3 1

Similarly, for M, and Mj, respectively,

Sum of . Sum of
m impedances
- be': [Ew[ :mr e x, (s} +| connected |X2(s)
to the motion
x and xz atx

Sum of Sum of
— | ™pedances 1y () = | applied forces | (2122
between atx
X2 and x3 2

Sum of Sum of

between ) - brelween 2()
xp and x3 X and x3

Sum of
impedances
connected  [Xa(s) =
to the motion
atxs

Sum of
applied forces | (2.123}
at x;

+

M, has two springs, two viscous dampers, and mass associated with its motion.

There is one spring between M, and M, and one viscous damper between M and
M. Thus, using Eq. (2.121),

M+ (fy, +fi)s + (Ko + K21 Xt} — Ko Xats) —fi,5%a(s) — 0 2.12%)
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Similarly, using Eq. (2.122) for M,,
—K2X1(5) + IMas® + (fi, + fuds + K2lXats) — fusXats) = (&) (2.125)
and using Eq. (2.123) for M3,
~FuSX1(S) — £, 5Ka(5) + [MaS® + (fy, + £, )s1Xa(8) =0 (2.126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X (s), X5(s), or X3(s), or transfer function.

Skill-Assessment Exercise 2.8

Figure 2.21
Translational
mechanical system
for SkiFAssessment
Exercise 2.8

Problem Find the transfer function, G(s) = Xp(s) F(s). for the transiational
mechanical systern shown in Figure 2.21.

- I* ) J e
| |
/ '
fv,=1N=sim
J0] - M =1kg [« — My=1kg
3
Fu,= 1 Nesim _E Sy, = UN-s/m
| e — - T e et |
Answer G(s) = I+l

S +72+ 55+ 1)
‘The complete solution is on the accornpanying CD-ROM.

2.6 Rotational Mechanical System
Transfer Functions

Having covered elecinical and translational mechanical systems, we now move
on to consider rotational ical systerns. Rotati hanical systems are
handied the same way as uans]atmnal mechanical systems, except that torque re-
places force and angular displ replaces P The
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Table 2.5 gular velocity, torge
rotational relatlonshlps for springs, viscous dampers and inertia
Torque- Torque-
angular angular Impedance
Component velocity displacement  Z,(s) T{s) 6{s}
70 60
Spring ’
Tn = KJ w(Tyd7 T(r) = Ké() K
0
K
Viscous 7 gn
damper
T() = De(1) T = D# Ds
D
T 6in
fnectia (N "\ deolt) £60)
- - 2
=J & =4 a s
J

Note: The following set of symbols and umts 1s used throughout this book. 7(r) =N-m
(newton-meters), O(f)=rad (radians), w(f}=rad s (radians; second), K=N-m‘rad (newton-
meters radian), D N-m-s rad (newton-meters-seconds, radsan), J = kg-m? (kilogram-meters?
= newlon-meters-seconds? radian).

for i systems are the same as those for transla-
tional systems, excepl that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the
components look the same as translational symbols, but they are undergoing rota-
tion and not translation.

Also notice that the term associated with the mass 1s replaced by nerua. The
values of K. D, and J are called spring constant, coefficient uf viscous friction, and

moment of inertia, respectively. The i s of the are
also summarized in the last colunin of Table 2.5. The values can be fnund by tak-
ing the Laplace transform, ing zero initial iti of the torq 1gulk

displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except
that we test a point of motion by rotating it while holding still all other points of
motion. The number of points of motion that can be rotated while all others are held
still equals the number of equations of motion required to describe the system.
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Example 2.19

Figure 222

a. Physical system;
b. schematic:

. black diagram

Modeling in the Frequency Doman

Writing the equations of mouion for rotational systems is similar to writing
them for translational systems; the only difference is that the free-body diagram
consists of torques rather than forces. We obtain these torques using superposition,
First, we rotate a body while holding all other points still and place on its free-body
diagram all torques due to the body’s own motion. Then. holding the body still,
we rotate adjacent points of motion one at a time and add the torques due to the
adjacent motion to the free-body diagram The process is repeated for each point
of motion. For each free-body diagram, these torques are summed and set equal to
zero to form the equations of motion.

les will ate the solution of ional systems. The first one
uses free-body diagrams; the second uses the concept of impedances to write the
equations of motion by inspection.

Transfer function—two equations of motion

Problem Find the transfer function, 8:(s) T{(s), for the rotational system shown in
Figure 2.22(a). The rod is supported by bearings at either end and is undergoing tor-
sion. A torque is applied at the left, and the displacement is measured at the right.

T 6i(n) Hxn

T 6n &t
(0 yomwg) =)
! Dy K Dy
D, Torsion D,
@ ]
Tis) a5y
A
©

Solution  First, obtain the schematic from the physical system, Even though tor-
sion occurs throughout the rod in Figure 2.22(a),” we approximate the system by
assuming that the torsion acts like a spring concentrated at one particular point
in the rod, with an inertia J, to the left and an inertia J; to the right.® We also
assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can

°In this case the parameter 15 referred to as a distributed parameter.
®The parameter is now referred to as a lumped parameter.



Figure 2.23

. Torques 00 J;
due only to the
moton ot J;,
b.torques on 4y
due only tothe
motion of Jy,

. final freebody
diagramfor

Figure 2.24
2. Torques on J;
due oy o the
motion of J;

b. torques on
due only to the.
motion of J;

. final freebody
diagram for J,
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By(s) Drrection 8)(s) Direction ’B.(x) Dircction
;(":\\ 115%6)(5) 76) w Di5%61()
P ) o
&,/ Y DisBy(s) < g Y Dysti(s)
K6,(5) KBxs) K6y(5)
~
Kbs)
@ ® ©
() Direction 6x(s) Direction 83(5) Darection
K6)(s) K69
= $2526,(5) ™ =\ J25762(5)
- I
I D630 @ " 1) Dysbys)
e e
K6,(s) K6,(s)
@ @ ©

be rotated while the other is held still. Hence. it will take two simultaneous equa-
tions to solve the system.

Next, draw a free-body diagram of Jy, using superposition Figure 2.23(a)
shows the torques on Jj if J2 is held still and J) rotated. Figure 2.23(b) shows the
torques on Jy if J, is held still and J; rotated. Finally, the sum of Figures 2.23(a) and
2.23(b) is shown in Figure 2.23(c), the final free-body diagram fur Jy. The same
process is repeated in Figure 2.24 for J.

Summing torques respectively from Figures 2.23(c) and 2.24(c) we cbtamn the
equations of motion,

(i + Dis + K} 6y(s) —Kb(s) = T(s)  (21273)
—K6)(s) + (J25? + Das + K) 64(s) = 0 (2.127b)

from which the required transfer function is found to be

&) _K
=4 2.128,
s A (2128
as shown in Figure 2.22(c), where
|+ Dis+K) -K

A
-K (25 + Das + K)
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Notice that Egs. (2.127) have that now well-known form

Sum of Sum of
impedances smpedances Sum of
connected  [By(s) ~ | " bl;,lween 62(s} = | applied torques (2.1292)
to the motion 6 and & at 6;
at 6 !
Sum of
. Sum of i d Sum of
1 between |01+ mc!c;llln'e:(:fin 0a(s) = applu:ti :;;rques (2.1291)
6 and 6,

at 8,
Example 2.20
Equations of motion by inspection

Problem Write, but do not solve, the Laplace transform of the equations of motion
for the system shown in Figure 2.25.

Solution The equations will take on the following form, similar to electrical mesh
equations:

Sum of Sum of
impedances -
connected  [61(s) — "“bel tween | 026
to the motion
a6, 6, and 6,
imsmd“ otf:es Sum of
- bl:;wTen 65(s) = | applied torques (2.1302)
6 and 6, at 6
Sum of Sum of
. impedances
- lmbmes 6:(s) + | connected | 8(s)
6, and 6 to the motion
' at 6,
Sum of Sum of
_ | impedances °

between 85(s) = | applied torques (2.130b)
6,20d 6, b
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Figure 2.25 &1 Tn 2 6;(n
Three degreesof
freedom rotational
5 g
E—E SEDL (L SED
Dy K Dy Dy
Sum of Sum of
_| impedances  _ | impedances
between 1) between 69
6; and 65 6 and 6,
Sum of
impedances Sum of
+| connected |65(s) = | applied torques (2.1300)
to the motion at &
at 63
Hence,
(1e? + Dis + K) 6,(s) — Kb(s) —06x(s) = T(s)
—K6i(s) + (25 + Das + K) bis) — Dysbs(s) = 0
=061 — D25Bx(s) + (J35? + Dss + D25) 65(s) = 0

(2.131a,b,¢)

Skill-Assessment Exercise 2.9
Problem Find the nansfer function, G(s) = 8(s) T(s), for the rotational mechan-
ical system shown in Figure 2.26.

Figure 2.26 7in 1 N-m/ad 6:n

Potztonel 3 1 N-m/rad
mechanical system

for SbAssessment

Exercse 29 1 N-m-sirad

1 N-m-s/rad

1
27 +5+1
The complete solution is on the accompanying CD-ROM.

Answer  G(s) =
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Figure 2.27
A gear system

2.7 Transfer Functions for Systems with Gears

Now that we are able to find the transfer function for rotational systems, we real-
ize that these systems. especially those driven by motors, are rarely seen withou
associated gear trains dnvmg the load. This section covers this important topic.

Gears provide d to i systems. Anyone who has
ridden a 10-speed bicycle knows the effect of gearing. Going uphill, you shift to
provide more torque and less speed. On the straightaway, you shift to obtain more
speed and less torque, Thus, gears allow you to match the drive system and the
load—a trade-off hetween speed and torque.

For many applications, gears exhibit backlash, which occurs because of the
Toose fit between two meshed gears. The drive gear rotates through a small angle
before making contact with the meshed gear. The result is that the angular rotation
of the output gear does not occur until 2 small angular rotation of the input gear has
occurred. In this section, we idealize the behavior of gears and assume that there
is no backlash.

The linearized interaction between two gears 1s depicted i Figure 2.27. An
input gear with radius r| and N teeth is rotated through angle 8;(¢) due to a torque,
T\(#). An output gear with radius r» and N> teeth responds by rotating through angle
6:(1) and delivering a torque, 75(f). Let us now find the relationship between the
rotation of Gear 1, 6(2). and Gear 2, 8:(f).

From Figure 2.27, as the gears turn, the distance traveled along each gear’s
circumference is the same. Thus,

nb =ré 2.132)
or

[ b N,

= =12 . 133)

A @13

since the ratio of the number of teeth along the circumference 15 1 the sume pro-
portion as the ratio of the radii. We conclude that the ratio of the angular displace-
ment of the gears is inversely proportional to the ratio of the number of tceth,
‘Whatis the relationship between the input torque, 73, and the delivered torque,
7>? If we assume the gears do not ahsorb or store energy, the energy into Gear |
equals the energy out of Gear 2.!! Since the translational energy of force times

] 80 Tuny

Tt 8in
(J" ] N
Input }
drive gear.
Gear1  Output
driven gear,
Gear 2

"This s equivalent to saying that the gears have neghgible mnertia and damping



Figure 228
Transfer functons for
2. anguler
displacement n
Tossless gears and

b. torque n lossless
gears

Figure 2.29

a Rotational system
drven by gears,
b.equvalent system
atthe output after
reflection of inpuit
torque,

c. equvalent system
atthe input after
refection of
impedances
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. Hz : Tz

(@) (1]

displacement becomes the rotational energy of torque times angular displacement.
N6 = 16 (2.134)
Solving Eq. (2.134) for the ratio of the torques and using Eq. (2.133). we get

(2.135)

Thus, the torques are directly proportional to the ratio of the number of teeth. All
results are summarized in Figure 2.28.

Let us see what happens to mechamical impedances that are driven by gears.
Figurc 2.29(a) shows gears driving a rotational inertia, spring, and viscous damper.
For clarity, the gears are shown by an end-on view. We want to represent Figure
2.29(a) as an equivalent system at 6 without the gears. In other words, can the
mechanicul impedances be reflected from the output to the input. thereby eliminat-
ing the gears?

From Figure 2.28(b), 7) can be reflected to the output by multiplying by
Ny; Ny The result is shown in Figure 2.29(b), from which we write the equation
of motion as

2 N,
Us® +Ds + K) B(s) = T,(s)ﬁ2 (2.136)
1
hin 6,n
(‘ (Y m Ay
v lean D TOF b D

8 M

Titn
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Now convert 6,(5) into an equtvalent 6;(s), so that Eq. (2.136) will look as if it were
written at the input. Using Figure 2.28(a) to obtain 85(s) in terms of #,(s), we get

N N,
U +Ds+ K)AT; 6s) = T.(s)ﬁ: .137)

After simplification,

MY MY MY
[J(A—,z) £ +D(E) s+ K(ATZ) 6i(s) = T\(s) (2.138)
which suggests the equivalent system at the input and without gears shown in
Figure 2.29(c). Thus, the toad can be thought of as having been reflected from the
output to the input.
Generalizing the results, we can make the following statement: Rotational
mechanical impedunces can be reflected through gear trains by multiplying the
mechanical impedance by the ratio

Number of teeth of
gear on destination shaft
Number of teeth of
gear on source shaft

where the impedance to be reflected is attached 1o the source shaft and 1s being
reflected to the destination shaft. The next example demonstrates the apphcation of
the concept of reflected impedances as we find the transfer function of a rotational
mechanical system with gears.

Example 2.21
Transfer function—system with lossless gears
Problem Find the transfer function, 6-(s)/ 71(s), for the system of Figure 2.30(a)
Figure 2.30 Tn Gty
a. Rotational
mechanical

system with gears;
b. system after
refiection of torques
and impedances to
the output shaft;

. block diagram

Jst+ D5+ K,

Tits) Nafly 6ais)
— —

©




Figure 2.31
Gear fram
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Solution It may be tempting at this point to search for two simultaneous equations
corresponding to each inertia. The inertias, however, do not undergo linearly inde-
pendent motion, since they are tied together by the gears. Thus, there is only one
degree of freedom and hence one equation of motion.

Let us first reflect the impedances (J; and Dy) and torque (73) on the input
shaft to the output as shown in Figure 2.30(b), where the impedances are reflected
by (Na; N1)? and the torque is reflected by (V2 *Ny). The equation of motion can
now be written as

Ues? + Des + K)ots) = Tl(s)% (2139
1
where
MY N, ¥
5= J|(A7:) +h; D= Dl(ﬁ?) +D; K=K

Solving for 8(s) 71(s), the transfer function is found to be

O:As) _ N Ny

69 = 79 " TF T DT K

(2.140)

as shown in Figure 2.30(c).

In order to eliminate gears with large radk, a gear rrain 15 used to implement
large gear ratios by cascading smaller gear ratios. A schematic djagram of a gear
train is shown in Figure 2.31. Next to each rotation, the angular displacement rel-
ative to 8, has been calculated. From Figure 2.31,

_ MiNalNs

6,
T NaNaNe

6 2.141)
For gear trains, we conclude that the equivalent gear ratio is the product of the
individual gear ratios. We now apply this result to solve for the transfer function ot
a system that does not have lossless gears.

NNy
NyNy !

Ns N NNy
=y = \
N ' NaNyNp
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Example 2.22

Figure 2,32

a. Systemusing

2 gear train;

b. equwvalert system
at the input;

. block diagram

Transfer function—gears with loss
Problem Find the transfer function, 8,(s)/ 7, (s), for the system of Figure 2.32(a).

T 8n

AN N
De
5D

Ny N3
v
Do dy 5 STTANA ( )+(J‘+.l§) (’}"/N)
1 '2/%g,
s .
I N
D,=Dy+ D, 1]
‘e 1 I(Nz

@ @)

Soiution This system, which uses a gear train, does not have lossless gears. All
of the gears have inertia, and for some shafts there is viscous friction. To solve
the problem, we want to reflect all of the impedances to the input shaft, 8,. The
gear ratio is not the same for all impedances. For example, D; is reflected only
through one gear ratio as Dy(Ny Ny)?, whereas J4 plus Js is refiected through two
gear ratios as (Jy + J5) (V. Na)(V, M) The result of reflecting all impedances
to 6, is shown in Figure 2.32(b), from which the equation of motion is

e+ D,8) 8,(s) — Ti(s) (2.142)
where

:J|+(Jz+13)( )+(J4+J;)( ‘N:)

and

N,
D, =Dy +D; (ﬁ')
From Eq. (2.142), the transfer function 15
6i(5) 1
T(s) T2+ Des

G(s) = (2.143)

as shown in Figure 2.32(c).



2.8 Electromechanical System Transfer Functons 87

Skill-Assessment Exercise 2.10

Problem Find the transfer function, G(s) = €(s)/ T(s). for the rotational mechan-
ical systern with gears shown in Figure 2.33.

Figure 2.33 )
1 Nom-shrad
System with gears M—E—I N=25
for Sibssessment N o
Ererose 210 ~
My=50

4 N-m/rad

1,2
s2+s5+1
The complete solution is on the accompanying CD-ROM.

Answer G(s) —

2.8 Electromechanical System
Transfer Functions

In the last section we talked about rotational systems with gears, which completed
our discussion of purely mechanical systems. Now, we move to systems that are
hybrids of electrical and mechanical variables, the electromechanical systems. We
have seen one application of an electromechanical system in Chapter 1, the an-
tenna azimuth position control system. Other applications for systems with elec-
tromechanical components are robot controls, sun and star trackers, and computer
tape and disk-drive position controls. An example of a control system that uses
electromechanical components is shown in Figure 2.34.

A motor is an i that yields a disp out-
put for a voltage input, that is, a mechanical output generated by an electrical
input. We will derive the transfer function for one particular kind of electromechan-
ical system, the armature-controlled dc servomotor {Mablekos, 1980). The motor’s
schematic is shown in Figure 2.35(a), and the transfer function we will derive
appears in Figure 2.35().

In Figure 2.35(a) 2 magnetic field is developed by stationary permanent mag-
nets or a stationary electromagnet called the fixed field. A rotating circuit called the
armature, through which current i,(7) flows, passes through this magnetic field at
right angles and feels a force, F = Bli (1), where B is the magnetic field strength
and /is the length of the conductor. The resulting torque tums the rotor; the rotating
member of the motor,

There is another phenomenon that occurs in the motor: A conductor moving at
right angles to a magnetic field generates a voltage at the terminals nf the conductor
equaltoe = Blv, where eis the voltage and v is the velocity of the conductor normal
to the magnetic field. Since the current-carrying armature is rotating in a magnetic
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Figure 2.34

INASA flight smulator
robot arm with
electromectenical
control system
components

Figure 2.35

DC motor:

a. schemahic;'2
b. block diagram

o - |
[E ,!'-_.9 5‘l~§
‘ M] .“.. ’ ;!;n

Euls) Ol
G(s)

®)

field, its voltage is proportional to speed. Thus,

A
vp(r) = Kb% (2.144)

We call vy(1) the back electromotive force (back emf), K}, is a constant of pro-
portionality called the back emf constant; and d0,(1) dr = wn(1) is the angular
veloarty of the motor. Tuking the Laplace transform, we get

Vits) = Kpstiu(s) (2149

"2See Appendix H for a denvation of this schematic and 1ts parameters.



Figure 2.36
Typical equivalent
mechanical loading
onamotor
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The relationship between the armature current, ,(¢), the applied armature volt-
age, eq(¢), and the back emf, v4(1), is found by writing a loop equation around the
Laplace transformed armature circuit (see Figure 2.35(a)):

Raly(8) + Losla(s) + Vils) = Eul5) (2.146)
The torque developed by the motor is proportional to the armature current; thus,
Tm(s) = Kidu(s) 2,147

where T,,, is the torque developed by the motor, and X; is a constant of proportion-
ality, called the motor torque constant, which depends on the motor and magnetic
field characteristics. In a consistent set of units, the value of K; is equal to the value
of Kp. Rearranging Eq. (2.147) yields

L) = KL'T,,,(S) (2.148)

To find the transter function of the motor, we tirst substitute Eqgs. (2.145) and
(2.148) into (2.146), yielding

w + KnSn($) = Enls) 2.149)
2

Now we must find 7,(s) in terms of 8,(s) if we are to separate the input and output
variables and obtain tbe transfer function, 6,,(s) Eu(s).

Figure 2.36 shows a typical equivalent mechanical loading on a motor. J,,, is
the equivalent inertia at the armature and includes both the armature inertia and.
as we will see later, the load inertia refiected to the armature. D,,, is the equivalent
viscous damping at the armature and includes both the armature viscous damping
and, as we will see later, the load viscous damping reflected to the armature. From
Figure 2.36,

Tol) = (I + Dus) 6s) (2.150)
Substituting Eq. (2.150) into Eq. (2.149) yields

(Ra + LeSYWJonS” + DinS) 6nls)

+ Kps65) = Ef8) .15
K,

If we assume that the armature inductance, £, is small compared to the armature
resistance, R, which is usnal for a dc motor, Eq. (2.151) becomes

[%(Jms + Dp) + Kb] $8a(s) = E(5) (2.152)
9

T} 6,0

)
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Figure 2.37

DC motor drving 2
rotational mechanical
load

N
Dy

After simplification, the desired transfer function, 6(5)/ Eu(s), is found to be

) _ K (Rady) 13
Efs) [: KKy 153
§ b R‘,
Even though the form of Eq. (2.153) is relatively simple, namely
) _ K @154

E(s)  sG+a)

the reader may be concerned about how to evaluate the constants.

Letus first discuss the mechanical constants, J,, and D,,. Consider Figure 2.37,
which shows a motor with inertia J, and damping D,, at the armature driving aload
consisting of inertia J; and damping Dy. Assuming that all inertia and damping
values shown are known, J; and Dy, can be reflected back to the armature as some
equivalent inertia and damping to be added to J, and D, respectively. Thus. the
equivalent inertia, J,,, and equivalent damping, D,,,, at the armature are

N Y N
I = o+ JL(ATZ') i Dn=D.+Dg (F;) @155
Now that we have eval the mechanical Jrm and D,,, what about

the electrical constants in the transfer function of Eq. (2.153)? We will show that
these constants can be obtained through a dynamometer test of the motor, where a
dynamometer measures the torgue and speed of a motor under the condition of a
constant applied voltage. Let us first develop the relationships that dictate the use
of a dynamometer.

Substituting Egs. (2.145) and (2.148) into Eq. (2.146), with £, = 0, yields

%TM(S) + KpsOnls) = Ey(s) (2.156)
s

**The wnits for the electrical constants are K, = N-m//A (newron-meters/umpere), and K, =
V-5 rad (volt-seconds radian).

YIf the values of the mechanical constants are not known, motor constants can be deter-
mmed through laboratory testing using transient response or frequency response data. The con-
ceptof transient response is covered in Chapter 4, frequency response is covered i Chapter 10,



Figure 2.38
Torque-speed curves
with an armature
voltage, e,, as a
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Taking the inverse Laplace transform, we get
R,
T Tnl0) + Kpon(®) = eult) (2.157)
g

where the inverse Laplace transform of s6,(s) is d6,,(1) dr or, atternately, e, (£).

If a dc voltage. e, is applied, the motor will turn at a constant angular ve-
locity. e, with a constant torque, 7,,,. Hence, dropping the i i i
based on time from Eq. (2.157), the following relationship exists when the motor
is operating at steady state with a dc voltage input:

&T,,I + Ky — €a (2.158)
K,
Solving for T, yields
Ky K, K
T = lhen fomt phea (2.159)

Equation (2.159) is a straight line, T, vs. @, and is shown in Figure 2.38. This
plot is called the torque-speed curve. The torque axis intercept occurs when the an-

gular velocity reach: Thatvalue of torque is called the seall torque, Taay. Thus,
K
Toan = 7'ea (2.160)

The angular velocity occurring when the torque is zero is called the no-load speed,
@no-toaa- Thus.
£
noload = é @.161)

The electrical constants of the motor’s transfer function can now be found from
Egs. (2.160) and (2.161) as

K Toan
- — 2.162)
Ra € ¢
T
Toan

g

g

= e,

@,
@yo-foad

Speed
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and

€,
Ky = —=

2163)
©no-load

The electrical constants, K;; R, and Ky, can be found from a dynamometer test of
the motor, which would yield Ty and wno-10ad for a given e,,.

Example 2.23
Transfer function—dc motor and load

Problem Given the system and torque-speed curve of Figure 2.39(a) and (b), find
the transfer function, 6.(s) E,(s).

Solution Begin by finding the mechanical constants, J,, and D, in Eq. (2.153).
From Eqs. (2.155), the total inertia at the armature of the motor is

™ ¥ 1V
- ALl —| = .164)
Im J,,+J,_(N2) 5+700(|0) 12 (2.16%

and the total damping at the armature of the motor 15

MY 1Y
D, = D,.+D,_(172) = 2+800(E) =10 (2.165)
Now we will find the electrical constants, K,/ R, and K. From the torque-speed
curve of Figure 2.39(b),
Tar = 500 (2.166)
Wno-load = 50 (2.167)
eq = 100 (2.168)

Hence the electrical constants are

R e 100 ° 2169
and
€, 100
Kp = = —= 2.170
? T oo 50

Substituting Egs. (2.164), (2.165), (2.169), and (2.170) into Eq. (2.153) yields

g,":s; _ 512 _0an? @
e s{:+ 1'7[10+(5)(2)]}

s(s + 1.667)
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Figure 2.39
2. Dcmotor and load; Fixed
b. torque-speed curve; field

<. block diagram

Ny=1000

4,=5kg-m?
D,=2N-msirad
Dy =800 N-msirad

@
T
500,
8
Eé =100V
2
50
Speed (rad/s)
@)

In order to find ¢;(s)/ E,(s), we use the gear ratio, Ny N = 1 10, and find

6s) _ 00417
Ef5) (s + 1.667)

(2.172)

as shown in Figure 2.39(c)

Skill-Assessment Exercise 2.11

Problem Find the vransfer function, G(s) = 6(s); E.(s), for the motor and load
shown in Figure 2.40. The torque-speed curve is given by T, = —8ew,, +200 when
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Figure 2.40
Electromechanical
system for
SkilAssessment
Exercise 2.11

N—20

Jo=tkgme  Na=100 N3=25
D, =5 Nem-srad

6,0 Dy, = 8OO N-m-s/rad
Ny=100 A}

’ 3= 400 kg-m2

\

the mput voltage is 100 volts.
1/

Answer  G(s) = _—:[s A5/

The complete solution is on the accompanying CD-ROM.

2.9 Electric Circuit Analogs

In this section we show the commonality of systems from the various disciplines
by demonstrating that the mechanical systems with which we worked can be repre-
sented by equivalent electric circuits. We have pointed out the similarity between
the equations resulting from Kirchhoff’s laws for electrical systems and the equa-
tions of motion of mechanical systems. We now show this commonality even more
convincingly by producing electric circuit equivalents for mechanical systems. The
variables of the electric circuits behave exactly as the analogous variables of the
roechanical systems. In fact, converting mechanical systems to electrical networks
before writing the describing equations is a problem-solving approach that you may
want to pursue
Anelectric circuit that is analogous to a system from another discipline is called
an electric circuit analog. Analogs can be obtained by comparing the describing
quations, such as the equati f motion of a ical system, with either elec-
trical mesh or nodal equatit When pared with mesh equations, the resulting
electrical circuit is called a series analog. When compared with nodal equations,
the resulting electrical circuit is called a parallel unalog.

Series Analog
Consider the translational mechanical system shown wn Figure 2.41(a), whose
equation of motion is

(Ms? + f,5 + K)X(5) = F(s) 2173
Kirchhoff’s mesh equation for the simple series RLC network shown n Figure
241(b)is

(Lt +R+ é)l(.\) = E(s) (2.174)

As we previously pointed out, Eq. (2.173) is not directly analogous to Eq.
(2.174) because displacement and current are not analogous. We can create a direct
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Figure 2.41
Development of

series analog

a. mechancal system;
b. desired electrical
representation;

. series analog;

9. parameters for
senes analog

Example 2.24

— (f,J + %)V,(s) + [Mzs +(f, +£) +

[M;s +(f, +A) +
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L R
+
e(n c
i(r)--
®)
I mass = M — inductor = Mhenries
viscous damper =  f, —s resistor = f, obms
+q spring = K —» capacitor = IL{ farads
) S K applied force = f(f) —= voltage source = ()
WP -
velocity = v(f) — meshcurrent = v(1)
© @

analogy by operating on Eq. (2.173) to convert displacement fo velocity by dividing
and multiplying the left-hand side by s, yielding

2
wsxm = (Ms T g)w:) = Fis) @175

Comparing Egs. (2.174) and (2.175), we recognize the sum of impedances and
draw the circuit shown in Figure 2.41(c). The conversions are summarized in Fig-
ure 2.41(d).

‘When we have more than one degree of freedom, the impedances associated
with a motion appear as series electrical elements in a mesh, but the impedances
between adjacent motions are drawn as series electrical impedances between the
two ponding meshes. We with an example.

Converting a mechanical system to a series analog
Problem Draw a series analog for the mechanical system of Figure 2.17(a).

Solution Equations 2.118 are analogous to electrical mesh equations after conver-
sion to velocity. Thus,

w]ﬂ(s) - (fvJ + -I%)Vz(s) = F(s) (2.176a)

M]Vz@) -0 (2.176b)
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Figure 2.42
Series analog of
mechanical system
of Figure 2.17(a)

Figure 2.43
Develapment of
parallel analog:

8. mechanical system;
b. desired electrical
representation;

c. parallel analog,

d. parameters for
paralle) analog

w() M

Madeling in the Frequency Doman

vy -

Coefhcients represent sums of electrical imped:
ciated with M form the first mesh, where impedances between the two masses are
common to the two loops. Impedances associated with Mz form the second mesh.
The result is shown in Figure 2.42, where v (f) and vy(#) are the velocities of M;

and M, respectively.

Parallel Analog

asso-

A system can also be converted to an equivalent paralle] analog. Consider the trans-
lational mechanical system shown in Figure 2.43(a), whose equation of motion is
given by Eq. (2.175). Kirchhoff’s nodal equation for the simple parallel RLC net-
work shown in Figure 2.43(b) is

K — = ()
fin
5
()
i)
1 =
3 S
©

(Cs + % + %)E(s) = K5)

etn

in(®) ¢ I3
®
mass = M —m
viscous damper = f, —
sprig = K —w

applied force = £} —»

velocity = v(r) —

@)

@17
=
S
S
S
capacitor = M farads
1
resistor = = ohms
£
inductor = I'? henries

current source = f(1)

node voltage = v{(f)
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gure 2.44
wallel analog of
echancal system
Figure 2.17(a)
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Comparing Eqs. (2.175) and (2.177), we identify the sum of admittances and draw
the circuit shown in Figure 2.43(c). The conversions are summarized in Figure
243(d).

‘When we have more than one degree of freedom, the components associated
with a motion appear as parallel electrical elements connected to a node, but the
components of adjacent motions are drawn as parallel electrical elements between
two cor ing nodes. We d with an example

Converting a mechanical system to a paraliel analog
Problem Draw a parallel analog for the mechanical system of Figure 2.17(a)

Solution Equations (2.176) are also analogous to elecmcal node equanons Co-
efficients represent sums of electrical admil iated with
M, form the elements connected to the first node, where mechanical admittances
between the two masses are common to the two nodes. Mechanical admittances
associated with M, form the elements connected to the second node. The result
is shown in Figure 2.44, where vi(?) and v() are the velocities of M; and Mo,
respectively.

5y

nin vak0)

Skill-Assessment Exercise 2.12

Probiem Draw a series and parallel analog for the rotational mechanical system
of Figure 2.22.

Answer  The complete solution is on the accompanying CD-ROM.

2.10 Nonlinearities

The models thus far are developed from systems that can be described approxi-
mately by linear, time-invariant differential equations. An assumption of linearity
was implicit in the dcvelopmenl of these models In this section we formally define
the terms i i and show how to distinguish between the two, In Sec-
tion 2.11 we show how to approximate a nonlinear system as a linear system so that
‘we can use the modeling techniques previously covered in this chapter (Hsu, 1968).
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Figure 245
a. Linear system;
b. rortinear system

fix) fx
g2 22
81 81
L, L e,
o 1 2 3 4 o 1 2 3 4
Tnpw Tnput
@ @&

A linear systermn possesses iwo properties: superpostiion and homogeneity. The
property of superposition means that the output response of a system to the sum
of inputs is the sum of the responses to the individual inputs. Thus. if an input of
ri(7) yields an output of ¢ (7} and an input of 7x(z) yields an output of c2(), then an
input of /() + r2(s) yields an output of ¢y (1) + ¢,(1). The property of homogeneity
describes the response of the system to a muliiplication of the input by a scalar.
Specifically. in a linear system, the property of homogeneity is demonstrated if for
an input of ry(¢) that yiclds an output of ¢1(f). an input of Ari(r) yields an outpul
©of Acy(#); that is, multiplication of an input by a scalar yields a response that is
multiplied by the same scalar.

We can visualize linearity as shown in Figure 2.45. Figure 2.45(a) is a linear
system where the output is always § the input, or f(x} = 0.5x. regardless of the
value of x. Thus each of the two properties of linear systems applies. For example,
an input of 1 yields an output of % and an input of 2 yields an output of 1. Using
superposition, an input that is the sum of the origmal inputs, ur 3, should yield an
output that is the sum of the individual cutputs, or 1.5. From Figure 2.45(a), an
input of 3 does indeed yield an output of 1.5,

To test the property of homogeneity, assume an input of 2, which yields an
output of |. Multiplying this input by 2 should yield an output of twice as much,
or 2. From Figure 2.45(c), an input of 4 does indeed yield an output of 2. The reader
can verify that the properties of linearity certamly do not apply to the relationship
shown in Figure 2.45(b).

Figure 2.46 shows some of physical i ities. An el
amplifier is linear over a specific range but exhibits the nonlinearity called saura-
fron at high input voltages. A motor that does not respond at very low input voltages
due tofrictional forces exhibits a nonlinearity called dead zone. Gears that do not fit
tightly exhibit a nonlinearity called backlash: The input moves over a small range
without the output responding. The reader should verify that the curves shown n
Figure 2.46 do not fit the definitions of linearity over their entire range. Another
example of a nonlinear subsystem is a phase detector, used in a phase-locked loop
in an FM radio receiver, whose output response is the sine of the input.

A designer can often make a linear approximation to a nonlinear system. Linear
approximations simplify the analysis and design of a system and are used as long as
the results yield a good approximation to reality. For example, a linear relationship
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Amplifier saturation Motor dead zone Backlash in gears
fx) fxy fx)
H Z 5
£ £ ]
g & E .
©
- -2
Input Tnput Input
can be established at a pomnt on the i curve if the range of input values about

that point is small and the origin is translated to that point. Electronic amplifiers
are an example of physical devices that perform linear amplification with small
excursions about a point,

2.11 Linearization

The electrical and mechantcal systems covered thus far were assumed 10 be lin-
ear. However, if any nonlinear components are present, we must linearize the sys-
tem before we can find the transfer function. In the last section we defined and
discussed nonlinearities; in this section we show how to obtain linear approxima-
tions to nonlincar systems in order to obtain transfer functions.

The first step is to recognize the nonlinear component and write the nonlin-
ear differential equation. When we linearize a nonlinear differential equation. we
linearize it for small-signal inputs about the steady-state solution when the small-
signal input is equal to zero. This steady-state solution is called equilibrium and
is selected as the second step in the linearization process. For example, when a
pendulum is at rest, it is at equilibrium. The angular displ is described by
a nonlinear differential equation, but it can be expressed with a linear differential
equation for small excursions about this equilibrivm point.

Next we hnearize the nonlinear differential equation, and then we take the
Laplace transform of the linearized differential equation, assuming zero initial con-
ditions. Finally, we separate input and output variables and form the transfer func-
tion. Let us first see how to linearize a function; later, we will apply the method to
the linearization of a differential equation.

If we assume a nonlinear system operating at pomt A, [xo. f(xo)1 in Figure 2.47,
small changes in the input can be related to changes in the output about the point by
way of the slope of the curve at the point A. Thus, if the slope of the curve at point
A is mg, then small excursions of the input about point A, 8x, yield small changes
in the output, 8f(x), related by the slope at point A. Thus,

LA = fOx)] = ma(x — xo) (2.178)

from which
B(x) =~ mydx 2.179)
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Figure 2.47
Linearization about a
pont &

Example 2.26
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H gt

1 Ny

€ fog) - — o

0 o x *
Input
and
S = f(xo) + malx — xo) = f(xg) + m,bx (2180

This relationship is shown grapucally in Figure 2.47. where a new set of axes, 8x
and 8f(x), is created at the point A, and f(x) is approximately equal to f(xp), the
ordinate of the new origin. plus small excursions, m, 8x, away from point A. Let us
look at an example.

Linearizing a function
Problem Linearize f(x) = Scosxaboutx = 7 2,

Solution We first find that the derivative of f(x) is df /dx = (=5sinx). Atx =
7 2, the derivative is —5. Also f(xy) = f( 2) = Scos(7+2) = 0. Thus, from
Eq. (2.180), the system can he represented as f(x}) = 5 &x for small excursions
of xabout 7 2. The process is shown graphically in Figure 2.48. where the cosine
curve does indeed look like a straight line of slope —5 near r, 2.

The previous discussion can be formalized using the Taylor series expansion,
which expresses the value of a function in terms of the value of that function at a
particular point, the excursion away from that point, and derivatives evaluated at
that point. The Taylor series is shown in Eq. (2.181).

[CRErYN

- 2
daf (x —xo) . % o @181)

fo=foo+ g B

lx=x

For small excurstons of x from xg, we can neglec! hlgher ~order terms. The result-
ing approximation yields a straight-li p between the change in f(x)
and the excursions away from xq. Negleclmg the higher-order terms in Eq. (2.181),




Figure 2.48
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¥=m2

Example 2.27
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-4

we get
d
) — fl) = lT( x—x0) (2.182)
or
8f() - ml_ B¢ (2.183)

which is a linear relationship between & f(x) and & x for small excursions away from
xgp. Itis interesting to note that Eqs. (2.182) and (2.183) are identical to Egs. (2.178)
and (2.179). which we derived intuitively. The fol ples illustrate lin-
earization, The first example demomtrates Tinearization of a differential equation,
and the second example applies linearization to finding a transfer function.

Linearizing a differential equation
Problem Linearize Eq. (2.184) for small excursions about x — 7 4.

di dx

—1+2 +cosx =0 2184
dr

Solution The presence of the term cos.x makes this equation nonlinear. Since we

want to linearize the equation about x = 7 4, we letx = &x + 7 '4, where &xis

the small excursion about 7r 4, and substitute x into Eq. (2.184):

dl!an% dﬁH%
2 +cos(§x+g (2.185)
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Example 2.28

But
2( m
d?|éx + 2 $26x
yrs =g (2.186)
and
ks
d|éx + 7 déx
@ @ {2.187)

Finally, the term cos(8x + (7 4)) can be linearized with the truncated Taylor
series, Substituting f(x) = cos(8x + (7 4)), f(xo) = f(m'4) = cos{ar 4), and
(x — xg) = 8x into Eq. (2.182) yields

T T dcosx
cos(ﬁx + Z)f cos(z) =~

& = —sin(%)ﬁx 2188

Sotving Eq. (2.188) for cos(8x + (7 4)), we get

LAY TY_ o [T _ ﬁ_ ﬁ
cos(ﬁx+ Z)_ cos(z) sm(z)&x = T&x (2.189)

Substituting Egs. (2.186), (2.187), and (2.189) into Eq. (2.185) yields the following
linearized differential equation:

d%x dox /2 J2
R i @10
This equation can now he solved for &, from which we can obtain x = &x +
(7. .
Even though the i Eq. (2.184) is h the linearized Eq.

{2.190} is not homogeneous. Eq. (2.190) has a forcing function on its right-hand
side. This additional term can be thought of as an input to a system represented by
Eq. (2.184).

Another observation about Eq. (2.190) is the negative sign on the left-hand
side. The study of differential equations tells us that since the roots of the char-
acteristic equation are positive, the homogeneous solution grows without bound
instead of diminjshing to zero. Thus, this system linearized around x = = 4 is
not stable.

Transfer function—nonlinear electrical network

Problem Find the transfer function, Vi(s) V(s), for the electrical network shown
in Figure 2.49, which contains a nonlinear resistor whose voltage-current relation-
ship is defined by i, = 2¢%!*, where i, and v, are the resistor current and voltage,
respectively, Also, v(¢) in Figure 2.49 is a small-signal source.



Figure 2.69
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T

Nonlinear
resistor

v q,

Solution We will use Kirchhoff's voltage law to sum the voltages in the loop to
obtain the nonlinear differential equation, but first we must solve for the voltage
across the nonlinear resistor. Taking the natural log of the resistor’s current-voltage
relationship, we get v, = 101In 4i,. Applying Kirchhoff's voltage law around the
loop, where i, = £, yields

L:% +10In %i =20 = vp) (2.191)
Next. let us evaluate the equilibrium solution. First, sct the small-signal source,
v{), equal to zero. Now evaluate the steady-state current. With v(#) = 0, the circuit
consists of 2 20 V battery in series with the inductor and nonlinear resistor. In the
steady state the voltage across the mductor will be zero, since vi(f) = Ldi/ dt and
di’ dtis zero in the steady state, given a constant battery source. Hence, the resistor
voltage, v,, is 20 V. Using the characteristics of the resistor, i, = 2¢%'* we find
that i, = i = 14.78 amps. This current, iy, is the equilibrium value of the network
current. Hence i = i + &i. Substituting this current into Eq. (2.191) yields

"("’T”’) +10In 2 (,0 +80) =20 = vir) @19

Using Eq. {2.182) to linearize In J1io + 8i), we ger

Lo 1, dngd) [T
In E(m+ &) Iniro = '061 = i—"& (2.193)
=t
or
ln%(ig+8i) ln'ﬂ+ o5 (2.194)

Substituting into Eq. (2.192), the linearized equation becomes

L@ + lO(l + 81) 20 = v(0) (2.195)
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Letting L — 1 and iy = 14.78, the final linearized differential equarion is
@ +0.6778 = v(p) (2.196)
dt

Taking the Laplace transform with zero initial conditions and solving for 8i(s),
we get

Wis)

Bi(s) = ST0677 2191
But the voltage across the inductor about the equilibrium point is
d. o db
vi(f) = LE(IU + o) = LE 2.198)
Taking the Laplace transform.
Vi(s) = Lsbi(s) = sbi(s) 2.199)
Substituting Eq. (2.197) into Eq. (2.199) yields
_ V(s)
Vi(s) = sm (2.200)
from which the final transter function is
Vi) s (2.201)

Vi)  s+0677

for small excursions about i = 14.78 or, equivalently, about v{r)

Skill-Assessment Exercise 2.13

Figure 2.50
Nonlnear electric
circutt for
SkilkAssessment
Exerase 2.13

Problem Find the linearized transfer tunction, G(s) = V(s)/ I(s), for the electrical
network shown in Figure 2.50. The network contains a nonlinear resistor whose
voltage-current relationship is defined by i, = €. The current source, i?), is a
small-signal generator.

1
s+2
‘The complete solution 15 on the accompanying CD-ROM.

Answer G(s) =

vy

2a(d i Nonlnear = IF
resistor
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Antenna Control: Transfer Functions

This chapter showed that physical systems can be modeled mathematically with
transfer functions, Typically, systems are composed of subsystems of different
types, such as electrical, hanical, and i

The first case study uses our ongoing example of the antenna azimuth
position control system to show how to represent each subsystem as a transfer
function.

Problem Find the transfer function for each subsystem of the antenna azimuth
position control system schematic shown on the front endpapers. Use Configura-
tion 1.

Sotution  First, we identify the individual subsystems for which we must find
transfer functions; they are summarized in Table 2.6. We proceed to find the
transfer function for each subsystem,

Input I i s Output F i Since the input and output
potentiometers are configured in the same way, their transfer functions will be the
same. We neglect the dynamics for the potentiometers and simply find the rela-
tionship between the output voltage and the input angular displacement. In the
center position the output voltage is zero. Five turns toward either the positive 10
wvolts or the negative 10 volts yields a voltage change of 10 volts. Thus, the trans-
fer function, V,(s) 8i(s), for the potentiometers is found by dividing the voltage
change by the angular displacement:

Vi) _ 10 _ 1

6 10w w @209
Preamplifier; Power Amplifier 'The transfer functions of the amplifiers are
given in the problem Two are neglected. First, we assume
that saturation is never reached. Second, the dynamics of the preamplifier are

Table 2.6 Subsystems of the antenna azmuth position control system

Subsystem Input Output

Input potentiometer Angular rotation from user  Voltage to preamp
6:) vi(®)

Preamp Voltage from potentiometers  Voltage to power amp
velt) = v(1) — vol®) vplt)

Power amp Voltage from preamp Voltage to motor
Vo(t) €q(t)

Motor Voltage from power amp Angular rotation to load
ealt) 6.(1)

Output potentiometer  Angular rotation from load ~ Voltage to preamp
X0} velt)
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neglected, since its speed of response is typically much greater than that of the
power amplifier. The transfer functions of both amplifiers are given in the prob-
lem statement and are the ratio of the Laplace transforms of the output voltage
divided by the input voltage. Hence, for the preamplifier,

Vels)
Ve(s)

=K (2.203)

and for the power amplifier,
E(s) _ 100
Vp(s) s+ 100
Motor and Load  The motor and its load are next. The transfer function relating

the armature displacement to the armature voltage is given in Eq. (2.153). The
equivalent inertia, J,,,, is

(2.204)

5
fm = Ja +JL(250) 002+1m =003 (2.205)
where J; — 1 1s the load inertia at 6,. The equivalent viscous damping, D,,, at
the armature is
- — = R
D, DH+D,_(250) 0.01 + l100 0.02 (2.206)

where Dy is the load viscous damping at €,. From the problem statement, K, =
0.5 N-m/A, K = 0.5 V-s/rad, and the armature resistance R, = 8 ohms. These
Quantities along with J,, and D, are substituted into Eq. (2.153), yielding the
transfer function of the motor trom the armature voltage to the armature displace-
ment, or

6nls) K;, (Rudm) 2083

= - (2207
Eu(s) S[H JL(DM . %ﬂ s(s + 171

To complete the transfer function of the motor, we multiply by the gear ratio to

arrive at the transfer function relating load displacement to armature voltage:
6.0s) _ 1 6n(s) _ 02083
Ey5) T ELy)  s(s+1.71)

(2.208)

The results are summarized in the block diagram and table of block diagram
parameters (Configuration 1) shown on the front endpapers.

Challenge We now give you a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system schematic
shown on the front endpapers, evaluate the transfer function of each subsystem.
Use Configuration 2. Record your results in the table of block diagram parameters
h the front endpapers for use in sub: chapters® case study challenges.
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Transfer Function of a Human Leg

In this case study we find the transfer function of a biological system. The
system is a human leg, which pivots from the hip joint. In this problem the
component of weight is nonlinear, so the system requires linearization before
the evaluation of the transfer function.

Problem The transfer function of a human leg relates the output angular rotation
about the hip joint to the input torque supplied by the leg muscle. A simplified
model for the leg is shown in Figure 2.51. The model assumes an applied muscu-
lar torque, 7,.(#), viscous damping, D, at the hip joint, and inertia, J, around the
hip joint.!5 Also, a component of the weight of the leg, Mg, where M is the mass
of the leg and g is the acceleration due to gravity, creates a nonlinear torque. If
we assurme that the leg is of uniform density, the weight can be applied at L. 2,
where L is the length of the leg (Milsum. 1966). Do the following:

a. Evaluate the nonlinear torque.

b. Find the transfer function, 6(s)/ T,(s), for small angles of rotation, where 6(s)
is the angular rotation of the leg about the hip joint.

Solution  First, calculate the torque due to the weight. The total weight of the leg
is Mg acting vertically. The component of the weight in the direction of rotation
is Mg sin 8. This force is applied at a distance L, 2 from the hip joint. Hence the
torque in the direction of rotation, Tyw(z), is Mg(L 2)sin 6. Next, draw a free-
body diagram of the leg, showing the applied torque, 7,,(f), the torque due to the
weight, Tw(£), and the opposing torques due to inertia and viscous damping (see

Figure 2.52).
Summing torques, we get
46 46 L
22+ pE = = »
J a2 Ddr + Mg2 siné = T,() (2209

Figure 2.51 Hip yount
Cyinder model of a
human leg

5For emphasis, J is not around the center of mass, as we previously assumed for inertia in me-
chancal rotation.
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Figure 2.52

Freebody dhagram of

leg model

Figure 2.53
Nonlinear electrc
arcuit

46
2, DO
4% Dy

/ 6 " dr? \
! \
0 \Leg/ )

We lineanze the system about the equilibrium point, ¢ — 0, the vertical position
of the leg. Using Eq. (2.182), we get

siné — sin0 = (cos0) 80 (2.210)
from which, sin@ = 86. Also, Jd*0 df = Jd*86/df? and D6 dr =
Ddé6 dt. Hence Eq. (2.209) becomes

4?86 | ds6 L
— — =80 = 211
J ar + D A + Mg2 0 = T,n) 2.211)
Notice that the torque due to the weight approximates a spring torque on the leg.
Taking the Laplace transform with zero initial conditions yields

(Js2 +Ds + Mg%“)so(:) = T (s) 2.212)
from which the transfer function is
86(s) L'J
=" .213
T 5, D Mgl @3
SETT
for small excursions about the equilibrium point, # = 0.
Challenge We now ii duce a case study chall to test your k of
this chapter’s objectives. Although the physical system is different from a human
leg, the problem d ates the same princi linearization followed by

transfer function evaluation.

Given the nonlinear electrical network shown in Figure 2.53, find the trans-
fer function relating the output nonlinear resistor voltage, V,(s), to the input
source voltage, V(s).

-

/ i e
R
m Nonlmear | . 2
r(t)C> £ esistor AN =200

— 5V

—
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Summary
In this chapter we discussed how to find a mathematical model, called a fransfer
function. for linear, time-invariant electrical, hanical, and €l hanical

systemns. The transfer function is defined as G(s) = C(s); R(s), or the ratio of

the Laplace transform of the output to the Laplace transform of the input. This
relationship is algebraic and also adapts itself to modeling interconnected subsys-
tems,

‘We realize that the physical world consists of more sysiems than we illus-
trated in this chapter. For example, we could apply transfer function modeling
to hydraulic, pneumatic, heat, and even economic systems. Of course, we must
assume these systems to be linear, or make linear approximations, in order to use
this modeling technique.

Now that we have our transfer function, we can evaluate its response to a
specified input. System response will be covered in Chapter 4. For those pursuing
the state-space approach, we continue our discussion of modeling in Chapter 3,
where we use the time domain rather than the frequency domain.

Review Questions

1. What mathematical model permits easy mterconnection of physical
systems?

3

To what classification of systems can the transfer function be best applied?

w

‘What transformation turns the solution of differential equations into
algebraic manipulations?

a

Define the transfer function

5. What assumption is made concerning initial conditions when dealing with
transfer functions?

6. What do we call the mechanical equations written in order to evaluate the
transfer function?

bl

If we understand the form the mechanical equations take. what siep do we
avoid in evaluating the transfer function?

8. Why do transfer functions for mechanical networks look identical to transter
functions for electrical networks?

9. What function do gears perform?

10. What are the comp parts of the i of a motor’s

transfer function?

11. The motor’s transfer function relates armature displacement to armature
voltage. How can the transfer function that relates load displacement and
armature voltage be determined?

12. Summarize the steps 1aken to linearize a nonfinear system.
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Problems

1. Derive the Laplace transform for the following time functions:
a. u(f)
b. 1u(e)
€. sinwfu(f)
d. coswtu(t)

2. Using the Laplace transform pairs of Table 2.1 and the Laplace transform
theorems of Table 2.2, derive the Laplace transforms for the following time
functions.

a. e “sinowru()
b. e ¥ cos wtu(t)
<. Pu@)

. Repeat Problem 15 in Chapter 1, using Laplace transforms. Assume that the
forcing functions are zero prior to = 0—.

w

»

Repeat Problem 16 in Chaper 1, using Laplace transforms. Assume that the

forcing functions are zero priorto r = 0—.

Symbolic Math 5. Use MATLAB and the Symbolic Math Toolbox to find the Laplace transform of the
following time functions:
a. fif) = 5t2cos(3t + 45°)
b. 1) = 5te?sm(dt + 60°)

Symbolic Math ; 6. Use MATLAB and the Symbolic Math Toolbox to find the inverse Laplace transform of

T the following frequency functions:

(+3s+7s+2)
{s + 3)(s + 4(s? + 25 + 100)
s'+4s2 +65+5
(s +8)is? + 85+ 3)s? +5s + 7)
A system is described by the following differential equation:
&Py &Ly +5 dy &x d*x

dx
TIRIG Y A g g T

a. Gls) =

b. Gis) =

~

Find the expression for the transfer function of the system, ¥(s) X(s).

8. For each of the following transfer functi write the corresponding differ-
ential equation.
aXo_ 1
Fs) s2+25+7
X(s) _ 10
TF®) +DE+Y
X(s) s+2

Fo) S +82+05+ 15
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MATLAB

MATLAB

Symbolic Math
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9. Write the differential equation for the system shown in Figure P2.1.

Ris) S+25t4ad+s243 | C6)
O+70+ 357+ 253+ 5743

10. Write the differential equation that is mathematically equivalent to the block
diagram shown in Figure P2.2. Assume that r{r) = 3%,

Ris) 94253+ 55245+ 1 C(s)
43534 25+ 452+ 55 +2

11. A system is described by the following differential equation:

dx  dx
Pl + ZE +3x—1
with the initial conditions x(0) = 1, x(0) = —1. Show a block diagram of

the system, giving its transfer function and all pertinent inputs and outputs.
(Hint: the initial conditions will show up as added inputs to an effective
system with zero initial conditions.)

12. Use MATLAB to generate the transfer function
5is + 15)(s + 26)s + 72)
sis + 55)(s? + 5s + 30)s + 56)s? + 275 + 52)
in the following ways:
a. the rato of factors;

Gis) =

b. the ratio of polynomials.
13. Repeat Problem 12 tor the following transfer function:

5* + 25s* + 20s* + 155 + 42

6ls) = & T35 + 957 + 3757 + 355 + 50

14. Use MATLAB to generate the partiafraction expansion of the following function:
10%s + 10)(s + 60)
sis + 40)(s + 50)(s? + 7s + 100}s? + 65 +90)
15. Use MATLAB and the Symbolic Math Toolbox to input and form LTI objects in
polynomial and factored form for the following frequency functions:
45(s? + 37s + 74)s* + 2852 + 325 + 16}
(s +39)(s + 47Ks? + 2s + 100)(s? + 2752 + 185 + 15)
56(s + 14)(s°® + 49s? + 625 + 53]
{s3 + 8152 + 765 + 65)s? + BBs + 33)(s? + 565 + 77}

Fis) =

a. Glsl =

b. Gis) =
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16. Find the transfer function, G(s) = V,(s) V,(s), for each network shown in

Figure P2.3 Figure P2.3.
1Q 1Q 1H
+ +
<)
AD =) (O I 1F v{f)
e =E ' @
@) ®)
17. Find the transfer functions, G(s) = Vy(s) V{(s), for each of the networks
Figure P2.4 shown in Figure P2.4.
1H 1@ 1F
1Q
10 1Q
vin) 1Q win +
1H IF T 2H S vy
(@) ()]
o : 18. Find the transfer functions, G(s) = V,{s) V,(s). for each of the networks

shown in Figure P2.5. Solve the problem using mesh analysis.

+a0) —
2H 3H
1
10 1Q 2 F
@

19. Repeat Problem 18 using nodal equations

20. a. Wirite, but do not solve, the mesh and nodal equations for the network of
Figure P2.6.
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Figure P2.6
+
¥olf)

Symbollc Math b. Use MATLAB, the Symbolic Math Toolbox, and the equations found n {a) to
solve for the transfer function, Gls) = Vis) V(s). Use both the mesh and nodal
equations and show that esther set yields the same transfer function.

21. Find the rransfer function, G(s) = V,(s) Vi(s), for each of the operational
amplifier circuits shown in Figure P2.7.
Figure P2.7 100k

e

v {1
500kQ LuF

100kQ2

v

—\WW\— v
100kQ 1 gF

®)
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22. Find the transfer function, G(s) = V,(s) Vi(s), for each of the operational
amplifier circuits shown in Figure P2.8

Figure P2.8 100kQ  1pF

vi(n

volt)
v
% 200kQ
I 1uF
@

100kQ

vin
200kQ
1uF 500 kE2
®)

23. Find the transfer function, G(s) = X,(s); F(s), for the translational mechani-
cal system shown in Figure P2.9

Figure P2.9
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24, Find the transter function, G(sy = Xa(s) ' F(s), for the translational mecham-
cal network shown in Figure P2.10.

Xt 1ty
T’ 1 Nim T’
Figure P2.10 fo 0000
—=  lkg 1 N-s/m Tkg
—1—
S N iy i g i . AN |
Frictionless
Contral 25. Find the transfer function, G(s} = Xa(s) F{(s), for the translational mechani-
[ (s} = Xa(s) Fis)

cal system shown in Figure P2.11. (Hint: Place a zero mass at xx(f).)

FigureP2.11 - D
- *JWJ—I: HE
2 Nim 5N-s/m 2N-sfm
26. For the system of Figure P2.12 find the transfer function, G(s) = X;(s) F(s).
Figure P2.12 1
L e IV - o
! F— rn
My=1kg | fp=INsim | pp g fi=1Nsm
=N = N
27. Find the transfer function, G(s) = Xa(s) F(s), for the translational mechani-
cal system shown in Figure P2.13.
Figure P2.13 1 N-s/m

—
1yin
1 N-s/m

latnti)]

IR

(HESSEsa o SO oy -

Frictionless

|

28. Find the transfer function, X3(s) ' F(s), for each of the systems shown in
Figure P2.14.
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Figure P2.14
xtn -l uin
e
.= 1 Nosim Dl
g fr=1Nsm
ftn — =IMi=1kg [— M,= I kg
fu,=1Nsim
\\ fr,=1Nstm
14
[ T T T .
{2
w—"'" > o4—"'">x0
! |
Frictionless
My=2kg
4N-s/m 3Nm
- Frictionless
L
L N S W B T T T
®)
29. Write, but do not solve, the equations of motion for the translational mechan-
ical system shown in Figure P2.15.
Figure P2.15

f,,=1Nsim

My=1kg—f(n)
K3=1Nim

il i >
Frictionless
) = XD
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30. For each of the rotational mechanical systems shown in Figure P2.16, write,
but do not solve, the equations of motion.

FigureP216 a0 2 Nemesirad

7 N-m-s/rad

T 610
AT

1kg-m? 1kg-m2

3 N-m/rad

8 N-m/rad
@

T D, D,
Lo L LT
K & 00

K
®)

31. For the rotational mechanical system shown in Figure P2.17. find the transfer
function G(s) = 6x(s)- T(s).

Figure P2.17
Tiny 1 N-m/rad 8,1)
Al
I N-m-s /rad
1 N-m-s frad
| N-m-s /rad
32. For the rotational mechanical system with gears shown in Figure P2.18, find
the transfer function, G(s) = 03(s); T(s). The gears have inertia and bearing
friction as shown.
Figure P2.18 Ty
M
JubDy
g Ny
InDy J3D3 gy

Ny

44, Dy I5. D5
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33. For the rotational system shown in Figure P2.19, find the transfer function,
G(s) = 6a(s) T(s).

Figwe P219 7y

D3=32 N-m-siad

34, Find the transfer function, G(s) = 6,(s)’7(s), for the rotational mechanical
system shown in Figure P2.20.

1000 N-m-s/rad

Figure P2.20

250 N-m/rad

. :: l. 35. Find lh_e Lra_nsfer function, G(s) = 64(s)/ T(s), fur the rotational system
shown in Figure P2.21.

Tin 641 40 25 N.amstrad
N =25 Ny=100

B3y,

Figure P2.21

36. For the rotational system shown in Figure P2.22, find the transfer function,
G(s) = 6(s) T(s).
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Figure P2.22 t N-m-s/rad | N-m/rad
Tin i (10
M=10 Ne=10

0.04 N-m-s/rad

37. For the rotational system shown in Figure P2.23, write the equations of
motion from which the transfer function, G(s) = 6;(s)- 7(s), can be found.

Figrre P2 23 Tw) 6un
g
L

D
L
5 5

Ny

38. Given the rotational system shown in Figure P2.24, find the transfer
function, G(s) = 6¢(s) "6(s).
Figure P2.24 8w
M
gD K
Ny Ny,
7D n D TIn Oetr)

. bl o
Ny il
EBE N ED
I, D Q000 % >
K;

39. In the system shown in Figure P2.25, the mertia, J, of radius, r, 1s
constrained to move only about the stationary axis A. A viscous damping
force of translational value f; exists between the bodies J and M. If an
external force, f(#), is applied to the mass, find the transfer function,
G(s) = 6(s): F(s).
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Figure P2.25
o
40, For the combined translational and rotational system shown n Figure P2.26,
find the transfer function, G(s) = X(s) 7(s).

Figure P2.26 2

J=1kgm®

Ty I N-m-sfrad
M=10 Radiws=2m

T e
Ny=60
Ny=20 Ny=30
Dy~ | Nemsirad

41. Given the b i and i system shown in Figure
P2.27, find the transfer function, G(s) = X(s) 7(s).

Figure P2.27

I,

1deat D3
ear 1:1
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42. For the motor, load, and torque-speed curve shown in Figure P2.28, find the
transfer function, G(s) = 6..(s), Ea(s).

FigureP2.28

e

@ (rad/s)
150 ¢ )

43. The motor whose torque-speed charactenstics are shown in Figure P2.29

drives the load shown in the diagram. Some of the gears have inertia. Find
the transfer function. Gis) = 6u(s). Ex(s).

Figure P2.29 . M=10
e
— n=1 kg-mx
No=20 Ny=10
B =2kgm? 3= 2kg-m?® o)

Ng=20 )
’ Jy= 16kgm?
T(N-m)
5
sV
RPM
600
n

44. A dc motor develops S0 N-m of torque at a speed of 500 rad s when 10 volts
are applied. It stalls out at this voltage with 100 N-m of torque. If the inertia
and damping of the armature are 5 kg-m? and 1 N-m-s; rad, respectively,
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find the transfer function, G(s) = 614s);'Ea(s), of this motor if it drives an
inertia load of 100 kg-m? through a gear train, as shown in Figure P2.30.

Figure P2.30 8,41

+

edn N=10

Ny=20 Ny=20
bytn
Ny=50 ’ Load
@il 45. In this chapter we denved the transfer function of a dc motor relating the
Su

angular displacement output to the armature voltage input. Often we want
to control the output torque rather than the displacement. Derive the transfer
function of the motor that relates output torque to input armature voltage.

46. Find the transfer function, G(s) = X(s) E,(s), for the system shown in

Figure P2.31.
Figure P2.31 .
€t M=10
- J=1kgm? D=1N-m-strad
Np=20 l—

Radius=2m

For the motor: ]

1, =1kgm? v

D, =1N-m-sirad

R.=19 fo=1Nsim
Ky =t Vesfrad

K, =1N-m/A

47. Find the series and parallel analogs for the translational mechanical system
shown in Figure 2.20 in the text.

48. Find the series and parallel analogs for the rotational mechanical systems
shown in Figure P2.16(b) in the problems.
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49. A system’s output, ¢, is related to the system’s input, r, by the straight-line
relationship. ¢ = 5r + 7. Is the system linear?

50. Consider the differential equation

d%x

= 3—+2x £

where f(x) is the input and is a function of the output, x. If f(x) = sinx,
linearize the differential equation for small excursions near

ax=0
b.x =1
51. Consider the differential equation
&x
@ 10W + 31— +30x = f(0)

where fx} is the input and is a function of the output, x. If f(x) — e7*,
linearize the differential equation for x near 0.

§2. Many syslems are piecewise linear. That is, over a large range of variable
values, the system can be described linearly. A system with amplifier satura-
tion is one such example. Given the differential equation

4%

@zt 15-— +50x = f(x)
assume that f(x) is as shown m Figure P2.32. Write the differential equation
for each of the following ranges of x:

a —e<x< =2

b —2<x<2
c.2<x<®
Figure P2.32 f®
4
2
x
-4 2 2 4
-2
—4
53. For the i ‘hanical systemn with a nonli spring shown

in Figure P2.33, find the transfer function, G(s} = X(s) 'F(s), for small
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excursions around f(f) = 1. The spring is defined by x,(fy = 1 — ¢#®_
where x(1) is the spring displacement and f;(¢) is the spring force.

Figure P2.33 Nonlinear

kg [— = fin

}—_

1 N-s/m

54. Consider the restaurant plate dispenser shown in Figure P2.34, which con-
sists of a vertical stack of dishes supported by a compressed spring. As each
plate is removed, the reduced weight on the dispenser causes the remaining
plates to rise. Assume that the mass of the system minus the top plate is M,
the viscous friction between the piston and the sides of the cylinder is f; , the
spring constant is K, and the weight of a single plate is Wp. Find the transfer
function, ¥(s) F(s), where F(s) is the step reduction in force felt when the
top plate is removed, and ¥(s) is the vertical displacement of the dispenser in
an upward direction.

Figure P2 34 / Plales

Plate dispenser

w0

4

Piston

Progressive Analysis and Design Problem

55. Higb-speed rail pantograph. Problem 17 in Chapter 1 discusses active con-
trol of a pantograph mechanism for high-speed rail systems. The diagram for
the pantograph and catenary coupling is shown in Figure P2.35(a). Assume the



Figure P2.35
2. Coupling of

representation

showing the actve-

control force

Bibliography 125

Pantograph shoe
Head mass
Head suspension

Frame mass

Direction
of wavel

@) o

simplified mode] shown in Figure P2.35(b), where the catenary is represented by
the spring, Ko (O’Conror, 1997).

a. Find the transfer function, Gi(s) = Yeur(s) Fyyp(s), where v, () 15 the catenary
displacement and f,,,(¢) is the upward force applied to the pantograph under
active control.

b. Find the transfer function Ga(s) = Yy(s)+ Fp(s), where yy,(¢) is the pantograph
head displacement.

«. Find the transfer function, G(s) = (¥j48) — Yeuts)); Fup(s)
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Modeling
in the Time Domain

State Space This chapter covers only state-space methods.

Chapter Objectives
In this chaprer you will learn the following:

a  How 1o find 2 mathematical model, called a state-space representation, for a
linear, time-invariant system

m  How to convert between transfer function and state-space models
m  How to lincarize a state-space representation

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with
case studies as follows:

= Given the antenna azimuth position control system shown on the front
endpapers, you will be able to find the state-space representation of each
subsystem.

m Given a description of the way a pharmaceutical drug fiows through a human
bemg you will be able to find the state-space representation to determine
ions in specified compar d blocks of the process and
of lhe human body. You will also be able to apply the same concepts to an
aquifer to find water level.
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Chapter 3 Modeling i the Time Domain

3.1 Introduction

“Two approaches are available for the analysis and design of feedback control sys-
tems. The first, which we began 10 study in Chapter 2. is known as the classical,
or frequency-domain, technique. This approach is based on converting a system’s
differential equation to a transfer function, thus generating a mathematical model
of the system that aigebraically relates a representation of the output to a repre-
sentation of the input. Replucing a differential equation with an algebraic equation
not only simplifies the rep: of individi bsy but also si

The primary disadvantage of the classical approach is 1ts limited apphcabil-
ity: It can be applied only to linear, time-invariant systems or systems that can be
approximated as such.

A major ad of freq domai iques is that they rapidly pro-
vide stability and transient response information. Thus. we can immediately see
the effects of varying system parameters until an acceptable design is met.

With the arrival of space exploration, requirements for control systems in-
creased in scope. Modeling systems by using linear, time-invariant differential

transfer functions became inadeq] The stute-space,
approach (also referred to as the modern, or time-domain, approach) is a unified
method for modeli lyzing, and designing a wide range of systems. For ex-

ample, the state-space approach can be used to represent nonlinear systems that
have backlash, saturation. and dead zone. Also, it can handle, convenientiy, sys-
tems with nonzero initial conditions. Time-varying systems, (for example, missiles
with varying fuel levels or lift in an aircraft Hying through a wide range of altitudes)
can be represented in state space. Many systems do not have just a single input and
a single output. Multiple-input, multiple-output systerns (such as a vehicle with
input direction and input velocity yielding an output direction and an output veloc-
ity) can be compactly represented mn state space with a model similar in form and
complexity to that used for single-input, single-output systems. The time-domain
approach can be used to represent systems with a digital computer in the loop or
to model systems for digital simulanon. With a simulated system, system response
can be obtained for changes in system parameters—an important design tocl. The
state-space is also attractive by f the availability of numerous state-
space software packages for the personal computer.

The time-domain approach can also be used for the same class of systems
modeled by the classical approach. This alternate model gives the control systems
designer another perspective from which to create a design. While the Slate-space
approach can be applied to a wide range of systems, it is not as intuitive as the
classical approach. The designer has to engage in several calculations before the
physical interpretation of the model is apparent, whereas in classical control a few

quick ions or a graphic pl ion of data rapidly yields the physical
interpretation.
In this book the coverage of state-spz hni is to be regarded as an

introduction to the subject, a springboard to advanced studies. and an alternate
P to freqe d “hni ‘We will limit the state-space approach
tolinear, time-invariant systems or systems that can be linearized by the methods of
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Chapter 2. The study of other classes of systems is beyond the scope of this book.
Since state-space analysis and design rely on matrices and matrix operations, you
may want to review this topic in Appendix F, located on the accompanying CD-
ROM, before continuing.

3.2 Some Observations

‘We proceed now to establish the state-space approach as an alternate method for
representing physical systems. This section sets the stage for the formal definition
of the state-space representation by making some observations about systems and
their variables. In the discussion hat follows, some of the development has been
placed in footnotes to avoid clouding the main issues with an excess of equations
and to ensure that the concept is clear. Although we use two electrical networks to
illustrate the concepts. we could just as easily have used a mechanical or any other
physical system.

We now demonstrate that for a system with many variables, such as inductor
voltage, resistor voltage, and capacitor charge, we need to use differential equations
only to solve for a selected subset of system variables because all other remaining
system variables can be evaluated algebraically from the variables in the subset.
Our examples take the following approach:

1. We select a particular subset of all possible system variables and call the vari-
ables in this subset state variables.

2. For an nth-order system, we write n simull first-order diffe ial equu-
tions in terms of the state variables. We call this system of simultaneous differ-
ential equations state eguations.

ol

If we know the initial condition of all of the state variables at £ as well as the
system input for ¢ = o, we can solve the simultaneous differential equations
for the state variables for r = #,.

Ll

We algebraically combine the state variables with the system’s input and find
all of the other system variables for r = #,. We call this algebraic equation the
output equation.

5. We consider the state equations and the output equations a viable representation
of the system. We call this representation of the system a state-space represen-
tation.

Let us now follow these steps through an example. Consider the RL network shown
in Figure 3.1 with an initial current of {(0).

vy 9




130  Chapter3 Modehing in the Time Doman

1. We select the current, i(e), for which we will write and solve 2 differential equa-
tion using Laplace transforms.

N

We write the loop equation,
L% +Ri = vin (31

. Taking the Laplace transform, using Table 2.2. item 7 and including the initial
conditions, yields

w

LisKs) — i(0)] + Rits) = W(s) 3.2

Assuming the input, v{#), to be a unit step, u(t), whose Laplace transform is
W(s) = 1.5, we solve for I(s) and get

ifr i(0)
fy=of -1 1, 1O 33
il ity) ’
from which
i) = }e(l — e D) 4 jpe WiLx G4

The function i(z) is a subset of al] possible network variables that we are able ©
find from Eq. (3.4) if we know its initial condition, i(0), and the input, v{g).
Thus, i(f) is a state variable, and the differential equation (3.1) is a state equation.

4. We can now solve for all of the other network variables algebraically in terms
of i(f) and the applied voltage, v(2). For example, the voltage across the resis-
toris

Ve(f) = Ri(r) 3.5

The voltage across the inductor is

vi(®) = v(o) - Ri) a6
The derivative of the current is

di 1 . 2

P Z[v{t) Ri(n)] (3.7
Thus, knowing the state variable, i(¢), and the input, v{1), we can hnd the value,
or state, of any network variable at any time, t = 1. Hence, the algebraic equa-
tions, Egs. (3.5) through (3.7), are ousput equations.

5. Since the variables of interest are completely described by Eq. (3.1) and Egs.

(3.5) through (3.7), we say that the combined state equation (3.1) and the output

'Since vy(1) = w1 — va(f) = v{t) — Ri(z).

ssince &< 110 - Rig)L.
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W c
i

equations (3.5 through 3.7) form a viable representation of the network, which
we call a state-space represeniation.

Equation (3.1), which describes the dynamics of the network, is not unique
This equation could be written in terms of any other network variable. For example,
substituting i = vg R into Eq. (3.1) yields

Ldvg

—CR e = .

Ra TRV (38)
which can be solved knowing that the initial condition vg(0) = Ri(0) and knowing
v{r). In this case, the state variable is vg(#). Similarly, all other network variables
can now be written in terms of the state variable, vg(¢), and the input, v(¢). Let
us now extend our observations to a second-order system. such as that shown in
Figure 3.2,

1. Since the network is of second order, two simultaneous, first-order differential
equations are needed to solve for two state variables. We select i(f) and g(z), the
charge on the capacitor. as the two state variables.

N

. Writing the loop equation yields

di o 1[.
LE +R1+E[ldt—v(tj 39

Conventing to charge, using if) = dg.'dt, we get

2
1£e

dg 1
o +RE‘] + g =0 G0

But an nth-order differential equation can be converted to n simultaneous
first-order differential equations. with each equation of the form

% = aux + apxz + o+ + Gpx, + bS) [€31)]
where each x, is a state variable, and the g;;s and b; are constants for linear,
time-invariant systems. We say that the right-hand side of Eq. (3.11) is a linear
combination of the state variables and the input, f(¢).

‘We can convert Eq. (3.10) into two simultaneous, tirst-order differential
equations in terms of i(f) and g{r). The first equation can be dg, dt = i. The
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second equation can be formed by substituting | idr = g into Eq. (3.9) and solv-
ing for di dt. Summarizing the two resulting equations, we get

‘% =i @G.120)
di 1 R, 1
-t Zv(l) (.12b)

i

These equations are the state equations and can be solved simultaneously for
the state variables, g{t) and i(r), using the Laplace transform and the methods
of Chapter 2, if we know the initial conditions for g(z) and i(#) and if we know
v{#), the input.

4. From these two state variables, we can solve for all other network variables. For
example, the voltage across the inductor can be written in terms of the solved
state variables and the input as

o — — éq(l) —Rit) + v AP

Equation (3.13) is an output equation; we say that vy (t) is a linear combination
of the state variables, g(f) and i(£), and the input, v(s).

The combined state equations (3.12) and the output equation (3.13) form
a viable representation of the newwork, which we call a state-space represen-
tation.

o

Another choice of two state variables can be made, for example, vg(f) and vc (1),
the resistor and capacitor voltage, respectively. The resulting set of simultaneous,
first-order differential equations follows:

dvy R R R

E’i A va (3.14ap*
dvie _ 1

be o e @.140)

Again, these differential equations can be sclved for the state variables if we know
the initial conditions along with v{r). Further, all other network variables can be
found as a linear combination of these state variables.

Is there a restriction on the choice of state variables? Yes! The restriction is
that no state variable can be chosen if it can be expressed as a linear combination
of the other state variables. For example, if vg(f) is chosen as a state variable, then
i(1) cannot be chosen, because vg(#) can be written as a linear combination of i(f),

3Since vi(t) = L(di/d) = —(1;C)g — Re + v{g), where di: dt can be found from Eq. (3.9), and
idt = g.

Since va(t) = KOR. and vcle) = (17 O)[ 1ett, differentiaung ve(r) yields dvy dt = R(di;’dt) =

(R/Lve = (R L)[v{0) —va— vcl. and differentiating ve(r) yields dv/dt = (1 € = (1 RCve
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namely ve(f) = Ri(r). Under these circumstances we say that the state variables
are linearly dependent. State vanables must be linearly independent; that is, no
state vaniable can be written as a lincar combination of the other state variables, or
else we would not have enough information to solve for all nther system variables,
and we could even have trouble writing the si

The state and output equations can be written in vector-matrix form if the sys-
tem is lincar. Thus, Egs. (3.12), the state equations, can be written as

%X = Ax+Bu 3.15)
where
o _ |dgde]. _ 0 I
*= ai dl]’ A ’[71 c -r L]
_l4]. 0] .=
X ['.]. B [l,’L]' u =1
Equation (3.13), the output equation, can be written as
y=Cx+Du (3.16)
where

v=v: C=[-1/C —-R: x= ["'] D=1, u=p)

We call the combination of Egs. (3.15) and (3. 16) @ Swle-space represemarion
of the network of Figure 3.2. A state-space consists of
(1) the simultaneous, first-order differential equAllons from which the state vari-
ables can be solved and (2) the algebraic output equation from which all other
system variables can be found. A state-space representation is not unique, since
a different choice of state variables leads to a different representation of the same
system.

In this section we used two electrical networks to demonstrate some principles
that are the ion of the state-sp: ion. The ions devel-
oped in this section were for single-input, single-output systems. where y. D, and
u in Egs. (3.15) and (3.16) are scalar quantities. In general, systems have multi-
ple inputs and multiple outputs. For these cases, y and # become vector quantities,
and D becomes a matrix. In Section 3.3 we will generahze the representation for
multiple-input. multiple-output systems and summarize the concept of the state-
space representation.

3.3 The General State-Space Representation

Now that we have represented a physical network n state space and have a good
idea of the terminology and the concept, let us summarize and generalize the repre-
sentation for linear differential equations. First we formalize some of the definitions
that we came across in the last section.
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Figure 3.3
Graphic representation
of state space and a
state vector

.

Linear ¢ . A linear ination of 7 variables, x;, for i = 1 ton,is
given by the following sum, S:

S = Kpxy + Kn_1xp g + - + Kyxy @I

where each K; is a constant,

Linear independence. A set of variables is said to be linearly independent if
none of the variables can be written as a linear combination of the others. For ex
ample, given x;, x;, and x3, if X2 = 5x| + 6x3, then the variables are not linearly
independent, since one of them can be written as a linear combination of the other
two. Now, what must be true so that one variable cannot be written as a linear com-
bination of the other variables? Consider the example Kox; = Kyxy + Kaxs. Ifio
% = 0, then any x; can be written as a linear combination of other variables, un-
Jess all K; = 0. Formally, then, variables X, fori = 1 to n, are said to be linearly
independent if their linear combination, 35, equals zero onlvif every K; = Oandng
x, =0.

System variable. Any variable that responds 1o an input or initial conditions
in a system,

State variables. The smallest set of linearly independent system variables
such that the values of the members of the set at time 1o along with known
forcing functions completely determine the value of all system variables for al
=

State vector. A vector whose elements are the state variables.

State space. The n-dimensional space whose axes are the state variables. This
is anew term and is illustrated in Figure 3.3, where the state variables are assumed
1o be a resistor voltage, vz, and a capacitor voltage, v. These variables form the
axes of the state space. A trajectory can be thought of as being mapped out by the
state vector, x(r), for a range of £. Also shown is the state vector at the particular
times = 4.

State space

. State vector, x{f)
"=~ State vector trajectory

State vector, x(4)
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State equatic Asctofnsi first-order diffe ial with
n variables, where the n variables to be solved are the state variables.

Output equation. The algebraic equation that expresses the output variables
of a system as linear combinations of the state variables and the inputs.

Now that the definitions have been formally stated, we define the state-space
representation of a system. A system is represented in state space by the following

equations:

X Ax+Bu (3.18)
y Cx Du 3.19)
for t = g and initial conditions. x{1), where
= state vector
= derivative of the state vector with respect to time
= ourput vector
input or control vector

= system matrix

® P B e M ox
I

= input matrix
C = output matrix
D = feedforward matrix

Equation (3.18) is called the state equation, and the vector x, the state vector,
contains the state variables. Equation (3.18) can be solved for the state variables.
which we di in Chapter 4. Equation (3.19) i» called the ourput equation.
This equation is used to calculate any other system variables. This representation
of a system provides complete knowledge of all variables of the system at any
=1

As an example, for a linear, time-invariant, second-order system with a single
input ¥(¢), the state equations could take on the following form:

% = ayx + @i + bpiny (3.208)
%’ = anx +anx + byy(n) (3.20b)

where x; and x, are the state variables. If there is a single output. the output equation
could take on the following form:

y = ax; + 20+ dvy 3.2n
The choice of state variables for a given system is not unigue. The requirement in

choosing the state variables is that they be linearly independent and that a minimum
number of them be chosen.
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3.4 Applying the State-Space Representation

In this section we apply the state-space formulation to the representaticn of more
complicated physical systems. The first step n representing a system is to select
the state vector, which must be chosen according to the following considerations:

1. A minimum number of state variables must be selected as components of the
state vector. This minimum number of state variables is sufficient to describe
completely the state of the system.

2. The components of the state vector (that is, this mimmum number of state vari-
ables) must be linearly independent.

Let us review and clarify these statements.

Linearly Independent State Variables
The components of the state vector must be linearly independent. For example,
g the definition of linear ind d in Section 3.3, if x|, x3, and x3 are
chosen as state variables, but x3 = 5x; + 422, then x; is not linearly independent
of x; and x, since knowledge of the values of x; and x; will yield the value of x3.
Variables related by derivatives are linearly independent. For example, the voltage
across an inductor, vy. is hnearly independent of the current through the inductor,
i, since vg = Ldip dt. Thus, vy cannot be evaluated as a linear combination of
the current, i; .

Minimum Number of State Variables

How do we know the minimum number of state variables to select? Typically. the
minimum nurber required equals the order of the differential equation describing
the system. For example, if a third-order differential equation describes the system,
then three simultaneous. first-order differential equations are required along with
three state variables. From the perspective of the transfer function, the order of the
differential equation is the order of the denominator of the transfer function after
canceling common factors in the numerator and denominator.

Inmost cases dnmher way to determine the number of state variables is to count
the number of i torage in the system 3 The number of
these energy-storage elements equals the order of the diftercntial equation and the
number of state variables. In Figure 3.2 there are two energy-storage elements. the
capacitor and the inductor. Hence. two state variables and two state equations are
required for the system.

If too few state variables are selected, it may be impossible to write partic-
ular output equations, since some system variables cannot be written as a linear

*Sornetumes it 18 not apparent n a schematic how many independent energy-storage elements
thereare It1s possible that more than the mimimum number of energy-storage elements could be
selected, leading 10 & state vector whose components number more than the mimimum required
and are not linearly independent. Sclecting additionzl dependent energy-storage elements results
na system matrix of higher order and more complexity than required for the solution of the state
equations.
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combination of the reduced number of state variables. In many cases it may be
impossible even to complete the writing of the state equations, since the derivatives
of the state variables cannot be expressed as linear combinations of the reduced
number of state variables.

If you select the minimum number of state variables but they are not linearly
ndependent, at best you may not be able to solve for all other system variables. At
worst you may not be able to complete the writing of the state equations.

Often the state vector includes more than the minimum number of state vari-
ables required. Two possible cases exist. Often state variables are chosen o be
physical variables of a system, such as position and velocity in a mechanical sys-
tem. Cases arise where these varizbles. although linearly independent, are also
decoupled. That is. some linearly independent variables are not required in order
to solve for any of the other linearly independent variables or any other dependent
system variable. Consider the case of a mass and viscous damper whose differ-
ential equation is M dv;'dt + Dy = f(z), where v is the velocity of the mass. Since
this is a first-order equation, one state equation is all that is required to define this
system in state space with velocity as the state variable. Also, since there is only
one energy-storage element, mass, only one state variable is required to represent
this system in state space. However, the mass also has an associated position, which
is linearly independent of velocity. If we want to include position in the state vector
aleng with velocity, then we add position as a state variable that is linearly indepen-
dent of the other state variable, velocity. Figure 3.4 jllustrates what is happening.
The first block is the transfer function equivalent to Mdv(z), dr + Dv(e) = f(s).
The second block shows that we integrate the output velocity to yield output dis-
placement (see Table 2.2, tem 10). Thus. if we want displacement as an output,
the denominator, or characteristic equation, has increased in order to 2, the prod-
uct of the two transfer functions. Many tmes, the writing of the state equations is
simplified by including additional state variables.

Another case that increases the size of the state vector arises when the added
variable is not linearly independent of the other members of the state vector. This
usually occurs when a variable is selected as a state variable but its dependence on
the other state variables is not immediately apparent. For example, energy-storage
elements may be used to select the state variables, and the dependence of the vari-
able associated with one energy-storage element on the variables of other energy-
storage may not be ized. Thus, the di ion of the system matrix
is increased unnecessarily, and the solution for the state vector, which we cover
in Chapter 4, is more difficult. Also, adding dependent state variables affects the
designer’s ability to use state-space methods for design ®

€See Chapter 12 for stale-spuce design techmques.
Spac q
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Example 3.1

Figure 35
Electrical network for
representation n state
space

We saw in Section 3.2 that the state-space representation is not unique. The

g example one technique for ing state variables and

representing a systemn in state space. Our approach is to write the simple derivative
equation for each energy-storage element and solve for each derivative term as a
linear combination of any of the system variables and the input that are present in
the equation. Next we select each differentiated variable as a state variable. Then
we express all other system variables in the equations in terms of the state variables
and the input. Finally, we write the output variables as linear combinations of the
state variables and the input.

Representing an etectrical network

Problem Given the electrical network of Figure 3.5, find a state-space represen-
tation if the output is the current through the resistor.

L
Node 1
™ | l
Wy 1 R * c

Solution The following steps will yield a viable representation of the network in
state space.

Step I  Label all of the branch currents in the network. These include if. iz,
and ic, as shown in Figure 3.5.

Step2  Select the state variables by writing the derivative equation for all
energy-storage elements, that is, the inductor and the capacitor. Thus,

C = =ic (3.22)
diy, _
Ly =u a3

From Egs. (3.22) and (3.23), choose the state variables as the quantities
that are differentiated, namely ve and . Using Eq. (3.20) as a guide, we see

that the state-spz is if the right-hand sides of Egs
(3.22) and (3.23) can be written as linear combinations of the state variables
and the input.

Since ic and v are not state variables, our next step is to express ic and v,
as linear combinations of the state variables, vc and iz, and the input. v{f).
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Step3  Apply network theory, such as Kirchhoff's voltage and current laws,
to obtain ic and v, in terms of the state variables, ve and ir. At Node 1,

ic=—ip+iL
- - ’l—avc +ip 3249

which yields ic in terms of the state variables. v¢ and iz.
Around the outer loop,

VL = —ve + V) 325
which yields vy in terms of the state variable, v¢, and the source, v(r).

Step4  Substitute the results of Egs. (3.24) and (3.25) into Egs. (3.22) and
{3.23) to obtain the following state equations:

% = —%vc +ip (3.26a)
dit
1% = —vwe  +vip (3.26b)
or
dve _ 1 1,
&= ’chc + E"‘ (3.27a)
di, 1 1
B e + it (3275

Step5  Find the output equation. Since the output is ir(f),
1

ix = pve (3.28)
The final result for the state-sp: p ion is found by ing Eqs.
(3.27) and (3.28) in vector-matrix form as follows:
ve] _ [-1,. RO 1/ 0], g
[f-0 eledo oo
ir=[1"R 0] [ff] (3.29%)

where the dot indicates differentiation with respect to time.

In order to clarify the representation of physical systems in state space. we
will look at two more examples. The first is an electrical network with a dependent
source. Although we will follow the same procedure as in the previous problem,
this problem will yield increased complexity in applying network analysis to find
the state equations. For the second example. we find the state-space representation
of a mechanical system.
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Example 3.2

Figure 3.6
Electrcal network for
Example 3.2

Representing an electrical network with a dependent source

Problem Find the state and output equations for the electrical network shown in
Figure 3.6 if the output vectoris y = (v, lﬂl] where T means transpose.”
Sofution Immediately notice that this network has a voltage-dependent current
source.
Step 1 Label all of the branch currents on the network, as shown in Figure
3.6.
Step2  Select the state variables by listing the voltage-current relationships
for all of the energy-storage elements:

di

L% v (3.300)
dvy N

C‘Tf =ic (3.300)

From Egs. (3.30) select the state variables to be the differentiated variables.
Thus, the state variables, x; and x,, are
X =g X3 = V¢ (3.31)
Step3  Remembering that the form of the state equation is
X = Ax +Bu (332
we see that the remaining task is to transform the right-hand side of Egs. (3.30)
into linear combinations of the state variables and input source current. Using
Kirchhoff’s voltage and current laws, we find v, and ic in terms of the state
variables and the input current source.
Around the mesh containing £ and C,
vp =vc+vr, = vc+ iR (333
But at Node 2, tg, = ic + 4v,. Substituting this relationship for ig, wto Eq.
(3.33) yields
vp = ve + (ic + dv )Ry (334

4vgln

i (

*See Appendix F fora di Appendix Fisonth ing CD-ROM.



3.4 Applyng the StateSpace Representation 141

Solving for vg, we get

VL= (ve + icRy) @35

1
1— 4R,

Notice that since v is a state variable, we only need to find ic in terms of the
state variables. We will then have obtained v, in terms of the state variables.
Thus, at Node 1 we can write the sum of the currents as

ie = in~ir, it

in - :zi: i

=iy - %‘l —i 3.36)

where vg, = vp. Equations (3.35) and (3.36) are two equations relating v and
ic in terms of the state variables iz, and v¢. Rewriting Egs. (3.35) and (3.36), we
obtain two simultanecus equations yielding v, and ic as linear combinations
of the state variables i and ve:

U —4R)v — Raic — ve (3.37a)
*LVL —ic =i —if) (3.37b)
Ry

Solving Egs. (3.37) simultaneously for v; and ic yields

v = %[Rzi,_ —v¢  Rii(0) (3.38)
and
ic = %[(l — 4Ry)iL + lv.g - - 4Rz)i(l)] 3.39
R
where
R,
A= —|(1 —4R) + == (3.40)
R

Subsututing Egs. (3.38) and (3.39) mto (3.30), simplifymng, and writing the
result in vector-matrix form renders the following state equation:

i [ Rean -1/(LA) [,-,_]
Ve (1 —4Ry), (CA) 1 (RiCh)|lve.

. —Ry, (LA) i) 341)
—(—ary) en|® @
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Example 3.3

Step 4 Derive the output equation. Since the specified output variables are
Vg, and ig,, we noie that around the mesh containing C, L, and Ry,

VR, = —Ve+ VL (3.424)
iR, = ic + 4y (3.42b)

Substituting Egs. (3.38) and (3.39) into (3.42), vg, and ig, are obtained as linear
combinations of the state variables, iz and vc. In vector-matrix form, the output

equation is
Ry A —(1+ ;A
Pl o R od 3 % Il FORTEPE
ir, 1'A (1 -4R) (AR)
In the next example we find the state-sp: ion for a

system. It is more convenient when working with mechamc.:l systems to obtain
the state equations directly from the equations of motion rather than from the
energy-storage elements. For example, consider an energy-storage element such
as a spring, where F = Kx. This relationship does not contain the derivative of
a physical variable as in the case of electrical networks, where i = Cdv “dt for
capacitors, and v = Ldi d for inductors. Thus. in mechanical systems we change
our selection of state variables to be the position and velocity of each point of
linearly independent motion. In the example we will see that although there are
three energy-storage elements, there will be four state variables; an additional
linearly independent state variable is included for the convenience of writing the
state equations. It is left to the student to show that this system yields a fourth-order
transfer function if we relate the displacement of either mass to the applied force,
and a third-order transfer function if we relate the velocity of either mass to the
applied force.

Representing a translational mechanical system

Problem Find the state ions for the d hanical system shown
in Figure 3.7.

Solution First write the differential equations for the network in Figure 3.7, using
the methods of Chapter 2 to find the Laplace-transformed equations of motion
Next take the inverse Laplace transform of these equations, assuming zero initial
conditions, and obtain

dx _
Mg+ DE +En—Kn =0 (344
—Kx + Mz dtz +Kx; = f(n (345)

Now letd?xy d* = dvy dr,and d?x; di* = dv, dt, and then select xy, vy, x,, and
V2 as state variables. Next form two of the state equations by solving Eq. (3.44)
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Figwe 3.7
e 41 .
mectancal system g b K
B M My -
e RS VB I Tl . s s i |
Frictionless

for dvydt and Eq. (3.45) for dv,.: dt. Finally, add dx), dt = vy and dx2:dt = va 1o
complete the set of state equations. Hence,

dx,
Trl = +y (3.462)
v __K _D K
@ = Mlx. ", v+ 72 X2 (3.46b)
dx;
7’1 = +vy (3.460)
de _ K _K 1
@t we o (3.46d)
In vector-matrix form,

X 0 1 0 0llxn 0

w|_|-KM -DM KM O|wn 0

5 0 0 0 1||x|*| o [f®@ 6

V2 K:M, 0 -K'M O] (1M

where the dot indicates differentiation with respect to time. What is the output
equation if the output is x(£)?

Skill-Assessment Exercise 3.1

Problem Find the state-space representation of the electrical network shown
in Figure 3.8. The output is v,(¢).

Figure 3.8

G R
Eectric cirout
for Skit-Assessment
Exercise 3.1 +
1,0 L [£] T
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Answer
16 16 -1¢ 0
x=|-1 L 0 0 |x+|1|n@
16 0 -16 1]

y=[0 0 1x
The complete solution is on the accompanying CD-ROM.
Skill-Assessment Exercise 3.2

Problem Rep the translati hanical system shown in Figure 3.9
in state space, where x3(r) is the output.

Figure 3.9
Translational
mechanical system
for SkillAssessment
Exercise 3.2

Answer
0
0 1 0 0 ©o0 ¢ 1
-1 -1 0 1 o ¢
3= 0 0 0 1 o of 0 f
Tlo 1o -1 ot [f®
0 0o 0 0 o0 1
0 0 0 0 -1 -1 0
[\]
y=[0 0 0 O 1 0z
where

P P 20T
z=n & xm B ox il

The complete solution is on the accompanying CD-ROM.

3.5 Converting a Transfer Function to State Space

In the last section we applied the state-space representation to electrical and me-
chanical systems. We learn how to convert a transfer function representation to a
state-space representation in this section. One advantage of the state-space rep-
resentation is that it can be used for the simulation of physical systems on the
digital computer. Thus, if we want to simulate a system that is represented by
a transfer function, we must first convert the transfer function representation to
state space.
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At first we select a set of state variables, called phase variables, where each
subsequent state variable is defined to be the derivative of the previous state vari-
able. In Chapter 5 we show how to make other choices for the state variables.

Let us begin by showing how o represent a general, nth-order, linear differ-
ential equation with constant coefticients in state space in the phase-variable form.

We will then show how to apply this ion to transfer
Consider the differential equation
d"y arly dy
g +a,,,|ﬁ_—l + - +alE + agy = bou (3.48)

A convenient way to choose state variables is to choose the output, W), and its
(n — 1) derivatives as the state variables. This choice is called the phase-variable
choice. Choosing the state variables, x,, we get

=y (3.492)
a4y
¥ = Ei (3.45b)
_dy
n=9 (3.49)
dn*l
= (3.499)

.o _dy ’
n-9% (3.50a)
. d%y

=g (3.500)
. diy

e (3.500)
N d"y

_— .50d
2 an (3.50d)

where the dot above the x signifies differentiation with respeci to time.
Substituting the definitions of Egs. (3.49) into Egs. (3.50). the state equations
are evaluated as

- x (3.51a)
=x (3.51b)

(3.51c)
Jn = —apx — Q1X2" " — GpoyXn + bot 3319
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where Eq. (3.51d) was obtained from Eq. (3.48) by solving for 4"y dt" and using
Egs. (3.49). In vector-matrix form. Egs. (3.51) become

x o 1 0 0 o0 O 0 xi 0

X [V 1] 1 o 0o 0 - 0 x 0
H|_l0o o 0o 1 0 0 - 0 x| (00,

Say 6 0 0o o 0 o I | P I

3y —ay -4 —ay —av —Gs —as Gy || Xn by
3.5

Equation (3.52) is the phase-variable form of the state equations. This form is easily
recognized by the unique pattern of 1°s and 0's and the negative of the cocfficients
of the differential equation written in reverse order in the last row of the system
matrix.

Finally, since the solution to the differential equation is (), or x;, the outpul
equation is

y=0 0 0 0] (3.53)
Xn-1
Xn

In summary, then, to convert a transfer function into state equations in phase-
variable form, we first convert the transfer function to a differential equation by
cross-multiplying and taking the inverse Laplace transform, assuming zero initial
conditions. Then we represent the differential equation in state space in phase-
variable form. An example illustrates the process.

Converting a transfer function with constant term in numerator

Problem Find the state-space representation i phase-variable form for the trans-
fer function shown in Figure 3.10(a).

Solution
Step 1  Find the associated differential equation. Since

o 2

= 3.
R(s) (53 + 952 + 265 + 24) (334

cross-muttiplying yields

(* + 952 + 265 + 24)C(s) = 24R(s) (359
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Ric) (45))

L 3y
-

@

The corresponding differential equation 1s found by taking the inverse Laplace
transform, assuning zero initial conditions:

'+ 9+ 260 + 24c = 24r (3.56)

Step2  Selcct the state variables.
Choosing the state variables as successive derrvatives. we get

n=c (3.57a)
n=é (3.57b)
X = (3.570)

Differentiating both sides and making use of Egs. (3.57) to find x; and x,, and
Eg. (3.56) to find ¢ = k3, we obtain the state equations. Since the output is
€ = Xx;, the combined state and output equations are

X = x2 (3.58a)
i = x3 (3.58b)
k3 = —24x; — 261 — 9x3 + 24r (3.58¢0)

y=c=1x (3.580)
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MATL B

Figure 3.11
Decomposing a
transfer function

In vector-matrix form,

k) 0 1 O] x 0
g | = 0 0 {{x|+]|0(r (3.5%a)
X3 —24 -26 -9||x; 24
X1
y=1I[1 ¢ 0l|x (3.5%0)
X3

Notice that the third row of the system matrix has the same coefficients as the
denominator of the transfer function but negative and in reverse order.

At this point we can create an equivalent block diagram of the system of Fig-
ure 3.10(a) to help visualize the state variables. We draw three integral blocks as
shown in Figure 3.10(b) and label each output as one of tbe state variables, x4f),
as shown. Since the input to each integrator is x,(7), use Eqgs. (3.584), (3.58b), and
(3.58¢) to determine the combination of input signals to each integrator. Form and
label each input. Finally, use Eq. (3.584) to form and label the output, (1) = c(z).
The final result of Figure 3.10(b) is a system equivalent to Figure 3.10(a) that
explicitly shows the state variables and gives a vivid picture of the state-space
representation.

Students who are using MATLAB should now run ch3pl through ch3p4 i Appendix B.
You will learn how to represent the system matrix A, the mput matrix B, and the output
matrix C using MATLAB. You will learn how to convert a transfer function to the state-space
representation in phase-variable form. Finally, Example 3.4 will be solved using MATLAB.

The transter function of Example 3.4 has a constant term in the numerator.
If a transfer function has u polynomial in » in the numerator that is of order Tess
than the polynomial in the denominator, as shown in Figure 3.11(a), the numerator
and denominator can be handled separately. First separate the transfer function
into two cascaded transfer functions, as shown in Figure 3.11(b); the first is the

Internal variables:
Xa(s), Xss)

®)
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denominator, and the second s just the numerator. The first transfer function with
just the denominator is converted to the phase-variable representation in state space
as demonstrated in the last example. Hence, phase variable x; is the output, and the
rest of the phase variables are the internal variables of the first block, as shown in
Figure 3.11(b). The second transfer function with just the numerator yields

¥(s) = C6) = (ba5” +bys + bo) Xi(s) (3.60)

where, after taking the mverse Laplace transform with zero initial conditions,
) = b 2 Ly, 3.61)

¥ ag Vg Toon g

But the derivative terms are the definitions of the phase vanables obtained
the first block. Thus, writing the terms in reverse order to conform to an output
equation,
O = box; + byxg + baxs (3.62)

Hence, the second block simply forms a specified linear combination of the state
variables developed in the first block.

From another perspective, the denommator of the transfer function yields the
state equations, while the numerator yields the output equation. The next example
demonstrates the process.

Conventing a transfer function with polynomial in numerator

Problem Find the state-space representation of the transfer function shown in
Figure 3.1Xa).
Solution This problem differs from Example 3.4 since the numerator has a poly-
nomial in s instead of just a constant term.
Stepl  Separate the system into two cascaded blocks, as shown in Figure
3.12(b). The first block contains the denominator, and the second block con-
tains the numerator.
Step2  Fand the state for the block the
‘We notice that the first block’s numerator is 1: 24 that of Example 3.4. Thus,
the state equations are the same except that this system’s input matrix is 1 24
that of Example 3.4. Hence, the state equation is

ENERE

Step3  Introduce the effect of the block with the numerator. The second
block of Figure 3.12(b), where b, = 1.b; = 7.and by = 2. states that

C6) = (bas? + bus + bOXi(s) = (2 + Ts + 2Xu(s) (64
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ki) | 2+T5+2 4D
| 349524 265+ 24

@

Rty | 1 |xlu, r 247542 ™
| Sesrassraa | |

Internal variables:
X(s), Xa(s}

®

14

{c)

Figure 3.12
a. Transer function; i i § L B
b. decomposed Taking the inverse Laplace transform with zero initial conditions, we get
transfer function; - N
. equualent black €= X+ TR+ 20 (69
diagram. Note: But
Mo=cit)

n =x

X =x
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Hence,
y=clt) = by +bixy +boxy = x3 +Tx2 + 2y (3.66)

Thus, the last box of Figure 3.11(5) “collects™ the states and generates the
output equation. From Eq. (3.66),

x x
y=Ibn b bl|lx|=012 7 1l|x 3.67)

X3 X3

Although the second block of Figure 3.12(b) shows differentiation, this block was
i without di iation because of the partitioning that was applied to
the transfer function. The last block simply collected derivatives that were already
formed by the first block.

Once again we can produce an equivalent block diagram that vividly repre-
sents our state-space model. The first block of Figure 3.12(b) is the same as Figure
3.10(a) except for the different constant in the numerator. Thus, in Figure 3.12(c)
we reproduce Figure 3.10(b) except for the change in the numerator constant, which
appears as a change in the input multiplying factor. The second block of Figure
3.12(b) is represented using Eq. (3.66), wbich forms the output from a linear com-
bination of the state variables, as shown in Figure 3.12(c).

Skill-Assessment Exercise 3.3

Problem Find the state equarions and output equation for the ph: riable
2s+1

+7s+9°

x= [_g 7;]” mm)

y=0 2K

representation of the transfer function G(s) =

Answer

The complete solution is on the accompanying CD-ROM.

3.6 Converting from State Space
to a Transfer Function

In Chapters 2 and 3, we have explored two methods of representing systems: the
transfer function rep tation and the state-space ion. In the last sec-
tion we united the two representations by converting transfer functions into state-
space representations. Now we move in the opposite direction and convert the state-
space representation into a transfer function.

Given the state and output equations

% = Ax+Bu (3.68a)
y=Cx+Du (3.68b)
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take the Laplace transform assuming zero initial conditions:8

5X(s) = AX(s) + BU) {3.69a)
Y(s) = CX(s) + DU(s) (3.69b)
Solving for X(s) in Eq. (3.69a),
(sI — A)X(s) = BU(s) 3.70)
or
X(s) = (sI - A) ‘BUfs) amn

where I is the identity matrix.
Substituting Eq. (3.71) into Eq. (3.69) yields
¥(s) = CsI ~ A)~'BU(s) + DU(s)
= [C(T- A) 'B + DIU(s) 3.72)
‘Wecall the matrix [C(sT  A)~'B + D] the transfer tunction matrix, since it relates

the output vector, Y(s), to the input vector, U(s). However, if U(s) = U(s) and
Y(s) = ¥(s) are scalars, we can find the transfer function.

o)

- - 1
T(s) = U - CisI A) 'B+D (3.73)

Let us look at an example.

State-space representation to transter function

Problem Given the system defined by Egs. (3.74), find the transfer function,
T(s) = ¥(s) U(s), where U(s) is the input and ¥(s) is the output.

0 1 0 10

k= 0 0 1|x+| of« (3.749)
-1 -2 -3 0

y=11 0 O (3.74b)

Solution  The solution revolves around tinding the term (sI — AY~ in Eq, (3.79)°
All other terms are already defined. Hence, first find (sT— A):

s 00 0 1 0 s -1 o
GI- Ay=10 s o[- o o If=]0 = -1 (3.1
00 5 -1 -2 -3 1 2 543

®The Laplace transform of a vector is found by taking the Laplace transform of each component.
Since % consists of the derivatives of the state variables, the Laplace transform of & with zero
witial conditions yields each component with the form s¥,(s), where Xi(s) rs the Laplace trans.
form of the state variable. Facloring out the complex variable, s, m each component yields the
Laplace transform of & as X(s), where X(s) 15 a column vector with componens X(s).
“See Appendix F. It s located on th ing CD-ROM and di the evalual
matrix inverse

fthe
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Now form (sI — A)~":

(?+35+2) s+3 1
-1 ss+3) s
= Ayt o BCT=A) _ —s ~@s+1) 2| 370
G- = T A S+3e v+l

Substituting (sI — A) !, B. C. and D into Eq. (3.73). where

10
=| 0
0
C=0n o 0
D=0
we obtain the final result for the transfer function.

10(s? +35+2)

T = g me1

37

Students who are using MATLAB should now run ch3p5 n Appendix B. You will learn how to
convert a state-space representation to a transfer function using MATLAB. You can practice
by writing a MATLAB program to solve Example 3.6.

Symbolic Math Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Math Toolbox shoutd now run ch3spl in Appendix E. You will learn
how to use the Symbolic Math Toolbox to write matrices and vectors. You will see that the
Symbolic Math Toolbox yields an alternate way to use MATLAB to solve Example 3.6.

Sloli-Assessment Exercise 3.4

Problem Convert the state and output equations shown in Egs. (3.78) to a trans-
fer function.

[_: -l 5]x+[ ]u(!) (.78

y=I[L5 0625]x (3.78b)
35+5

Answer  G(s) = Tra+E

The complete solution is on the accompanying CD-ROM

In Example 3.6 the state equations in phase-variable form were converted to
transfer functions. In Chapter 5 we will see that other forms besides the phase-
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Figure 3.13
Walking robots, such
s Hannibal shown
here, can be used

to explore hostile
envronments and
rough terrain, such as
that found on other
planets or inside
volcanoes.

Example 3.7

variable form can be used to represent a system in state space. The method of
finding the transfer function representation for these other forms is the same as that
presented in this section.

3.7 Linearization

A prime advantage of the state-space representation over the transfer function rep-
resentation is the ability to represent systems with nonlinearities, such as the one
shown in Figure 3.13. The ability to represent nenlinear systems does not imply
the ability to solve their state equations for the state variables and the output. Tech-
niques do exist for the solution of some nonlinear state equations, but this study is
beyond the scope of this course. In Appendix G on the accompanying CD-ROM,
however, you can see how to use the digital computer to solve state equations. This
method also can be used for nonlinear state equations,

If we are interested in small perturbations about an equilibrium point, as we
were when we studied linearization in Chapter 2, we can also linearize the state
equations about the equilibrium point. The key to linearization about an equilib-
rium point is, once again, the Taylor series. In the following example we write the
state equations for a simple pendulum, showing that we can represent a nonlinear
system in state space; then we linearize the pendulum about its equiltbrium point,
the vertical position with zero velocity.

-

Representing a nonlinear system

Problem First represent the simple pendulum shown in Figure 3.14(a) (which
could be a simple model for the leg of the robot shown in Figure 3.13) in state
space: Mg is the weight, T is an applied torque in the § direction, and L is the
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length of the pendulum. Assume the mass is evenly distributed, with the center of
mass at L;2. Then linearize the state equations about the pendulum’s equilibrium
point—the vertical position with zero angular velocity.

Solution  First draw a free-body dingram as shown in Figure 3.14(c). Summing the
torques, we get
46 Mgl
JF + Tsmﬂ =T 3.79)
where J is the moment of inertia of the pendulum around the point of rotation
Select the state variables xy and x; as phase variables. Letting x; = 6 and
xp = df dt, we write the state equations as

X —x (3.80a)

2 — *A#sinxl + ; (3.80b)
where x, = d%6 dt? is evaluated from Eq. (3.79).

Thus. we have represented a nonlinear system in state space. It is interesting to
note that the nonli Egs. (3.80) rep avalid and complete model of the pen-
dulum in state space even under nonero initial conditions and even if parameters,
such as mass, are time varying. However, if we want to apply classical techniques
and convert these stale equations to a transfer function, we must linearize them.

Let us proceed now to linearize the equation about the equilibrium point, x, =
0,x2 =0, that is, 8§ = Gand d6 dt = 0. Let x; and x> be perturbed about the
equilibrium point, or

X~ 0+dy (3.81a)
X =0+ 8y (3.81b)
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Using Eq. (2.182), we obtain

sinx, —sing = JEMAY o o (382
&% y=0
from which
sinx; = 8x) (3.83)

Substituting Egs. (3.81) and (3.83) into (3.80) yields the following state equations:
8 = &y, (3.84)

_ MgL

< T
by = 27 8xy + 7 (3.84b)
which are linear and a good approximation to Eqs. (3.80) for small excursions away

from the equilibrium point. What is the output equation?

Skill-Assessment Exercise 3.5

Figure 3.15
Nonlinear transtational
mechanical system
for SkikAssessment
Exercise 35

Problem Represent the translational mechanical system shown in Figure 3.15
in state space about the equilibrium displacement. The spring is nonlinear,
where the relationship between the spring force, £(s), and the spring displace-
ment, xs(#), is £(#) = 2x2(). The applied force is O = 10+ 5f(), where 8f(1)
is a small force about the 10 N constant value.

Assume the output to be the displacement of the mass, x(f).

Nonlinear

Answer

_ 01 0
x=[ea e oo
y=1I1 Ok
The complete solution is on the accompanying CD-ROM,
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Antenna Control: State-Space Representation

‘We have covercd the s pace of indi physical subsys-
tems in this chapter. In Chapter 5 we will assemble individual subsystems into
feedback control systems and represent the entire feedback system in state space.
Chapter 5 also shows how the state-space representation, via signal-flow dia-
grams, can be used o i these y and permit the state-space
representation of the whole closed-loop system. In the following case study, we
Took at the antenna azimuth position control system and demonstrate the concepts
of this chapter by representing each subsystem in state space.

Problem Find the state-space representation in phase-variable form for each
dynamic subsystem in the antenna azimuth position control system shown on the
front endpapers, Configuration: 1. By dynamic, we mean that the system does
not reach the steady state instantaneously. For example, a systern described by a
differential equation of first order or higher is a dynamic systerm. A purc gain, on
the other hand, is an exarmple of a nondynamic systern, since the steady state is
reached instantaneously.

Solution In the case study problem of Chapter 2, each subsystem of the antenna
azimuth position control system was identified. We found that the power ampli-
fier and the motor and load were dynamic systems. The preamplifier and the po-
tentiometers are pure gains and so respond instantaneously. Hence, we will find
the state-space representations only of the power amplifier and of the motor and
load.

Power amplifier The transfer function of the power amplificr 1s given on the
front endpapers as G(s) = 100 (s + 100). We will convert this transfer function
to its state-space representation. Letting v,,(f) represent the power amplifier input
and e,(#) represent the power amplifier output,

Eq(s) 100
Hs) = = = 3.85,
GO = 3@ = Grion G5
Cross multiplying, (s + 100)E,(s) = 100V)(s). from which the differential
equation can be written as
% +100¢, = 1004,() 3.86)

Rearranging Eq. (3.86) leads to the state equation with e, as the state variable:
de,

Ttﬂ = —100e; + 1001,(n (3.87)

Since the output of the power amplifier is e,(£), the output equation 1s

y=é (3.88)

Motor and load 'We now find the state-space representation for the motor
and load. We could of course use the motor and load bleck shown in the block
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diagram on the front endpapers to obtain the result. However, it is more informa-
tive to derive the state-space representation directly from the physics of the motor
without first deriving the transfer function. The elements of the derivation were
covered in Section 2.8 but are repeated here for continuity. Starting with Kirch-
hoff's voltage equation around the armature circuit, we find

eq(f) = I(DR, + Kbddi‘” (3.89)

where eq(7) is the armature input voltage, i,(¢) is the armature current, R, is the
armature resistance, K}, is the armature constant, and 6, is the angular displace-
ment of the armature.

The torque. T,,(z), delivered by the motor is related separately 10 the arma-
ture current and the load seen by the armature. From Section 2.8,

d b, p,d0n (3.90)

Tolt) = Kiilt) = dn 5" -

where J,, 15 the equivalent mertia as seen by the armature. and D,,, is the equiva-
lent viscous damping as seen by the armature
Solving Eq. (3.90) for 1,(¢) and substituting the result into Eq. (3.89) yields

_ (R \d%6n _ (DuRa d6,,
elt) = (T‘)7 + X +Kp o (3.91)
Defining the state variables x, and x; as
X = 6y (3.92a}
_ dby
X2 = P (3.92b)
and substituting into Eq. (3.91), we get
_ {Rudu\dx2 _(DnRu
eult) = ( K )T; gt Ky |x2 (3.93)
Solving for dx; dr yrelds
dn _ 1 KKy
i (D,,, + R X+ ea(l) (3.94
Using Egs. (3.92) and (3.94), the state equations are written as
L (3.953)

dt

dy _ 1 KKy
du_ Z(D,"+ R_a)xﬁ(R « )z,,m )
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The output, 8,(),is 1 10 the displacement of the armature, which is x;. Hence,
the output equation is

y=01x (3.96)
In vector-matrix form,
o 1 o
X = o 1 KENX+] K |e® (3.97a)
In ( "R, Radm
y=1[01 0k (3.97v)

But from the case study problem in Chapter 2, J,, = 0.03 and D,, = 0.02. Also,
Kt R, — 0.0625 and K;, = 0.5. Substituting the values into Egs. (3.97), we
obtain the final state-space representation:

.o 0
X = [0 _1_71]1( + [2.083]8,,(!) (3.98a)
y=[01 0O (3.98b)

Challenge You are now given a problem to test your knowledge of this chapter’s
objectives. Referring to the antenna azimuth position control system shown on
the front endpapers, find the state-space representation of each dynamic subsys-
tem. Use Configuration 2.

Pharmaceutical Drug Absorption

An of state-sp ion over the transfer function representa-
tion is the ability to focus on component parts of a system and write # simultane-
ous, first-order differential equations rather than attempt to represent the systermn
as a single, nth-order differential equation, as we have done with the transfer
function. Also, multiple-input, multiple-output systems can be conveniently
represented in state space. This case study demonstrates both of these concepts.

Probiem In the pharmaceutical industry we want to describe the distribution of
adrug in the body. A simple model divides the process into compartments: the
dosage, the absorption site, the blood, the peripheral compartment, and the urine.
The rate of change of the amount of a drug in a compartment is equal to the input
flow rate diminished by the output flow rate. Figure 3.16 summarizes the system.
Here each x, is the amount of drug in that particular compartment (Lordi, 1972).
Represent the system in state space, where the outputs are the amounts of drug in
each compartment.

Solution The flow rate of the drug into any given compartment is proportional
to the concentration of the drug in the previous compartment, and the fiow rate
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Figure 3.16
Phammaceutcal drug-
level concentrations
inahuman

Absorption
Dosage site Blood Urme

Peripheral
compartment

out of a given compartment is proportional to the concentration of the drug in
its own compartment.

‘We now write the flow rate for each compariment. The dosage is released to
the absorption site at a rate proportional to the dosage concentration, or

dy

i —Kixy 399

The flow into the absorption site is proportional to the concentration of the drug
at the dosage site. The flow from the absorption site into the blood is proportional
to the concentration of the drug at the absorption site. Hence,

dx;

P Kix — K% (3.100)

Similarly, the net flow rate into the blood and peripheral compartment 1s

‘%3 = Kaxz — K3x3 + Kaxg — Ksx3 (3.101)
% = Ksx3 — Kuxs (3100

where (K4x4 — Ksx3) is the net flow rate into the blood from the peripheral com-
partment. Finally, the amount of the drug in the urine is increased as the blood
releases the drug to the urine at a rate proportional to the concentration of the
drug in the blood. Thus,

B o, (3.103)

Egquations (3.99) through (3.103) are the state equations. The output equation
is a vector that contains each of the amounts, %, Thus, in vector-matrix form,
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—K 0 0 (U]
K -K 0 0 0
x= 0 K —-(Ka+Ks) K, 0 |x (3.104a)
0 0 Ks —Ki 0
0 0 K3 0 0
1 00600
01000
y=|0 0 1 0 0Oix (3.104b)
00010
00001

You may wonder how there can be a solution to these equations if there is
no nput. In Chapter 4, when we study how to solve the state equations, we will
see that initial conditions will yield solutions without forcing functions. For this
problem an initial condition on the amount of dosage, x;, will generate drug
quantities in all other compartments.

Challenge We now give you a problem to test your knowledge of this chapter’s
objectives. The problem concerns the storage of water in aquifers. The principles
are similar to those used to model pharmaceutical drug absorption.

Underground water supplies, called aquifers, are used in many areas for
agricultural, industrial, and residential purposes. An aquifer system consists of
anumber of interconnected natural storage tanks. Natural water flows through the
sand and sandstone of the aquifer system, changing the water levels in the tanks
on its way to the sea. A water conservation policy can be established whereby
water is pumped between tanks to prevent its loss to the sea.

A model for the aquifer system is shown in Figure 3.17. In this model the
aquifer is represented by three tanks, with water level k; called the head, Each Gn
is the natural water flow to the sea and is proportional to the difference in head
between two adjoining tanks, or g, = G(h, — h,_1), where G, is a constant of

Figire 3.17 proportionality and the units of g, are m3/yr.
Aquier system model
%l o2 92 903 3
| oy
40=Gn(H1—h)
jt = g E
F i] ky h 3
£ s
i3 o s |
Q=Giky ; k. E:
! e oy o T e rr e e

42~ Galhz—hy) @=Gsl—hy)
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The engineered flow consists of three components, also measured n m/yr:
(1) flow from the tanks for irrigation, industry, and homes, gor; (2) replenishing
of the tanks from wells, g,,; and (3) flow, g2, created by the water conservation
policy to prevent loss 1o the sea. In this model, water for irrigation and industry
will be taken only from Tank 2 and Tank 3. Water conservation will take place
only between Tank 1 and Tank 2, as follows. Let Hy be a reference head for Tank
1. If the water level in Tank I falls below H,, water will be pumped from Tank
2 to Tank 1 to replenish the head. If #, is higher than H), water will be purnped
back 1o Tank 2 to prevent loss to the sea. Calling this flow for conservation gy,
we can say this flow is proportional 1o the difference between the head of Tank 1.
hy, and the reference head, Hy, or g2 = Gy (H, — Iy).

The net flow into a tank is proportional o the rate of change of head in each
tank. Thus,

Codhyt dt = Gin — Gon + Gnet = Gn + Gons 1 — Grtn—ny
(Kandel, 1973).

Represent the aquifer system in state space, where the stare variables and the
outputs are the heads of each tank.

Summary

This chapter has dealt with the state-space representation of physical systems,
which took the form of a state equation.

X = Ax + Bu (3.105)
and an output equation,
y=Cx+Du (3.106)

fort = £, and initial conditions x{zo). Vector X 1s called the state vector and con-
tains variables, called state variables. The state variables can be combined alge-
braically with the input to form the output equation, Eg. (3.106), from which any
other system variables can be found. State variables, which can represent phys-
ical quantities such as current or voltage, are chosen to be linearly independent.
The choice of state variables is not unique and affects how the matrices A,B,C,
and D look. We will solve the state and output equations for x and y in Chapter 4.

In this chapter transfer functions were represented in state space. The form
selected was the phase-variable form, which consists of state variables that are
successive derivatives of each other. In three-dimensional state space, the result-
ing system matrix, A, for the phase-variable representation is of the form

o 1 o
0o 0 1 @.107)

~@ —a —a

where the g;’s are the coefficients of the ch istic polynomial or
of the system transfer function. We also discussed how to convert from a state-
space representation to a transfer function,
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In ion, then, for linear, time-i iant systerns, the state-space repre-
sentation is simply another way of mathematically modeling them. One ma-
jor advantage of applying lhe sute -space representation to such linear systems
is that it allows P ing the system on the digital
computer and watching the system’s response is un invaluable analysis and de-
sign tool. Simulation is covered in Appendix G on the accompanying CD-ROM.

Review Questions

1. Give two reasons for modeling systems in state space.

2. State an advantage of the transfer function approach over the state-space
approach.

3. Define state variables.

4. Define state.

5. Define state vector.

6. Define state space.

7. Whatis required to represent a system in state space?

8. An eighth-order system would be represented in state space with how many
state equations?

9. If the state equations are a systern of first-order differential equations whose
solution yields the state variables, then the output equation performs what
function?

10. What is meant by linear independence?
11. What factors influence the choice of state variables in any system?
12. What is a convenient choice of state variables for electrical networks?

13. If an electrical network has three energy-storage elements. 1s 1t possible to
have a state-space representation with more than three state variables?
Explain.

14. What 1s meant by the phase-variable form of the state-equation?

Problems

1. Represent the electrical network shown in Figure P3.1 in state space, where
Vo(f} is the output.

i 1H 1H 1F 10
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2. Represent the electrical network shown in Figure P3.2 in state space, where
Ir(?) is the output.

Figure P3.2 1Q (0 1H

wn IF Ao 1Q IRl
T '

3. Find the state-space representation of the network shown i Figure P3.3 if

the output is vo(1).
Figure P3.3 ¥}
N ‘j

R (T:

AN

1H IF

+
w0 () [\ - 1Fﬂ 195 win
\j
18] i)

4. Represent the system shown in Figure P3.4 in state space where the output

is x3(1).
Figure P3.4 <f e ()
T
M- 1kg
fig=1N-=s/m
'_
fi,= ANl
=1kg My=1kg —»f()
K=1Nm
FS P, 5 ]

Fricttonless

——xn — =l



Figue P35

Figure P3.6

Figure P3.7
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5. Rep the tr i hanical system shown in Figure P3.5 in state
space. where x;(f) is the output.

—‘— - i H—» )
Mi=1

kg

Ky = I Nim Foy= 1 osim
My=1kg F,= I Nesim

/1000
/' - )
f— = -

K;=1N/m
M= 1kg =000

f-,,: 1 N-sfm|

6. Rep the system shown in Figure P3.6 in state
space, where 6,(2) is the output.

0 &t
A

A T

100 N-m/rad 100 N-m-s/rad

7. Represent the system shown in Figure P3.7 in state space where the output is
B.(0).

Tin

Al

M=10

2 N-mirad 3 N-m-ssrad
a0 I—W—E—i Ny=10
§ Bty
Ny= 100

200 N-m-s/rad
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8. Show that the system of Figure 3.7 in the text yields a fourth-order transfer
function if we relate the displacement of either mass to the applied force, and
athird-order one if we relate the velocity of either mass to the applied
force.

9. Find the state-sp: P ion in ph riable form for each of the
systems shown in Figure P3.8.

FigureP3.8

Rs) 100 sy
5442053+ 1052+ 75+ 100

@

R(s) 30 [20]
554+ 854+ 953+ 6524 5+ 30

»

MATLAB 10. Repeat Problem 9 using MATLAB.

11. For each system shown in Figure P3.9, write the state equations and the
output equation for the phase-variable representation.

Figure P3.9 R(s) |_T| Cls)
S423+52+55+ 10

@)

R(s) |s4+2s3+12:1+7s+3 [20]

5549544 1053 + 852

®

__ MaTLAB 12. Repeat Problem 11 using MATLAB

13. Represent the following transfer function in state space. Give your answer in
vector-matrix form,

(2+35+7)

T = G D +5:+9
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14. Find the transfer function G{s) = Y(s) R(s) for each of the following
systems represented in state space:

0 1 0 0
a. x=| 0 0 1|x+| Ofr
-3 2 5 10
y=1 0 O
2 3 -8 1
b. x=| 0 S5 3[x+|4r
-3 -5 —4 6
y=1I1 3 6]x
3 -5 2 5
c x=| 1 -8 7|x+|-3|r
-3 6 2 2

y=[ -4 3x

15. Use MATLAB to find the transter function, G{s) = Yis)-R(s), for each of the following
systems represented in state space:

MATLAB

0O 1 3 0 0
x=| 0 0 1 © 5
a X = 0 0 0 1 X+ 8 r
-7 -9 -2 -3 2
y=01 3 4 ek
31 0 4 -2 2
-35 -5 2 -1 7
b. x 01 -1 2 8§gix+|6|r
-76 -3 -4 0 5
-6 0 4 -3 1 4

y=0I1 -2 -9 7 e

Symbolic Math 16. Repeat Problem 15 using MATLAB, the Symbolic Math Toolbox, and Eq. (3.73).

17. Gyros are used on space vehicles. aircraft. and ships for inertial navigation
The gyro shown in Figure P3.10 is a rate gyro resirained by springs con-
nected between the inner gimbal and the outer gimbal (frame) as shown. A
rotational rate about the z-axis causes the rotating disk to precess about the
x-axis. Hence, the input is a rotational rate about the z-axis, and the cutput is
an angular displacement about the x-axis. Since the outer gimbal is secured
to the vehicle, the displacement about the x-axis is a measure of the vehicle’s
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angular rate about the z-axis. The equation of motion is
1476

*dr?

Represent the gyro in state space.

d6, ., de,
+D + Kby = Tt

Figure £3.10
Gyro system

18. A missile in flight, as shown in Figure P3.11, is subject to several forces:
thrust, lift, drag, and gravity. The missile flies at an angle of attack, «, from

Figure P3.11
Missile

Velocity
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its longitudinal axis, creating lift. For steering, the body angle from vertical,
@, is controlled by rotating the engine at the tail. The transfer function relat-
ing the body angle, ¢, to the angular displacement, 8, of the engine is of the
form

D) _ Kas + Ky
5(s) K+ K + Kis+ Ko

Represent the missile steering control in state space.

19. Given the dc servomotor and load shown in Figure P3.12, represent the
system in state space, where the state variables are the armature current, 1,,,
load displacement, 6;, and load angular velocity, «;. Assume that the output
is the angular displacement of the armature. Do not neglect armature
inductance.

Figure P3.12
Motor and load
Dy
20. Consider the mechanical system of Figure P3.13. If the spring is nonlinear,
and the force, Fy, required to stretch the spring is F; = 2xj, represent the
system in state space linearized about x; = 1 if the output is x;.
" '
Figure P3.13 0
MNonlinear mechanical 1 N-s/m -
t
- —fn

21. Image-based homing for robots can be implemented by generating heading
command inputs to a steering systerm based on the following guidance algo-
rithm. Suppose the robot, shown in Figure P3.14(a) is to go from point R to
a target, point 7, as shown in Figure P3.14(b). If R,, R,, and R, are vectors
from the robot to each landmark, X, ¥, Z, respectively, and Ty, Ty, and T
are vectors from the target to each landmark, respectively, then heading
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Robot

(@)

Heading Heading Controller  Steenng ~ Wheels Wheel Vehicie

command error command angle heﬂd 2
K(s+a) .
s+b) "

©

Figure P3.14
a. Robot with commands would drive the robot to minimize R —T,, R, Ty,andR.-T;
television Imaging simultaneously, since the differences will be zero when the robot arrives at
system (©1992 IEEE); the target (Hong, 1992). If Figure P3.14(c) represents the control system that
b. vector cragram steers the robot. rep each block—th wheels, and vehicle—
showing concept in state space.

ebased . . .
bend mage base; 22. Given the F4-E military aircraft shown m Figure P3.15(«), where normal

homing (©1992 IEEE;
. heading control
system

acceleration, «,, and pitch rate, ¢, are controlled by elevator deflection, 6,,
on the horizontal stabilizers and by canard deflection. 8. A commanded
deflection, 8.om, as shown in Figure P3.15(b), 1s used to effect a change in
both &, and . The relationships are

6) _ 17
Som(s)  s+1°7T
8A5) K. T

Som(s)  s+1 7
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Figure P3.15
a.FAE with canards
(21992 AlAA),

b. openoop flight
control system
(©1992 AlAA)

23.
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Honzontal
canards (5, )

Elevaror {8,)

(@
8l G,
Awrcraft
iz Tongtudinal
s+lir dynamics
S q
4 —
@

These deflections yield, via the aircraft longuudinal dynamics, a, and g. The
state equations describing the effect of 8.om on ¢, and ¢ is given by (Cavallo,
1992)

a;] [-1702 5072 263.387[a,] [-272.06
g|=1] 022 -1418 -31.9|[g[+] O |&wom
&, 0 0 -14 |8, 14

Find the following transfer functions:

_ Aus)
Gy(s) = ool
_ 06
G = 5o

Medern robotic manipulators that act directly upon their target environments
must be controlled so that impact forces as well as steady-state forces do

not damage the targets. At the same time, the manipulator must provide
sufficient force to perform the task. In order to develop a control system to
regulate these forces, the robotic i and target envi must
be modeled. Assuming the model shown in Figure P3.16, represent in state
space
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Figure P3.16
Robotic manpulator Contact
and target
envronment
{©1997 IEEE)

IN/m | Nos/im
Manipulator Sensor Internal force model  Environment
the manipulator and its envi under the following conditions (Chiu,
1997):

a. The manipulator 1s not m contact with 1ts target environment.

b. The manipulator is in constant contact with its target environment.

Progressive Analysis and Design Problem

24. High-speed rail Atr ical system model fora
high-speed rail pantograph, used to supply electricity to a train from an overhead
catenary. is shown in Figure P2.35(b) (O” Connor, 1997). Represent the pantograph
in state space, where the output is the displacement of the top of the pantograph,
V(D) — Yearlt)
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Chapter Objectives

Time Response

In this chapter you will learn the following:

How to find the time response from the transfer function

How to use poles and zeros to determine the response of a control system
How to describe quantitatively the transient response of first- and second-
order systems

How to approximate higher-order systems as first or second order

How to view the effects of nonlineariies on the system time response
How to find the time response from the state-space representation

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

Given the antenna azimuth position control system shown on the front
endpapers, you will be able to (1) predict, by inspection, the form of the
open-loop angular velocity response of the load to a step voltage input to

the power amplifier; (2) describe quantitatively the transient response of

the open-loop system; (3) derive the expression for the open-loop angular
velocity output for a step voltage input; (4) obtain the open-loop state-space
representation; (3) plot the open-loop velocity step response using a computer
simulation

Given the block diagram for the U F ing il
(UFSS) vehicle’s pitch control system shown on the back endpapers, you
will be able to predict, find, and plot the response of the vehicle dynamics

t0 a step input command. Further, you will be able to evaluate the effect of
system zeros and higher-order poles on the response. You will also be able to
evaluate the roll response of a ship at sea.
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4.1 Introduction

In Chapter 2 we saw how transfer i can linear, time-i fant
systems. In Chapter 3 systems were represented directly in the time domain via
the state and output equations. After the engmeer obtains a mathematical represen-
tation of a the is d for its transient and steady-state
responses to see if these characteristics yield the desired behavior. This chapter is
devoted to the analysis of system transient response.

It may appear more logical to continue with Chapter 5, which covers the mod-
eling of closed-locp systems, rather than to break the modeling sequence with the
analysis presented here in Chapter 4. However, the student should not continue
too far into system representation without knowing the application for the effort
expended. Thus, this chapter demonstrates applications of the system representa-
tion by evaluating the transient response from the system model. Logically, this
approach is not far from reality, since the engineer may indeed want to evaluate
the response of a subsystem prior to inserting it into the closed-loop system.

After describing a valuable anatysis and design tool, poles and zeros, we begin
analyzing our models to find the step response of first- and second-order systems.
The order refers to the order of the equivalent differential equation representing
the system—the otder of the denominator of the transfer function after cancella-
tion of commen factors in the numerator or the number of simultaneous first-order
equations required for the state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the forced response
and the natural response.! Although many techniques, such as solving a differ-
ential equation or taking the inverse Laplace transform, enable us to evaluate this
output response, these techniques are laborious and time-consuming. Productivity
is aided by analysis and design techniques that yield results in a minimum of time.
¥f the technique is so rapid that we feel we derive the desired result by inspection,
we sometimes use the attribute gualitative to describe the method. The use of poles
and zeros and their relationship to the time tesponse of a system is such a tech-
nique. Learning this i ip gives us a q ive “handle” on p The
concept of poles and zeros, fundamental to the analysis and design of control sys-
tems, simplifies the evaluation of a system’s response. The reader i lS encouraged to
master the concepts of poles and zeros and their i to
this book. Let us begin with two definitions.

Poles of a Transfer Function

The poles of a transfer function are (1) the values of the Laplace transform var-
iable, s, that cause the transfer function to become infinite or (2) any roots of the
denominator of the transfer function that are common to roots of the numerator.

"The forced response is also called the steady-state response of particular solution. The natural
response is also called the homogeneous solution.
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Strictiy speaking, the poles of a transfer function sansfy part (1) of the defini-
tion. For example, the roots of the istic pol. 1 in the d are
values of s that make the transfer function mﬁm(e so they are thus poles. However,
if a factor of the denominator can be canceled by the same factor in the numerator,
the root of this factor no longer causes the transfer function to become infinite. In
control systems we often refer to the root of the canceled factor in the denominator
as a pole even though the transfer function will not be infirrite at this value. Hence,
we include part (2) of the definition.

Zeros of a Transfer Function

The zeros of a transfer function are (1) the values of the Laplace transform variable,
s. that cause the transfer function to become zero, or (2) any roots of the numerator
of the transfer function that are commen to roots of the denominator.

Strictiy speaking, the zeros of a transfer function satisfy part (1) of this defini-
tion. For example, the roots of the numerator are values of s that make the transfer
function zero and are thus zeros. However, if a factor of the numerator can be can-
celed by the same factor in the denominator, the root of this factor no longer causes
the transfer function to become zero. In control systems we often refer to the root
of the canceled factor in the numerator as a zero even though the transfer function
will not be zero at this value. Hence, we include part (2) of the definition.

Poles and Zeros of a First-Order System: An Example

Given the transfer function G(s) in Figure 4.1(a), a pole exists at s = —5, anda
zero exists at —2. These values are plotted on the complex s-plane in Figure 4.1(b),
using an X for the pole and a © for the zero. To show the properties of the poles
and zeros, let us find the unit step response of the system. Multiplying the transfer
function of Figure 4.1(z) by a step function yields

s+2) A B

5 3,5

o= 9 =5 545 s Tses @n
where
(s+2) 2
A= =z
+5);.o 5
_ s+ 3
S R
Thus,
2 3
) = 5t Ee (C¥3)

From the development summarized in Figure 4.1(c), we draw the following con-
clusions:

1. A pole of the input function generates the form of the forced response (that is,
the pole at the origin generated a step function at the cutput).
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Figure 4.1 jo
».System showng

nput and output;

b pole-zero plot s-plane
ofthe systerm;

c. evolution of @
syslem response
Follow blue arrows
bosee the evolution
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component generated

by the pole or zero

Input pole System zero System pole
s+2 |

<
€
~
g

= = - Y -
Output ) CN L3

transform 5

Queput H 2
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response )

Forced response  Natural response

©

2. A pole of the transfer function generates the form of the natural response (that
is, the pole at —5 generated e~>).

3. Apoleonthe real axis an i f the form e =, where
—a is the pole location on the real axm Thus. the farlher to the left a pole is on
the negative real axis, the faster the exponential transient response will decay to
zero (again. the pole at —5 generated e~ see Figure 4.2 for the general case).

»

The zeros and poles generate the amplitudes for both the forced and natural
responses (this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles
to obtain the form of the system response. We will learn to write the form of the
response by inspection. Each pole of the system transfer function that is on the real
axis an thatisa p of the natural response.
The input pole generates the forced response.
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Figure 4.2

Effect of a realaxs
pole upon transient
response

Example 4.1

Figure 4.3
Syster for
Example 4 1

Pole at —¢ generates

© Keot
response Ke s-plane

Evaluating response using poles

Problem Given the system of Figure 4.3, write the ouiput, c(r), in general terms.
Speaify the forced and natural parts of the solution.

Ko=1 +3) o)
+ 27 DG+ 5)

Solution By inspection, each system pole generates an exponential as part of the
natural response. The input’s pole generates the forced response. Thus,

K K, K3 Ky
= — + =4 .3
B e T TR R e @3
Forced Netural
response response
Taking the inverse Laplace transform, we get
= K +Ke ¥ 4Kt Ke™ 4.4)
Forced Natural
rusponse Tesponse

Skill-Assessment Exercise 4.1

10(s + 4)(s + 6)
G+ D+ 75 + B)(s + 10)°
‘Write, by inspection, the output, c{r), in general terms if the input is a unit step.
Answer c()=A+Be '+ Ce~™ + De™¥ 4 Ee 10

Problem A system has a transfer function, G(s) =

In this section we learned that poles determine the nature of the time response:
Poles of the input function determine the form of the forced response, and poles of
the transfer function determine the form of the natural response. Zeros and poles of
the input or wansfer function contribute to the amplitudes of the component parts
of the total response. Finally, poles on the real axis generate exponential responses.
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a.Frstorder system;

b. pole plot
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4.3 First-Order Systems

We now discuss first-order systems without zeros to define a performance spec-
ification for such a system. A first-order system without zeros can be described
by the transfer function shown in Figure 4.4(a). If the input is a unit step, where
R(s) = 1¢s5, the Laplace transform of the step response is C(s). where

C(s) = R(3)G(s) = :(s Gra) “4.5)

Taking the inverse transform, the step response is given by
A G =1 @.6)

where the input pole at the origin generated the forced response ¢;(#) = 1, and
the syslem pole at —a, as shown in Figure 4.4(b), generated the natural response
cp(f) = —e~. Equation (4. 6) is plolled in Figure 4.5.

Let us examine the sj a, the only needed to
describe the transient response. When t=1a,

@7

-a
€ o a

or

e,y = 1=€™),_,.0= 1 - 037 = 063 @8

t=1;a

‘We now use Egs. (4.6), (4.7), and (4.8) to define three transient response per-
formance specifications.

Time Constant

Wecall |, u the time constant of the response. From Eq. (4.7) the time constant can
be described as the time for e to decay to 37% of its initial value. Alternately,
from Eg. (4.8) the time constant is the time it takes for the step response to rise to
63% of its final value (see Figure 4.5).

The reciprocal of the time constant has the units (I/seconds), or trequency.
Thus, we can call the parameter a the exponential frequenc y. Since the derivative
of ™ is —a when ¢ = 0, @ is the initial rate of change of the exponential at t = 0.
Thus, the time constant can be considered a transient response specification for a
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first-order system, since it is related to the speed at which the system responds toa
step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)).
Since the pole of the transfer function is at —a, we can say the pole is located at the
reciprocal of the time constant, and the farther the pole from the imaginary axis,
the faster the transient response.

Let us look at other transient response specifications, such as rise time, 7, and
settling time. Ty, as shown in Figure 4.5.

Rise Time, T,
Rise tirme is defined as the tume for the wavetorm to go from 0.1 to 0.9 of its final
value. Rise time is found by solving Eq. (4.6) for the difference in time at c(f) = 09
and () = 0.1. Hence.

231

7=
a

on @
a

Settling Time, T

Settling time is defined as the time for the response to reach, and stay within, 2%
of its final value.? Letting c(f) = 0.98 in Eq. (4.6) and solving for time, ¢, we find
the settling time to be

“.10)

*Strictly speaking, this s the definition of the 2% serdling rme Other percentages, for example
5%, also can be used. We will usc setrling time throughout the book to mean 2% settling tme.
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First-Order Transfer Functions via Testing
Often it is not possible or practical to obtain a system’s transfer function analyti-
cally. Perhaps the system is closed. and the component parts are net easily identi-
fiable. Since the transfer function is a representation of the system from input to
output, the system’s step response can lead to a representation even though the
inner construction is not known. With a step input, we can measure the tume
constant and the steady-state value, from which the transfer function can he
calculated.

Consider asimple first-order system, G(s) = K, (s+a), whose step response is

K _Ka_Ka

O=Gva 5 e

@1
If we can identify K and a from laboratory testing, we can obtain the transfer func-
tion of the system.

For example, assume the unit step response given in Figure 4.6. We determine
that it has the first-order characteristics we have seen thus far, such as no overshoot
and nonzero initial slope. From the response, we measure the time constant, that is,
the time for the amplitude to reach 63% of its final value. Since the final value is
about 0.72, the time constant is evaluated where the curve reaches 0.63 X 0.72 =
0.45, or about 0.13 second. Hence,a = 1 0.13 = 7.7.

To find K. we realize from Eq. (4.11) that the forced response reaches a steady-
state value of K/a = 0.72. Substituting the value of @, we find K = 5.54. Thus,
the transfer function for the systemis G(s) = 5.54 (s+7.7). Itis interesting to note
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that the response of Figure 4.6 was generated using the transfer function G(s) =
5.+7.

Skili-Assessment Exercise 4.2

Problem A system has a transfer function, G(s) = % Find the time con-
stant, T, settling time, 7, and rise time, 7;.
Answers T, —0.02s,7; = 008s,and 7, — 0.044s.

The complete solution is on the accompanying CD-ROM.

4.4 Second-Order Systems: Introduction

Letus now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order
System exhibits a wide range of responses that must be analyzed and described.
Whereas varying a first-order system’s parameter simply changes the speed of the
response, changes in the parameters of a second-order system can change the form
of the response. For example, a second-order system can display characteristics
much like a first-order system or, d on comp: values, display damped
or pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numerical examples of the second-
order system responses shown in Figure 4.7. All examples are derived from Figure
4.7(a), the general case, which has two finite poles and no zeros. The term in the
numerator 1s simply a scale or input multiplying factor that can take on any value
without affecting the form of the derived results. By assigning appropriate values
to parameters a and b, we can show all possible second-order transient responses.
The unit step response then can be found using C(s) = R(5)G(s), where R(s) =
1 s, followed by a partial-fraction expansion and the inverse Laplace transform.
Details are left as an end-of-chapter problem, for which you may want to review
Section 2.2,

‘We now explain each response and show how we can use the poles to determine
the nature of the response withont going through the procedure of 2 partial-fraction
expansion followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7{b)
For this response,
9 _ 9
ST+ 9s+9)  sls + 7.854)(s + 1.146)

This function has a pole at the origin that comes from the unit step input and
two real poles that come from the system. The input pole at the origin gerr
erates the constant forced response; each of the two system poles on the real
axis generates an exponential natural response whose exponential frequency is
equal to the pole location. Hence, the output initially could have been written
as c(t) = Ki + Kze 7% 4 Kze™! 9 This response, shown in Figure 4.7(b), is

Cls) =

“.12)
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response components
generated by complex
poles

called overdamped.> We see that the poles tell us the form of the response without
the tedious calculation uf the inverse Laplace transform.

Underdamped Response, Figure 4.7{c)
For this response,

Cesy = (4.13)

S(sZ2+25+9)
‘This funcuion has a pole at the origin that comes from the unit step input and two com-
plex poles that come from the system, We now compare the response of the second-
order system to the poles that generated it. First we will compare the pole location
to the time function, and then we will compare the pole location to the plot. From
Figure 4.7(c), the poles that generate the natural response are at s = —1 * j /8.
Comparing these values to (1) in the same figure, we see that the real part of the
pole matches the exponential decay frequency of the sinusoid’s amplitude, while
the imaginary part of the pole matches the frequency of the sinusoidal oscillation.
Let us now compare the pole location to the plot. Figure 4.8 shows a general,
damped sinuscidal response for a second-order system. The transient respomse con-
sists of an exp ially decaying ampli ated by the real part of the sys-
tem pole times a sinusoidal waveform generated by the imaginary part of the system
pole. The time constant of the exponential decay is equal to the reciprocal of the
real part of the system pole. The value of the imaginary part is the actual frequency
of the sinusoid, as depicted in Figure 4.8. This sinusoidal frequency is given the
name damped frequency of oscillation, w;. Finally, the steady-state response (unit
step) was generated by the input pole located at the origin. We call the type of
response shown in Figure 4.8 an underdamped ve, one which
asteady-state value via a transient response that is a damped oscillation,

o)

Exponentia] decay generated by
real part of complex pole pur

Smusoudal oscillation generated by
magmary part of complex pole pair

?So named because overdamped refers to a large amount of ensrgy absocption n the system,
which mhibits the transient response fromm overshooting and oscillating about the steady
value for a step mput. As the energy absorption 1s reduced, an overdamped system wll become
underdamped and exhibit overshaot.
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Figore 4.9
System for
Example 4.2
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The following example how a ge of the
between the pole location and the transient response can lead rapidly to the re-
sponse form without calculating the inverse Laplace transform.

Form of underdamped response using poles

Problem By mspection, write the torm of the step response ot the system n Fig-
ure 4.9.

Solution First we determine that the form of the forced response 1s a step. Next
we find the form of the natural response. Factoring the denominator of the transfer
function in Figure 4.9, we find the poles tobe s = —5 +j13.23. The real part, —5,
is the exponential frequency for the damping. It is also the reciprocal of the ime
constant of the decay of the oscillations. The imaginary part, 13.23. is the radian
frequency for the sinusoidal oscillations. Using our previous discu i
ure 4.7(c) as a guide, we obtain c(r) = K; + € 3(Kacos 13,231+ K35in13.23) =
Ky +Kie 5 (cos 1323t — ), where ¢ — tan ' K3/ Ko, Ky = K3 + K2 and c(9)
is a constant plus an exponentially damped sinusoid.

We will revisit the second-order underdamped response in Sections 4.5 and
4.6, where we generakze the discussion and derive some results that relate the pole
position to other parameters of the response.

Undamped Response, Figure 4.7{d)
For this response,

Cs) = (@.14)

9
Py
This function has a pole at the origin that comes from the unit step input and
two imaginary poles that come from the system. The input pole at the ongin gen-
erates the constant forced response, and the two system poles on the imaginary
axis at +j3 generate a sinusoidal natural response whose frequency is equal to
the location of the imaginary poles. Hence. the output can be estimated us c(f) =
K, + Kzcos(3t — ¢). This type of response, shown in Figure 4.7(d). is called
undamped. Note that the absence of a real part in the pole pair corresponds to an
exponential that does not decay. Mathematically, the exponential is e %' = 1.

Critically Damped Response, Figure 4.7(e)
For this response,
9

9
Clo = S(Z+65+9)  s(s+3)

4.15)
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This function has a pole at the origin that comes from the unit step input and two
multiple real poles that come from the system. The input pole at the origin generates
the constant forced response, and the two poles on the real axis at —3 generate
a natural response isting of an exp ial and an exp jal multiplied by
time, where the exponential frequency is equal to the location of the real poles.
Hence. the output can be estimated as c(t) = K; + Kze™ + Kjte~™". This type of
response, shown in Figure 4.7(¢), is called critically damped. Critically damped
responses are the fastest possible without the overshoot that is characteristic of the
underdamped response.

‘We now summarize our observations. In this section we defined the following
natural responses and found their characteristics:
L. Overdumped responses
Poles: Two real at —ay, —a»

Natural response: Two exponentials with time constants equal to the reciprocal
of the pole locations. or

co(t) = Kje % + Kre o

»

Underdamped responses
Poles: Two complex at —ogy * juy

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency
of the sinusoid, the damped frequency of oscillation, is equal to the imaginary
part of the poles, or

cft) = Ae% cos (wyt — )

Undamped responses
Poles: Two imaginary at *jey

o

Natural response: Undamped sinusoid with radian trequency equal to the imag-
inary part of the poles, or

c(®) = Acos gt — ¢)

&

Critically damped responses
Poles: Two real at —o;
Natural response: One term is an exponential whose time constant 1s equal o

the reciprocal of the pole location. Another term is the product of time, #, and an
exponential with time constant equal to the reciprocal of the pole location, or

c(t) = Kje™ %" + Kate

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the divi-
sion between the overdamped cases and the underdamped cases and is the fastest
response without overshoot.
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Siall-Assessment Exercise 4.3

Problem For each of the following transfer functions, write, by inspection, the
general form of the step response:

a. G(s) = Sz.,_:z%

b. G&) = - :Jiw
2

e G(s) = Mﬁ

d. G(s) = %

Answers

8. c(t) = A+ Be % cos(19.081 + ¢)

b. c{t) = A+ Be ™% 4 Ce 1146

¢ () = A+ Be " + Cte™">

d. c{t) — A + Bcos(25t + §)

The complete solution is on the accompanying CD-ROM.

In the next section we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of
second-order systems. In Section 4.6 we will focus on the underdamped case and
derive some specifications unique to this response that we will use later for analysis
and design.
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4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses.
we lize the di ion and establish quantitative specifications defined in
suchaway that the response of a second-order system can be described to a designer
without the need for sketching the response. In this section we define two physically
meaningful specifications for second-order systems. These quantities can be used
to describe the characteristics of the second-order transient response just as time
constants describe the first-order system response. The two quantities are called
natural frequency and damping ratio. Let us formally define them.

Natural Frequency, w,

The natura frequency of a second-order system 1s the frequency of oscillation of
the system without damping. For example, the frequency of oscillation of a series
RLC circuit with the resistance shorled would be the natural frequency.

Damping Ratio, ¢

Before we state our next definition, some explanation is in order. We have already
seen that a second-order system’s underdamped step response is characterized by
damped oscillations. Our definition is derived from the need to quantitatively de-
scribe this damped oscillation regardless of the time scale. Thus, a system whose
transient response goes through three cycles in a millisecond before reaching the
steady state would have the same measure as a system that went through three
cycles in a millennium before reaching the steady state. For example, the under-
damped curve in Figure 4.10 has an associated measure that defines its shape. This
measure remains the same even if we change the time base from seconds to micro-
seconds or to millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless
of the time scale of the response. Also, the reciprocal, which is proportional to
the ratio of the natural period to the exponential time constant. remains the same
regardless of the time base.

We define the damping ratio. {. 1o be

Exponentizl decay frequency 1 Nawral period (seconds)

~ Natural frequency (rad/second) EExponemial time constant

Let us now revise our description of the second-order system to reflect the
new definitions. The general second-order system shown in Figure 4.7(a) can be
transformed to show the quantities £ and e,.. Consider the general system

G(s) = {4.16)

stras+b
Without damping, the poles would be on the je axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, « = 0. Hence,

@17

b
D=3
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By definition, the naturat frequency, to,, is the frequency of oscillation of this sys-
tem. Since the poles of this system are on the jw axis at £j /b.
o = Vb “.18)
Hence,
b= w? 4.19)
Now what is the term a in Eq. (4.16)? Assuming an underdamped system. the

complex poles have a real part, o, equal to —a/2. The magnitude of this value is
then the exponential decay frequency described in Section 4.4. Hence,

7= Exponential decay frequency M _a2 (420
~ Natural frequency (rad/second) @, w, -20)
from which
a = 2w, “@21
Our general second-order transfer function finally looks like this:
2
Gls) = 4.22)

T 2w, + o

In the tollowing example we find numerical values for £ and t, by matching
the transfer function to Eq. (4.22).

Finding ¢ and w, for a second-order system
Probiem Given the transter function of Eq. (4.23), find ¢ and e,

36

Ge) = s2+425+36

.23)

Solution Comparing Eq. (4.23) to (4.22), w,? = 36, from which w, — 6. Also,
2{w, = 4.2. Substituting the value of @,, { = 0.35.

Now that we have defined £ and wy, let us relate these quantities to the pole
location. Solving for the poles of the transfer function in Eq. (4.22) yields

siz = ~dwn T2 1 4249

From Eq. (4.24) we see that the various cases of second-order response are a func-
tion of £; they are summarized in Figure 4.11.4

1n the following example we find the numerical value of { and determine the
nature of the transient response.

“The student should venfy Figure 4.1 s an exercise
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Characterizing response from the value of e

Problem For each of the systems shown in Fi;
report the kind of response expected.

gure 4.12. find the value of ¢ and

Solution First match the form of these systems to the forms shown in Eqgs. (4.16)

and (4.22). Since a@ = 2{w, and w, = Jb,

B

=
2

=)

(4.25)
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Using the values of a and b from each of the systems of Figure 4.12, we find
& = 1.155 for system (a), which is thus overdamped, since { > 1; { = 1 for sys-
tem (b), which is thus critically damped; and £ = 0.894 for system (c), which is
thus underdamped, since £ < 1.

Skil-Assessment Exercise 4.4
Problem For each of the transfer functions in Skill-Assesment Exercise 4.3, do
the following: (1) Find the values of { and «,; (2) characterize the nature of the
response.
Answers
a. { = 0.3, &, = 20; system is underdamped
b. £ = 1.5, w, = 30; system is overdamped
c. { = 1,1, = 15; system is critically damped
d. { =0, w, = 25; system is undamped
The complete solution is on the accompanying CD-ROM.

This section defined two specifications, or parameters, of second-order sys-
tems: natural frequency, w,, and damping ratio, {. We saw that the nature of the
response obtained was related to the value of {. Variations of damping ratic alone
yield the complete range of overdamped, criticatly damped, underdamped, and un-
damped responses.

4.6 Underdamped Second-Order Systems

Now that we have generalized the second-order transfer function in terms of £
and @y, let us analyze the step response of an underdamped second-order system.
Not only will this response be found in terms of ¢ and «,, but more specifi-
cations indigenous to the underdamped case will be defined. The underdamped
second-order system, a common mode] for physical problems, displays unique
behavior that must be itemized; a detailed description of the underdamped re-
sponse is necessary for both analysis and design. Our first objective is to de-
fine transient specifications associated with underdamped responses. Next we
relate these specifications to the pole location, drawing an association between
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Figure 4.13
Second-order
underdamped
responses for
damping ratio values

pole lecation and the form of the underdamped second-order response. Finally, we
tie the pole location to system parameters. thus closing the loop: Desired response
required system comp
Let us begin by finding the step response for the general second-order system
of Eq. (4.22). The transform of the response. C(s). is the transform of the input
times the transfer function, or

_ w,2 _K . Kas + K3
S(2+ 20,5+ @2) S 52+ 2wps + w?

C(s) (4.20)

where it is assumed that £ < 1 (the underdamped case). Expanding by partial frac-
tions, using the methods described in Section 2.2, Case 3, yields

(s + fwn) +

_1_ V1 !2
B CE Y B | ) “m

Taking the inverse Laplace transform. which is Jeft as an exercise for the student.
produces

clr =

-1 l,j{’e’!"*'cos(w,, JI=r- ) @)
-z

where ¢ = tan ({7 /1-27).

A plot of this response appears i Figure 4.13 for various values of £, plotied
along a time axis normalized to the natural frequency. We now see the relationship
between the value of { and the type of response obtained: The lower the value of {,
the more oscillatory the response. The natural frequency is a time-axis scale factor
and does not affect the nature of the response other than to scale it in time.
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‘We have defined two parameters associated with second-order systems,  and
w,. Other i with the ped response are rise time, peak
time, percent overshoot, and settling time. These specifications are defined as fol-
lows (see also Figure 4.14):

1. Rise time, T,. The time required for the waveform to go from 0.1 of the final
value to 0.9 of the final vale.

2. Peak time, T,. The time required to reach the first, or maximum, peak.

3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-
state, or final, value at the peak time, expressed as a percentage of the steady-
state value.

4, Settling time, T,. The time required for the transient's damped oscillations to
reach and stay within +2% of the steady-state value.

Notice that the definitions for settling time and rise time are basically the same as
the definutions for the first-order response. All definitions are also valid for systems
of order higher than 2, although y ti ions for these S cannot
be found unless the response of the higher-order system can be approximated as a
second-order system, which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of
the transient response. This information can help a designer determine if the speed
and the nature of the response do or do not degrade the performance of the system.
For example, the speed of an entire computer system depends on the time it takes
for a floppy disk drive head to reach steady state and read data; passenger comfort
depends in part on the suspension system of a car and the number of oscillations it
goes through after hitting a bump.
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We now evaluate 7, %OS, and T as functions of { and @,. Later n this chapter
we relate these specifications to the location of the system poles. A precise analyt-
ical expression for rise time cannot be obtained; thus, we present a plot and a table
showing the relationship between £ and rise time.

Evaluation of T,

Tp is found by differentiating c(t) in Eq 4. 28) and finding the first zero crossing
aftert = 0. This task is simplified by ing™ in the freg domain by
using Item 7 of Table 2.2. Assuming zero initial conditions and using Eq. (4.26),
we get

2

HOl = — n
FLe)] = sCls) T s T a2 429
Completing squares in the denorninator. we have
w,
— % T-
2 n-zo
e = Z < 7 7 = {2 2, 7y 430
s+ do P + i1 =8 G+ i)l +eX(1-4{D)
Therefore,
o€ = e 4" sinw, /1 — (% @31

e
Setting the dervative equal to zero yields

0,1 -0 = nm 43

or

4.33)

Each value of n yields the time for local maxima or minima. Letting n = 0 yields
£ = 0, the first point on the curve in Figure 4.14 that has zero slope. The first peak,
which occurs at the peak time, 7, is found by letting n = 1in Eq. (4.33)%:

T
T,= —0 434
e fi-e

Evaluation of %0S
From Figure 4.14 the percent overshoot, %08, 1s gtven by

%OS = S Sl 400 (4.35)
Cfinal

‘The term cmax is found by evaluating cie) at the peak time, ¢(7p). Using Eq. (4.34)
for T}, and substituting into Eq. (4.28) yields

Cmax = c(Tp) = 1— PRGaal (COS‘H +

=1+ - (4.36)
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For the unit step used for Eq. (4.28),
China) = 1 437
Substituting Egs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

G0S - e Wm0 (4.38)

Notice that the percent overshoot is a function only of the damping ratio, .

‘Whereas Eq. (4.38) allows one to find %0S given {, the inverse of the equation
allows one to solve for £ given %OS. The inverse is given by

~In(‘c05 100
g= Zlteos 1on 439
Va2 +1n*(<c0S 100}

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38)
(o, equivalently, (4.39)) is plotted in Figure 4.15.

Evaluation of T,

In order to find the settling time, we must find the time for which c(¢} in Eq. (4.28)
reaches and stays within +2% of the steady-state value, cfinat. Using our definition,
the settling time is the time it takes for the amplitude of the decaying sinusoid in
Eq. (4.28) to reach 0.02, or

(4.40)

This equation is a conservative estimate, since we are assuming that
cos (@, 1 — £ — ¢) = | at the sentling time. Solving Eq. (4.40) for 1, the sel-
tling time is

~Inj0.02./i - :2)
5= T (4.41)

Percent overshoot, %0S

) . . ) . .
o 01 02 03 04 05 06 07 08 09
Damping ratio, §
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Figure 4.16 Damping |Nermalized
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Damping ratio

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as ¢ varies
from O to 0.9. Let us agree on an approximation for the settling time that will be
used for all values of ; let it be

4

B~ o

442
Evaluation of T,

A precise analytical relationship between rise time and damping ratio, £, cannot be
found. However, using a computer and Eq. (4.28), the rise time can be found. We
first designate @,¢ as the normalized time variable and select a value for £. Using
the computer, we solve for the values of w,¢ that yield c(f) = 0.9 and c(f) = 0.1
Subtracting the two values of w,f yields the normalized rise time, w,T,, for that
value of £. Continuing in like fashion with other values of ¢, we obtain the results
plotted in Figure 4.16.5 Let us look at an example.

Example 45 "I

Finding T, %0S, T,, and T, from a transfer function
Problem Given the transfer function

100

GO = 7155+ 100

443

find T, %08, Ty, and 7.

“Figure 4.16 can be approximated by the following polynomials. w,T, = 1.76{? — 041702+
10397 +1 (maximumertorlessthan 1% for0 < ¢ < 0.9),and¢ = 0.115(c0, T, — 0.883(w0, T, +
2.504(,T,) — 1.738 (maxienmen error less than 5% for 0.1 < ¢ < 0.9). The polynomials were
abtained using MATLAB’s polyfit function
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Solution s, and { are calculated as 10 and 075, respectively. Now substitute { and
w, into Eqs. (4.34), (4.38), and (4.42) and find, respectively. that T, = 0.475 sec-
ond. %0S = 2.838, and 7, = 0.533 second. Using the table in Figure 4.16. the nor-
malized rise time is approximately 2.3 seconds. Dividing by w, yields 7, = 0.23
second. This problem demonstrates that we can find 7y, %08, T, and 7, without the
tedious task of taking an inverse Laplace transform, plotting the output response,
and taking measurements from the plot.

We now have expressions that relate peak time. percent overshoot, and set~
tling time to the natural frequency and the damping ratio. Now let us relate these
quantities to the location of the poles that generate these characteristics.

The pole plot for a general. underdamped second-order system, previously
shown in Figure 4.11. is reproduced and expanded in Figure 4.17 for focus. We
see from the Pythagorean theorem that the radial distance from the origin to the
pole is the natural frequency. ey, and the cos & = £.

Now, comparing Egs. (4.34) and (4.42) with the pole location, we evaluate
peak time and settling time in terms of the pole location. Thus,

“44)

Zon " o (4.45)
where ey is the imaginary part of the pole and is called the damped frequency of
oscillation, and o is the magnitude of the real part of the pole and is the exponential
damping frequency.

Equation (4.44) shows that T, is inversely proportional to the imaginary part
of the pole. Since horizontzl lines on the s-plane are lines of constant imaginary
value, they are also lines of constant peak time. Similarly, Eq. (4.45) tells us that
settling time is inversely proportional to the real part of the pole. Since vertical
lines on the s-plane are lines of constant real value, they are also lines of constant
settling time. Finally, since { = cos 6, radial lines are lines of constant £. Since

Jjo

oV~ {7 <y

& s-plane

doV1- {2 =—jo,
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Figure 4.18
Lines of constant
peak time, T, setting
time, T., and percent
overshoot, %0S
Note: Ty, < Ty,;
T, <Tpps
%08, < %0%-

—t— —

%08,

~ .

percent overshoot is only a function of £, radial lines are thus lines of constant
percent overshoot, %OS. These concepts are depicted in Figure 4.18, where lines
of constant 7,, Ty, and %OS are laheled on the s-plane.

At this point we can understand the siguificance of Figure 4.18 by examining
the actual step response of comparative systems. Depicted in Figure 4.19(a) are the
step responses as the poles are moved in a vertical direction, keeping the real part
the same. As the poles move in a vertical direction, the frequency increases, but
the envelope remains the same since the real part of the pole is not changing. The
figure shows a constant exponential envelope, even though the sinusoidal response
is changing frequency. Since all curves fit under the same exponential decay curve,
the settiing time is virtually the same for all waveforms. Note that as overshoot
increases, the rise time decreases.

Let us move the poles tn the right or left. Since the imaginary part is now
constant, movement of the poles yields the responses of Figure 4.19(b). Here the
frequency is constant over the range of variation of the real part. As the poles move
to the left, the response damps out more rapidly, while the frequency remains the
same. Notice that the peak time is the same for all waveforms because the imagi-
nary part remains the same.

Moving the poles along a constant radial line yields the responses shown in
Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the
responses look exactiy alike, except for their speed. The farther the poles are from
the origin, the more rapid the response.

W Tude this section with iples that d ate the rell
between the pole location and the ifications of the d-order und np
response. The first example covers analysis. The second example is a simple de-
sign problem consisting of a physical system whose component values we want to
design to meet a transient response specification.
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Step responses

of second-order underdamped
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Example 4.6

Figure 4.20
Pole plot for
Exampie 4 &

MATLAB

Finding T,, %O0S. and 7, from pole location
Problem  Given the pole plot shown in Figure 4.20, find Z, o, T} o, %08, and T,.

Jjo

X §7=joy

s-plane

-3=-g4

X —T=w,

Solution The damping ratio is given by { = cos @ — cos[arctan (7 3)] = 0.394.
The natural frequency, ay, is the radial distance from the origin to the pole, or
w, = 72 + 32 = 7.616. The peak time is

T, == = Z — 0449 second (4.46)
w7
The percent overshoot is
%0S = e W10 5 100 = 26% (@47

The approximate settling time is

T = 4 _4_ 1.333 seconds 4.48)
o 3

Students who are using MATLAB should now run chdpl n Appendix B. You will fearn how to
generate a second-order polynomial from two complex poles as well as extract and use the
coefficients of the polynomial to calculate To. %08, and T,. This exercise uses MATLAB to
solve the problem n Example 4.6.
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Figure 4.21
Rotational
mechanical system
for Example 4.7
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P through design

Problem Given the system shown in Figure 4.21, find J and D 1o yield 20% over-
shoot and a settling time of 2 seconds for a step input of torque T(1)

Tin 61
3

Solution First, the transfer functicn for the system is

14
G(s) = D K (4.49)
2y Zer B
st + _I: + T
From the transfer function,
I3
W, = ‘/7 4.50)
and
2w, = ? “.s1)
But. from the problem statement,
T,=2= !% “452)
n
or {w, = 2. Hence,
2w, =4 = ? 4.53)
Also, from Egs. (4.50) and (4.52),
4
= 30 4.54)

n

From Eq. (4.39), a 20% overshoot implies { = 0.456. Therefore, from Eq. (4.54),

(4.55)

Hence,

= 0052 (4.56)
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From the problem statement, K = 5 N-m/rad. Combmmg this value with Egs.
(4.53) and (4.56), D = 1.04 N-m-sfrad, and J = 0.26 kg-m’.

Second-Order Transfer Functions via Testing

Just a> we obtained the transfer function of a first-order system expenimentally,
we can do the same for a system that exhibits a typical underdamped second-
order response. Again. we can measure the laboratory response curve for per-
cent overshoot and settling time, from which we can find the poles and hence
the denominator. The numerator can be found, as in the first-order system, from
a knowledge of the d and expected steady-state values. A problem at the
end of the chapter iHustrates the estimation of a second-order transfer function
from the step response.

Skill-Assessment Exercise 4.5

® < Problem Find {, w,, Ty, 7p, T, and %OS for a system whose transfer function

361
s+ 165 + 361"
Answers [ = 0421, w, = 19, T; = 05 s, T, = 0182 5, T, = 0.079 s, and
%08 = 23.3%.

15 G(s) =

The complete solution is on the accompanying CD-ROM.

Now that we have analyzed systermns with two poles, how does the addition of
another pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles

In the last section we analyzed systems with one or two poles. It must be empha-
sized that the formulae describing percent overshoot, settling time, and peak time
were derived only for a system with two complex poles and no zeros. If a system
such as that shown in Figure 4.22 has more than two poles or has zeros, we cannot
use the formulae to calculate the performance specifications that we derived. How-
ever, under ceriain conditions, a systen with more than two poles or with zeros
can be approximated as a second-order system that has just two complex dorminant
poles. Once we justify this approximation, the formulae for percent overshoot. set-
tling time, and peak time can be applied to these higher-order systems by using
the location of the dominam poles. In this section we investigate the eftect of an
additional pole on the second-order response. In the next section we analyze the
effect of adding a zero to a two-pole system.

Let us now look at the conditions that would have to exist in order to approxi-
mate the behavior of a three-pole systemn as that of a two-pole system. Consider a
three-pole system with complex poles and a third pole on the real axjs. Assuming
that the complex poles are at —{a, * ju, /1 — 2 and the real pole is at —a,, the
step response of the system can be determined from a partial-fraction expansion.
Thus, the cutput transform is

A B(s + dw,) + Cm,, D

C
® = s+ {w,) + * S+,

“4.57)



Figure 4.22
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or. in the time domain,
c(t) = Au(ty + e ¥"(Bcos wa + Csmwgt) + De™ (4.58)

The component parts of c(¢) are shown 1n Figure 4.23 tor three cases of a,.
For Case 1, o = o, and is not much larger than Zew,: for Case Il, o, — «,, and is
much larger than {e,; and for Case I11, ¢, = o=

Let us direct our attention to Eq. (4.58) and Figure 4.23. If o, > e, (Case
1I), the pure exponential will die out much more rapidly than the second-order un-
derdamped step response. If the pure exponential term decays to an insignificant
value at the time of the first overshoot, such parameters as percent overshoot, set
tling time. and peak time will be generated by the second-order underdamped step
response component. Thus, the total response will approach that of a pure second-
order system (Case 11).

If o, is nor much greater than {w, (Case I). the real pole’s transient response
will not decay to insignificance at the peak time or settling time generated by the
second-order pair. In this case, the exponential decay is significant, and the system
cannot be represented as a second-order system

The next question is, How much farther from the domiant poles does the third
pole have to be for its effect on the secand-order response to be negligible? The
answer of course depends on the accuracy for which you are looking. However,
this book assumes that the exponential decay is negligible after five time constants.
Thus, if the real pole is five times farther to the left than the dominant poles, we
assume that the system is rep: by its i second-order pair of poles.
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Component responses
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b. component
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the parr (Case Il), and
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What about the magnitude of the exponential decay? Can it be so large that
its contribution at the peak time is not negligible? We can show, through a partial-
fraction expansion, that the residue of the third pole, in a three-pole system with
dominant second-order poles and no zeros, will actually decrease in magnitude as
the third pole is moved farther into the left haif-plane. Assume a step response,
C(s), of a three-pole system

be A Bs+C

o) = S as+Bs+o s +s2+as+b s+c

“4.59)
where we assume that the nondominant pole is located at —c on the real axis and
that the steady-state response approaches unity. Evaluating the constants in the
numerator of each term,

4.60a)

(4.60b)
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MATLAB
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As the nondominant pole approaches %, or ¢ — oo,
A=1: =-1; C=—a; D=0 “.61)

Thus, for this example, D, the residue of the nondominant pole and its response.
becomes zero as the nondommnant pole approaches intinity.

The designer can also choose to forgo extensive residue analysis, since all sys-
tem designs should be simulated to determine final acceptance. In this case the
control systems engineer can use the “five times™ rule of thumb as a necessary but
not sufficient condition to increase the confi ¢ in the second-order ap|
tion during design, but then simulate the completed design.

Let us look at an example that compares the responses of two difterent three-
pole systems with that of a second-order system.

Comparing responses of three-pole systems

Problem Find the step response of each of the transfer functions shown in Egs.
(4.62) through (4.64) and compare them.

24.542

N9 = Trav 5w “ez
245.42

T = 0 + 4 + 2458D “63)

Tats) = 73.626 (4.64)

(s +3)(s? + 45 + 24.542)

Solution The step response, Ci(s), for the transfer function. 7,(s). can be found by
multiplymng the transfer function by 1 s, a step input. and using partial-fraction
expansion followed by the inverse Laplace transform to find the response, ¢,(f).
With the details left as an exercise for the student, the results are

o =1 - 1.09¢ % cos (4.532¢ — 23.8°) 14.65)
) = 1 - 029" — 1189472 cos (4.5321 — 53.34°) (4.66)
o) = 1- 1.14¢™¥ + 0.707¢ % cos (4.5321 + 78.63°) 4.67)

The three responses are plotted m Figure 4.24. Notice that ¢ 1(1) with s third pole
at —10 and farthest from the domi poles. is the better app: ionof (1), the

pure second-order system response; €3(¢), with a third pole close to the dominant
poles, yields the most erTor.

Students who are using MATLAB should now run chdp2 in Appendix B. You will learn how to
generate a step response for a transfer function and how to plot the response directly or
collect the pomnts for future use. The example shows how to collect the pomts and then use
them to create a multiple plet, title the graph, and label the axes and curves to produce the
graph in Figure 4.24 to solve Example 4.8.
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Figure 4.24
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System responses can alternately be obtaned using Simubnk. Simulink s a software
package that 15 integrated with MATLAB to provide a graphical user interface (GUI) for
definng systems and generating responses. The reader 1s encouraged to study Appendix
C. which contams a tutorial on Simulink as well as some examples. One of the illustrabie
examples, Example C.1, solves Example 4.8 using Simuhnk.

Another method to obtain systems responses 15 through the use of MATLABs LTI Viewer
An advantage of the LT| Viewer is that it displays the values of setting time, peak bme,
rise time, maximum response, and the final value on the step response plot. The reader
1s encouraged to study Appendix D, which contains a tutonal on the LTI Viewer as well as
some examples. Example D.1 solves Example 4.8 using the LTI Viewer.

Skill-Assessment Exercise 4.6

Problem Determine the validity of a second-order approximation for each of
these two transfer functions:

700
® 00 = T+ & 7100
360
e o A T
Answers

a. The second-order approximation is valid.
b. The second-order approximation is not valid.

The complete solution is on the accompanying CD-ROM.

4.8 System Response with Zeros

Now that we have seen the effect of an additional pole, let us add a zero to the
second-order system. In Section 4.2 we saw that the zeros of a response affect



Figure 4.25
Effect of adding a zero
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the residue, or amplitude, of a response ¢ but do not affect the nature of

the response—exponential, damped sinusoid, and so on. In this section we add a
real-axis zero to a two-pole system. The zero will be added first in the left half-plane
and then in the right half-plane and its effects noted and analyzed. We conclude the
section by talking about pole-zero cancellation.

Starting with a two-pole system with poles at (—1+72.828), we consecutively
add zeros at —3, —5, and — 10. The results, normalized to the steady-state value, are
plotted in Figure 4.25. We can see that the closer the zero is to the dominant poles,
the greater its effect on the transient response. As the zero moves away from the
dominant poles, the response approaches that of the two-pole system. This analysis
can be via the partial-fracti If we assume a group of poles
and a zero far from the poles, the residue of each pole will be affected the same by
the zero. Hence, the relative amplitudes remain appreciably the same. For example,
assume the partial-fraction expansion shown in Eq. (4.68):

(s+a) _ A . B
(s+bXs+c) s+b s+c

_Chta).(= b+ c) (*L’+ﬂ),(*(‘+b)

T(s) =

s+b s+c .68)
If the zero is far from the poles, then ¢ is large compared to b and ¢, and
V/(=b+c)  1'(—c+h)]_ a
) xa[ s+b s+c C +b(s+0) (469

Hence, the zero looks like a simple gain factor and does not change the relative
amplitudes of the components of the response.
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Figure 4.26
Step response of a
ronmeismum phase

system

Another way to look at the effect of a zero, which is more general, is as follows
{(Franklin, 1991): Let ((s) be the response of a system, 7(s), with unity in the nu-
merator. If we add a zero to the transfer function, yielding (s + a)T(s), the Laplace
transform of the response will be

5+ a)Cisy  sC(s) - a (s) (4.70)

Thus, the response of a system with a zero consists of two parts: the denvative
of the original response and a scaled version of the original response. If . the
negative of the zero, is very large, the Luplace transform of the response is ap-
proximately aC(s), or a scaled version of the original response. If @ is not very
large, the response has an additional component consisting of the derivative of
the original response. As a becomes smaller, the derivative term contributes more
to the response and has a greater effect. For step responses, the derivative is typ-
ically positive at the start of a step response. Thus, for small values of a. we
can expect more overshoot in second-order systems because the derivative term
will be additive around the first overshoot. This reasoning is borne out by Figure
4.25.

An interesting phenomenon occurs if a is negative, placing the zero in the
right half-plane. From Eq. (4.70) we see that the derivative term, which is typically
positive initially, will be of opposite sign from the scaled response term. Thus, if the
derivative term, sC(s), is larger than the scaled response, aC(s), the response will
initially follow the derivative in the opposite direction from the scaled response.
The result for a second-order system is shown in Figure 4.26, where the sign of the
input was reversed to yield a positive steady-state value. Notice that the Tesponse
begins to turn toward the negative direction even though the final value is positive.
A system that exhibits this pt isknownasa -phase system.
If a motorcycle or airplane was a nonminimum-phase system, it would initially
veer left when commanded to steer right.

Let us now look at an example of an electrcal nonminimum-phase network.

151
10
Sos|
0 . ! ! , . M.
10 20 30 40 50 60
Time (scconds)
—os |
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Figura 4.27
Nomramumphase
dectrcal oircut
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Transfer function of a nonminimum-phase system

Problem

209

a. Find the transfer function, V,(s)/ V;(s), for the operaticnal amplifier circuit

shown in Figure 4.27.

7

If Ry = Ry, this circuit is known as an all-pass filter, since it passes sine waves

of a wide range of frequencies without attenuating or amplifying their magni-
tude (Dorf, 1993). We will learn more about frequency response in Chapter 10.
For now, let Ry = Ry, R3C = 1 10, and find the step response of the filter.
Show that component parts of the response can be identified with those in Eq.

{4.70.

Solution

Remembering from Chapter 2 that the operational amplifier has a high input

impedance, the current, X(s), through R, and R;, is the same and is equal to

_ Vi) - Vo)
= Ri+R;
Also,
Vo(s) = A(Va(s) — Vi(s))
But

Vi(s) = IRy + Vols)
Substituting Eq. (4.71) nto (4.73),

1
Vits) = m(m Vils) + Ry Vo(s)

Using voltage division,
1 G
Vals) = Vi) ———1

R3+a

@7m

@72

“4.73)

@

@.75)
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&

Substituting Eqs. (4.74) and (4.75) into Eq. (4.72) and simplifying yields

Vals) _ A(R: — RiRyCs)
Vi(s)  (RiCs+ DR+ Ry(l + 4))

(4.76)

Since the operational amplifier has a large gain, A, let A approach infinity. Thus,
after simplification

R
Vs) _ R —RiRCs _ R (s R.RxC)
Ves) " RRCs+R - Ry (L
&

@7

Letting Ry = Ry and R3C = 1. 10,

( i
20N RTC) - 6710 478

V) (H 1 )’ (s +10)

RC
For a step input we evaluate the response as suggested by Eq. (4.70):
(s —10) 1 I
= - 0 = - 10C,s) @
C(s) G0 st IOS(: +10) sCts) Cols)  (479)

where

CAs) = (430

1
(s +10)
is the Laplace transform of the response without a zero. Expanding Eq. (4.79)
into partial fractions,
1 1 1 1 1 1 2
)= A0 = - -~ =" _
O = e G~ Tsr0 s sr10 =5 si o
(4.81)
or the response with a zero is
@y =—e Mg =12 “8)

Also. from Eq. (4.80).

110 110
RS e i @8
or the response without a zero is
= &L (484

The normahzed responses are plotted in Figure 4.28. Notice the immeduate re-
versal of the nonminimum-phase response. ().
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‘We conclude this section by talking about pole-zero cancellation and its effect
on our ability to make sccond-order approximations to a system. Assume a three-
pole system with a zero as shown in Eq. (4.85). If the pole term, (s + p3). and the
zero term, (s + z), cancel out, we are left with

Kis+7%)
{s+p3)(s2 + as + b)
as a second-order transfer function. From another perspective, if the zero av —z is
very close to the pole at —ps, then a partial fraction expansion of Eq. (4.85) will
show that the residue of the exponential decay is much smaller than the amplitude
of the second-order response. Let us look at an example.

1) = (4.85)

Evaluating pole-zero cancellation using residues

Problem For each of the response functions in Egs. (4.86) and (4.87), determine
whether there is cancellation between the zero and the pole closest to the zero
For any function for which pole-zero cancellation is valid, find the approximate
response

_ 26.25(s + 4)
GO = G35 +56+06 486
_ 26.25(s + 4)
O = a0+ 56T ) s
Solution The partial-fraction expansion of Eq. (4.86) is
Ci(s) = 1_35 33 ! (4.88)

s s+5+s+6_s+3.5

The residue of the pole at —3.5, which is closest to the zero at —4, is equal to | and
is not negligible compared to the other residues. Thus, a second-order step response
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approximation cannot be made for C;(s). The partial-fraction expansion for Cy(s)
is
087 53 44 0.033

Gy = —

480
s s+5 't svetsra0l

The residue of the pole at —4.01, which is closest to the zero at —4, is equal to
0.033, about two orders of magnitude below any of the other residues. Hence, we
make a second-order approximation by neglecting the response generated by the
pole at —4.01:

0.87 53 4.4
- +

Skill-Assessment Exercise 4.7

EZ(S)N—:_ 5+5 s+6 “50
and the response c2(f) 1s approxmmately
o) ~ 0.87 — 5.3¢™ + 44276 @sn
Problem Determine the validity of a second-order step-resp approxima-
tion for each transfer function shown below.
o 185.71(s + 7)
2 08 = 65y + 106 £20)
_ 197.14(s + 7)
b 09 = G360 + 0% 720
Answers

a. A second-order approximation is not valid.
b. A second-order approximation is valid.

The complete solution 1s on the accompanying CD-ROM.

In this section we have examined the effects of additional transfer function
poles and zeros upon the response. In the next section we add nonlinearities of the
type discussed in Section 2.10 and see what effects they have on system response.

4.9 Effects of Nonlinearities upon Time Response

In this section we qualitatively examine the effects of nonlinearities upon the time
response of physical systems. In the les we insert it
such as saturation, dead zone, and backlash, as shown in Figure 2.46, into a system
to show the effects of these nonlinearities upon the linear responses.

The responses were vbtained using Simulink, a simulation software package
that is integrated with MATLARB to provide a graphical nser interface (GUI). Read-
ers who would like to learn how to use Simulink to generate nonli
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should consult the Simulink tutonal in Appendix C. Simulink block diagrams are
included with all responses that follow.

Let us assume the motor and load from the Antenna Control Case Study of
Chapter 2 and look at the load angular velocity, w,(s), where w,(s) = 0.156,,(s) =
0.2083E,(s); (s + 1.71) from Eq. (2.208). If we drive the motor with a step input
through an amplifier of unity gain that saturates at +5 volts, Figure 4.29 shows that
the effect of amplifier saturation is to limit the obtained velocity.

L5

0.5

Load angular velocity (rad/second)

Step
10 volts

Withow saturation _

i With saturanon

2 4 6 8 10
Time {seconds)

@

Saturation Metor. load.
#5 volts & gears

| 02083
T 17

Motor, foad,
& gears

Mux  Scope

[}
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Figure 4.30 12
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Load angular displacement (radians)

Integrator
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Ampltude =5 -Zto42 & gears
Frequency= 1 1adss

Integrator

‘The effect of deadzone on the output shafi driven by a motor and gears is shown
in Figure 4.30. Here we once again assume the motor, load, and gears from An-
tenna Control Case Study of Chapter 2. Deadzone is present when the motor can-
not respond to small voltages. The motor inpot is a sinusoidal waveform chosen to
allow us to see the effects of deadzone vividly. The response begins when the in-
put voltage to the motor exceeds a threshold. We notice a lower amplitude when
deadzone is present.
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Without backlash

0 H i
0 5 10 15 20 25
Time (seconds)
@
Sine wave Motor, load,  Integrator  Backlash 1
Amplitude = 5 and gears deadband width -
0.15

Frequency = 1 rad/s

Molor, load,  Integrator
and gears

®

The effect of backlash on the output shaft driven by a motor and gears is shown
in Figure 4.31. Again we assume the motor, load, and gears from the Antenna
Control Case Study of Chapter 2. The motor input is again a sinusoidal waveform,
which is chosen to allow us to see vividly the effects of backlash in the gears driven
by the motor. As the motor reverses direction, the output shaft remains stationary
while the motor begins to reverse. When the gears finally connect, the output shaft
itself begins to turn in the reverse direction. The resulting response is quite different
from the linear response without backlash
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Shill-Assessment Exercise 4.8

state pace )

Problem Use MATLAB's Simulink to reproduce Figure 4.31.
Answer  See Figure 4.31.

Now that we have seen the effects of nonlinearities on the time response, let
us return to linear systems. Our coverage so fur for linear systems has dealt with
finding the time response by using the Laplace transform in the frequency domam.
Another way to solve for the response is to use state-space techniques in the time
domain. This topic is the subject of the next two sections.

4.10 Laplace Transform Solution of State Equations

In Chapter 3. systems were modeled in state space, where the state-space represen-

tation consisted of a state equation and an output equation. In this section we use

the Laplace transform to solve the state equations for the state and output vectors.
Consider the state equation

X = Ax + Bu 4.92)
and the output equation
¥ =Cx+Du 14.93)
Taking the Laplace transform of both sides of the state equation yields
sX(s) — x(0) = AX(s) + BUGs) 499

In order to separate X(s), replace sX(s) with sIX(s}, where I is an n X r identity
matrix, and # is the order of the system. Combining all of the X(s) terms, we get

o1~ AX(s) = x(0) + BU(s) @95

Solving for X(s) by premultiplying both sides of Eq. (4.95) by (I A)™), the final
solution for X(s) is

Xiv) =Gl A 'O + 1 A 'BUY

A
A—:[X(O) 1 BUs)] @96

Taking the Laplace transform of the output equation yields
Y(s) = CX(s) DUts) @97

Eig and Fi ion Poles

‘We saw that the poles of the transfer function determine the nature of the tran-
sient response of the system. Is there an equivalent quantity in the state-space
representation that yields the same information? Section 5.8 formally defines
the roots of det (sI — A) = 0 (see the denominator of Eq. (4.96)) to be eigen-
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values of the system matrix, A% Let us show that the eigenvalues are equal
to the poles of the system’s transfer function. Let the output, Y(s), and the input,
U(s), be scalar quantities ¥(s) and U(s), respectively. Further, to conform to the
definition of a transfer function, let x(0), the initial state vector, equal 0, the null
vector. Substituting Eq. (4.96) into Eq. (4.97) and solving for the transfer function,
Y(s) U(s), yields

X _ [adj(\'l - A)

Us) det(sl = A)
_ Cadj(sI - A)B + Ddet oI — A)
= detGI- A) 4.98)

The roots of the denominator of Eq. (4.98) are the poles of the system. Since the
denominators of Egs. (4.96) and (4.98) are identical, the system poles equal the
eigenvalues. Hence, if a system is represented in state-space, we can find the poles
from det (sI — A) = 0. We will be more formal about these facts when we discuss
stability in Chapter 6.

The following example demonstrates solving the state equations using the
Laplace transform as well as finding the eigenvalues and system poles.

Laplace transform solution; eigenvalues and poles

Problem  Given the system represented in state space by Eqs. (4.99),

. 0 1 0] g
X = 0 0 1|x+ [0:|e” (4.99a)
~24 -2 -9 !
y=[ 1 0x (4.99b)
4
x©0) — |0 (4.9%¢)
2

do the fullowing:

a. Solve the preceding state equation and obtain the output for the given exponen-
tial input.

b. Find the eigenvalues and the system poles.

Solution

a. We will solve the problem by finding the component parts of Eq. (4.96), fol-
lowed by substitution into Eq. (4.97). First obtain A and B by comparing
Eq. (4.992)

Sometimes the symbol A 1s used m place of the complex variable s when solving the state equa-
tions without usmg the Laplace transform. Thus, it s common to see the characteristic equation
also writien as det A1 A) = 0.
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to Eq. (4.92). Since

s 00
sSI=(0 5 0 (4.100)
00 s
then
s -t 0
GI-A)=10 s -1 @1on
24 26 s+9
and
P+9%+26)  (s+9) 1
—24 52+ 9s s
_ - 2
o art = 24s (265 +24) & @1

3+ 952 +26s + 24
Since Us) (the Laplace transform for e} is 1 (s + 1), X(s) can be calcu-
lated. Rewriting Eq. (4.96) as
X(s) = (1 A)'[x(0) + BU@)] 4.103)
and using B and x(0) from Egs. (4.99a) and (4.99¢), respectively, we get

(P 41052 + 375 + 29)
X = TG D6+ 36+ D) (4.1043)

(252 — 215 — 24)

X = A DT D6 T DD a.10%)
Z _ —
Xyts) = SEE 25 -2 (4.10400

(s+ 1)(s+ 2)s + 3)s + 4)
The output equation is found from Eq. (4.99b). Performing the indicated

addition yiclds
Xi(s)
Ys) =11 1 Ol Xao(s) | = Xa(s) + Xa(s) (4.105)
Xs(s)
or

6 + 125 + 165 + 5)
s+ (s +2) s +3)s +4)
_65,19 15
5+2 543 s+4
where the pole at —1 canceled a zero at —1 Taking the inverse Laplace
transform,

Yo =

{4.106)

W) = —6.5¢7% + 19¢7¥ — 11.5¢7% 4101
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b. The denominator of Eq. (4.102), which 1s det (sI — A), is also the denominator of
the system’s transfer function. Thus, det(sI  A) = 0 furnishes both the poles
of the system and the eigenvalues —2, —3, and —4.

Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Toolbox should now run chdspl in Appendix E. You will learn how to
solve state equations for the output response using the Laplace transform. Example 4.11
will be solved using MATLAB and the Symbolic Math Toclbox.

Skil-Assessment Exercise 4.9

State § ace

Problem Given the system represented in state space by Eqgs. (4.108),

= [_g »g]x + [(I)]e" {4.108a)
y=0 3Ix (4 108h)
x(0) = m (4.1080)

do the following:

a. Solve for yir) using state-space and Laplace transform techniques.
b. Find the eigenvalues and the system poles.

Answers

a. y(0) = —05¢™ — 12¢7% + 17.5¢7

b. -2, -3

The complete solution is on the accompanying CD-ROM.

4.11 Time Domain Solution of State Equations

‘We now look at another techmgque for solving the state equations, Rather than using
the Laplace transform, we solve the equations directly in the time domain using a
method closely allied to the classical solution of differential equations. We will find
that the final solution consists of two parts that are different from the forced and
natural responses.

The solution in the time domain is given directly by

"
x(1) = eMu() TJ ATBu(r)dr
0

"
D) + J @ — Bu(r)dr (4.109)
{0

where ®(1) = * by definition, and which is called the state-transition matrix.
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Eq. (4.109) is derived in Appendix I on the accompanying CD-ROM. Readers who
are not familiar with this equation or who may want to refresh their memory should
consult Appendix I before proceeding.

Notice that the first term on the right-hand side of the equation is the response
due to the initial state vector, x(0). Notice also that it is the only term dependent on
the initial state vector and not the input. We call this part of the response the zero-
input response, since it is the total response if the input is zero. The second term,
called the ¢ lution integral, is d only on the input, u, and the input
matrix, B. not the initial state vector. We call this part of the response the zero-
state response, since it is the total response if the initial state vector is zero. Thus,
there is a partitioning of the response different from the forced/natural response we
have seen when solving differential equations. In differential equations, the arbi-
trary constants of the natural response are evaluated based on the initial conditions
and the initial values of the forced response and its derivatives. Thus, the natural
response’s amplitudes are a function of the initial conditions of the output and the
input. In Eq. (4.109), the zero-input response is not dependent on the initial values
of the input and its derivatives. It is dependent only on the initial conditions of the
state vector. The next example vividly shows the difference in partitioning. Pay
close attention to the fact that in the final result the zero-state response contains not
only the forced solution but also pieces of what we previously called the natural re-
sponse. We will see in the solution that the natural response is distributed through
the zero-input response and the zero-state response.

Before proceeding with the example, let us examine the form the elements of
(1) take for linear, time-invariant systems. The first term of Eq. (4.96), the Laplace
transform of the response for unforced systems, is the transform of db{#)x(0), the
zero-input response from Eq. (4.109). Thus, for the unforced system

LIx@)] = LADOXW0)] = (L — A) 'x(0) @19

from which we can see that (sL — A)™! is the Laplace transform of the state-
transition matrix, d(t). We have already seen that the denominator of (sI — A) ' is
a polynomial in s whose roots are the system poles. This polynomial is found from
the equation det (sI - A) = 0. Since

adj (sI — A}
det(sI  A)

gt [(:I A)"] =4 ‘[ } =d@ @11

each term of () would be the sum of exponentials generated by the system’s
poles.

Let us summarize the concepts with two numerical examples. The first exam-
ple solves the state eqnations directly in the time domain, The second example uses
the Laplace transform to solve for the state transition matrix by finding the inverse
Laplace transform of (sI — A)~".
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Example 4.12
Time domain solution

Problem For the state equation and witial state vector shown in Egs. (4.112),
where #(f) is a unit step, find the state-transition matrix and then solve for x(r).

(1) = [_g _é]x(r) + [(l)]u(t) @.112a

— I 2
x(0) [0] (4.112b)
Solution Since the state equation is in the form
X(1) = AX(®) + Bu{n) (4.113)

find the eigenvalves using det¢sT ~ A) = 0. Hence, § + 65 + 8 = 0, from which

51 = —2and s, = —4. Since each term of the state-transition matrix is the sum of
responses generated by the poles (eigenvalues), we assume « state-transition mutrix
of the form

(4.114)

o = (Kie™2 + Kpe™) (Kze % + Kqe V)
D7 | (koo + Koe #) (Kye® + Kne ™)

In order to find the values of the constants, we make use of the propertics of the
state-transition matrix derived in Appendix I on the accompanying CD-ROM.

Since
D) =1 (4.115)
Ki+Ky =1 (4.116a)
Ki+ K, — 0 {4.116b)
Ki+Kg=0 4.116¢)
Ki+Kg=1 (4.116d)
and since

D)= A @17
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then
-2K,—4K, =0 {4.1182)
—2K3; — 4Ky =1 (4.118b)
—2Ks —4K¢ = —8 (4.118¢c)
—2K; —4Kg = —6 (4.118d)

The constants are solved by taking two simultaneous equations four times. For
example, Eq. (4.1164) can be solved simultaneously with Eq. (4.1184) to yield
the values of K and K». Proceeding similarly, all of the constants can be found.
Therefore,

@ — e (%ﬂ, _ 1)

Pu) = 2 4.119)
(4% +de ¥y (—e7 +2¢7)
Also,
Losen_ L, wen
@¢— 7B = | \2 2 (4.120)
(e 27 4 2g=tt-m)
Hence, the first term of Eq. (4.109) is
@ ey
DOx(0) = 4.121;
) [(742,2, v aety @121
The last term of Eq. (4.109) is
i’ 12’2’ [4 e dr — 1541 {efdr
J @ - NBudr=|2° 0 2¢ b
° —e [y €¥dr + 267 ] a7
| I Y
= e+ ¢
-|8 . 4 . 8 “122)
L2 1
7 77

Notice, as promised, thar Eq. (4.122), the zero-state response, contans not only the
forced response, 1 8, but also terms of the form Ae~% and Be~ that are part of
what we previously called the natural response. However, the coefficients, A and
B, are not dependent on the initial diti
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‘The final result is found by adding Eqgs. (4.121) and (4.122). Hence,

Vo7 7
1 gtze g
x(1) = D(x(0) +J D= mBumdr=|° , 4.123)
0 _f o —ar
3¢ 3¢

State-transition matrix via Laplace transform
Problem  Find the state-transition matrix of Example 4.12, using (s1  A)~}

Solution We use the fact that () is the inverse Laplace transform of
(sI — A)~. Thus, first find (sI — A) as

(L—A) = [g (51'6) “@.124)
from which
s+6 1] s+6 1
womr =Lt e ),

s2+65+8 s2+65+8

Expanding each term  the matrix on the right by partial tractions yields

2 1 12 12
s+2 s+4) \s+2 s+4

I-a)™" = 4.126)
—4 . 4 —1 2
sv2V57a) iz tsea
Finally, taking the inverse Laplace transform of each term, we obtain
- 1. 1
N e
B = 2 2 (4.127)

(—4e™ ¥ + 4¢%) (e 2 +2e7Y)

Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Toolbox should now run chdsp2 in Appendix E. You will leam how
to solve state equations for the output response using the convolution integral. Examples
4.12 and 4.13 will be sclved using MATLAB and the Symboiic Math Toolbox.
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Systems represented 1n state space can be simulated on the digital computer.
Programs such as MATLAB can be used for this purpose. Alternately, the user can

write special as discussed in Appendix G.1 on the accompanying
CD-ROM.
MATLAB Students who are using MATLAB should now run chdp3 i Appendix B. This exercise uses

MATLAB to simulate the step response of systems represented in state space. In additon
to generating the step response, you will learn how to specify the range on the time axis
for the plot.

Skill-Assessment Exercise 4.10

.%n__ Probiem  Given the system represented in state space by Egs. (4.128):
. _[o 2z 0] 2
XK= [_2 AS]X + [l]e (4.128a)
y=12 1} (4.1289)
0) = [;] 4128

do the following:

a. Solve for the state-transition matrix.

b. Solve for the state vector using the convolution integral.
<. Find the output, y(z).

Answers
41y 2—:_2—41
(3" 3¢ 3¢ 7 5¢
=M=, 1,4
2 e 2y (L) 4 s
(3e vz )(1 +e )
(ge,, e 5,4,)
3 3
b. x(t) =

Sty 2y 8 ,-a
( 32 e 38
€ oyt) =S¢ — e

‘The complete solution is on the accompanying CD-ROM
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Antenna Control: Open-Loop Response

In this chapter we have made use of the transfer functions derived in Chapter 2
and the state equations derived in Chapter 3 to obtain the output response of an
open-loop system. We also showed the importance of the poles of a system in
determining the transient response. The following case study uses these concepts
to analyze an open-loop portion of the antenna azimuth position control system.
‘The open-loop function that we will deal with consists of a power amplifier and
motor with load.

Problem For the schematic of the azimuth position control system shown on the

front endpapers, Configuration 1, assume an open-loop system (feedback path

disconnected).

a. Predict, by inspection, the form of the open-loop angular velocity response of
the load to a step-voltage input to the power amplifier.

b. Find the damping ratio and natural frequency of the open-loop system.

¢. Derive the p for the open-loop angular veloc-
ity response of the load l0 a step- vohage input to the power amplifier, using
transfer functions.

d. Obtain the open-loop state and output equations.

€. Use MATLAB to obtain a plot of the open-loop angular velocty response to a step-
voltage nput

Solution The transfer functions of the power amplifier, motor, and load as shown
on the front endpapers, Ct ion 1, were d in the Chapter 2 case
study. The two are shown i in Figure 4.32(a). Differen-
tiating the angular position of the motor and load output by multiplying by s, we
obtain the output angular velocity, w,, as shown in Figure 4.32(a). The equiva-
lent transfer function representing the three blocks in Figure 4.32(a) is the prod-
uct of the individual transfer functions and is shown in Figure 4.32(b).”

Converi to
Power amy Motor and load angular velocit;
2t Ly

Vpts) 100 E s _02083 | 849 wfs
(5 +100 Ss+LTN)

®

*This product relationshup will be derived in Chapter 5.
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a. Using the transfer function shown in Figure 4.32(b), we can predict the nature
of the step response. The step response consists of the steady-state response
generated by the step input and the transient response, which is the sum of
two exponentials penerated by each pole of the transfer function. Hence, the
form of the response is

(1) = A+ Be ' 4 Ce' T 4.129

b. The damping ratio and natural frequency of the open-loop system can be
found by expanding the dencminator of the transfer function. Since the open-
loop transfer function is

20.83
52+ 101.71s + 171

w, = 171 = 13.08,and £ = 3.89 (overdamped).

G(s) = 4.1300

€. In order to derive the angular velocity response to a step input, we multiply
the transfer function of Eq. (4.130) by a step input. 1/s. and obtain

20.83

@ = G 1006 + 170 @
Expanding nto partial fractions, we get
0122 212x10 % 0124
@l = ==+ 0 sy @132
Transforming to the ime domamn yields
o,f) = 0122 + (212 X 107310 — . 124¢7' 7 4133)

State Space d. First convert the transfer function into the state-space representation. Using
Eq. (4.130), we have

w,(s) _ 20.83
Vo(s) 2+ 101715 + 171

(4.134)
Cross multiplying and taking the inverse Laplace transform with zero nitial
conditions, we have
&, + 101.71é), + 1710, = 20.83u, 4.135)
Defining the phase variables as
X1 = w, (4.136a)
X2 = o (4.136b)
and using Eq. (4.135), the state equations are written as
X =x (4.1373)
k= —171x — 101.71x + 20.8%, (4.137b)
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where v, = 1, a unit step. Since x; = w, is the output. the output equation is
y—x (4.138)
Equations (4.137) and (4.138) can be programmed to obiain the step response
using MATLAB or alternative methods described in Appendix G.1 on the accom-
panying CD-ROM.
e. Students who are using MATLAB should now run chdp4 in Appendx B. This exercise
uses MATLAB to plot the step response.
Challenge You are now given a problem to test your knowledge of this chaprer’s
objectives. Refer to the antenna azimuth position control system shown on the
front endpapers, C ion 2. Assume an open-loop system (feedback path
di d) and do the ing:
a. Predict the open-loop angular velocity response of the power amplifier, motor,
and load to a step voltage at the input 1o the power amplifier.
b. Find the damping ratio and natural frequency of the open-loop system.

. Derive the open-loop angular velocity response of the power amplifier, motor,
and load to a step-voltage input using transfer functions.

d. Obtain the open-loop state and output equations.

€. Use MATLAB to obtain a piot of the open-loop angular velocity response to a step-
voltage nput,

u d Free-Swimming S sible Vehicle:
Open-Loop Pitch Response

An Unmanned Free-Swimmng Submersible (UFSS) vehicle is shown n Figure
4.33. The depth of the vehicle is controlled as follows. During forward motion
an elevator surface on the vehicle is deflected by a selected amount. This defiec-
tion causes the vehicle to rotate about the pitch axis. The pitch of the vehicle cre-
ates a vertical force that causes the vehicle to submerge or rise. The pitch control
system for the vehicle is used here and in subsequent chapters as a case study

to demonstrate the covered concepts. The block diagram for the pitch control
system js shown in Figure 4.34 and on the back endpapers for future reference
(Johnson, 1980). In this case study we investigate the time response of the vehi-
cle dynamics that relate the pitch angle output to the elevator defiection input.

Problem The transfer function relating pitch angle, A(s), to elevator surface
angle, &,(s), for the Unmanned Free-Swimming Submersible vehicle is
0(s) _ —0.125(s + 0.435)
8.} s+ 1.23Xs% + 02265 + 0.0169)

a. Using only the second-order poles shown in the transfer function, predict
percent overshoot, rise tine, peak time, and settling time.

4.139)

b. Using Laplace transtorms, find the analytical expression for the response of
the pitch angle to a step input in elevator surface deflection.
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Figure 4.33
Unmamed
Free Swmming
Submersible
(UFSS) vetucle

Figure 4.34
Pitch contro loop for
the UFSS vetucle

Pitch
comniand

fin +

. Evaluate the effect of the additional pole and zero on the validity of the
second-order approximation.

d. Plot the step response ot the vehicle dynamics and verify your conclusions
foundin ().

Solution

a. Using the polynomial s? + 0.2265 + 0.0169, we find that w2 = 0.0169 and
2¢w, = 0226 Thus. @, = 0.13 rad/s and { = 0.869. Hence, %0S =
7 +1=82 % 100 = 0.399%. From Figure 4.16, w,,T
T, = 21 25 Toﬁndpeaknme.weuseTp =T Wy
Finally, settling time is 7, — 4/ {ew, = 354 s.

Commanded
elevalor  Elevator Flevator Vehicle
Pitch gain deflection  actuator deflection dynamics Puch
&, ( =
5 ) 2 8 0.125(s + 0.435) b
s+2 (5 + 123" + 02265 + 0 0169)
Puch rate
sensor

—Kas
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b. In order to display a positive final value in (d). we find the response of the
system to a negative unit step. compensating for the negative sign in the trans-
fer function. Using partial-fraction expansion, the Laplace transform of the
response, 6(s), is

0.125(s + 0.435)

99 = T L2302 + 02265 + 0.0169)

= 26]6~4—006453+ 3

2.68(s + 0.113) + 3.478 0.00413
(s + 01137 + 000413

(4.140)

Taking the inverse Laplace transform,
8(1) = 2.616 + 0.0645¢ ' 21—
€ 011%(3 68 c0s 006431 + 3.478 sin 0.06431)
= 2616 + 0.0645¢ ' 2 — 439:7%1% c05(0.06431 + 52.38°)  (4.141)

1

Looking at the relative i between the ient of the 7! 2 term
and the cosine term in Eq. (4.165), we see that there is pole-zero cancellation
between the pole at -1.23 and the zero at —0.435. Further, the pole at  1.23
is more than five times farther from the jeo axis than the second-order domi-
nant poles at —0.113 * j0.0643. We conclude that the response will be close to
that predicted.

=3

. Plotting Eq. (4.141) or using a computer simulation, we obtain the step
response shown n Figure 4.35. We indeed see a response close to that
predicted

- - | 4
b=y a -] n (=}
T T T T T

Negative pitch angle (radians) response
o
|
T

=)

Time (seconds)
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MATLAB

Figure 4.36
A ship at sea.
showing roll axis

MATLAB

Students who are using MATLAB should now run chdp5 in Appendix B. This exercise uses
MATLAB to find Z, e, T, T, and T, and plot a step response. Table lookup 1s used to find
T.. The exercise applies the concepts to the problem above.

Challenge You are now given a problem to test your knowledge of this chapter’s
objectives. This problem uses the same principles that were applied to
the Unmanned Free-Swimming Submersible vehicle: Ships at sea undergo
motion about their roll axis, as shown in Figure 4.36. Fins called stabilizers are
used to reduce this rolling motion. The stabilizers can be positioned by a closed-
loop roll control system that consists of components. such as fin actuators and
sensors, as well as the ship’s roll dynamics.

Assume the rolt dynamics, which relates the roll-angle output, 8(s), to a
disturbance-torque input, Tp(s), is

8(s) 225

o) (2 + 055 +223) 4142

Ty 6
AR

Roll axis \ 7( B

Do the following:

a. Find the naturat frequency, damping ratio, peak nme, settling time, rise tume,
and percent overshoot.

2

Find the analytical expression for the output response to a unit step input in
voltage.

€. Use MATLAB to solve (a) and {b) and to plot the response found in (b).

Summary

In this chapter we took the system models developed in Chapters 2 and 3 and
found the output response fur a given input, usually a step. The step response
yields a clear picture of the system’s transient response. We performed this anal-
ysis for two types of systems, first-order and second-order, which are represen-
tative of many physical systems. We then formalized our findings and arrived at
numerical specifications describing the responses.
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For first-order systems having a single pole on the real axis, the specification
of transient response that we derived was the fime constant, which is the recipro-
cal of the real-axis pole location. This sp ion gives us an indication of the
speed of the transient response. In particular, the time constant is the time for the
step response to reach 63% of its final value.

Second-order systems are more complex. Depending on the values of system
components, a second-order system can exhibit four kinds of behavior:

1. Overdamped

2. Underdamped

3. Undamped

4. Critically damped

‘We found that the poles of the input generate the forced response, whereas
the system poles generate the transient response. If the system poles are real, the
system exhibits overdumped behavior. These exponential responses have time

equal to the reciprocals of the pole locati Purely imaginary poles
yield undamped sinusoidal oscillations whose radian frequency is equal to the
magnitude of the imaginary pole. Systems with complex poles display under-
damped responses. The real part of the complex pole dictates the exponential
decay envelope, and the imaginary part dictates the sinusoidal radian frequency.
The exponential decay envelope has a time constant equal to the reciprocal of the
real part of the pole, and the sinusoid has a radian frequency equal to the imagi-
nary part of the pole.

Forall d-order cases, we develop ifications called the dampmg
ratio, {, and naturdl frequency, w,. The dampmg ratio gives us an idea about
the nature of the transient response and how much overshoot and oscillation it
undergoes, regardless of time scaling. The natural frequency gives an indication
of the speed of the response.

‘We found that the value of ¢ determines the form of the second-order natural
response:

m If { = 0, the response is undamped.

m If ¢ < 1, the response is underdamped

m If{ = 1, the response is critically damped.
& If { > I, the response is overdamped.

The natural frequency is the frequency of oscillation if all damping is
removed. It acts as a scaling factor for the response, as can be seen from Eq.
(4.28), in which the independent variable can be considered to be w,!.

For the underdamped case we defined several transient response specifica-
tions, including these:

m  Percent overshoot, %OS
m Peak time, 7,

m  Seuling time, T,

m  Rise time, 7,
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The peak time 15 inversely proportienal to the imaginary part of the complex
pole. Thus, horizontal lines on the s-plane are lines of constant peak time.
Percent overshoot is a function of only the damping ratio. Consequently, radial
lines are lines of constant percent overshoot. Finally, settling time is inversely
proportional to the real part of the complex pole. Hence. vertical lines on the
s-plane are lines of constant settling time.

We found that peak time, percent overshoot, and settling time are related
to pole location. Thus, we can design transient responses by relating a desired
response to a pole location and then relating that pole location to a transfer
function and the system’s components.

The effects of nonlinearities. such as ation, dead! and backlast
were explored using MATLAB’s Simulink.

In this chapter we also evaluated the time response using the state-space
approach. The response found in this way was separated into the zero-input
response, and the zero-state response, whereas the frequency response method
yielded a total response divided into natural response and forced response
components,

In the next chapter we will use the transient response specifications devel-
oped here to analyze and design systems that consist of the interconnection of
multiple subsystems. We will see how to reduce these systems to a single transfer
function in order to apply the concepts developed in Chapter 4

Review Questions

-

- Name the performance specification for first-order systems.

N~

. What does the performance specification for a first-order system telj us?

w

. In a system with an input and an output. what poles generate the steady-state
responsc?

Lol

In a system with an mput and an outpur, what poles generate the transient
response?

n

The imaginary part of a pole generates what part of a response?

*

The real part of a pole generates what part of a response?

Bl

What is the difference between the natural frequency and the damped
frequency of oscillation?

If a pole is moved with a constant imaginary part, what will the responses
have in common?

©

If a pole is moved with a constant real part, what will the responses have
common?

-
e

If a pole is moved along a radial line extending from the origin, what will the
responses have in common?

=
=

- Lust five specifications for 4 second-order underdamped system.

12. For Question 11 how many specifications completely determine the
response?
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State Space

State Space

Figure P4.1

MATLAB

20.

21.
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. Whar pole h 1ze (1) the damped system, (2) the over-

damped system, and (3) the critically damped system?

. Name two conditions under which the respunse generated by a pole can be

neglected.

. How can you justify pole-zero cancellation?

. Does the solution of the state equation yield the output response of the

system? Explain.

‘Whar 1s the relationship between (sI — A), which appeared during the
Laplace transformation solution of the state equations, and the state-
transition matrix, which appeared during the classical solution of the state
equation?

. Name a major advantage of using time domain techniques for the solution of

the response.

. Name a major advantage of using frequency domain techniques for the

solution of the response.

What three preces of informauon must be given 1n order to solve for the
output response of a system using state-space techniques?

How can the pules of a system be found from the state equations?

Problems

1. Denve the output responses for all parts of Figure 4.7

2. Find the output response, c{#), for each of the systems shown in Figure
P4.1. Also find the time constant, rise time, and settling time for each
case.

3. Plot the step responses for Problem 2 using MATLAB
4. Find the capacitor voltage in the network shown in Figure P4.2 if the

switch closes at t = 0. Assume zero initial conditions. Also find the time
constant, rise time, and settling time for the capacitor voltage.
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Figure P4.2

7 MATLAB

Figure P4.3

MATLAR

5. Plot the step response for Probiem 4 using MATLAB. From your plots, find the
time constant, nse time, and setting time.

For the system shown in Figure P4.3, (a) find an equation that relates set-
tling time of the velocity of the mass to M; (b) find an equation that re-
lates rise time of the velocity of the mass to M.

*

x(t) 8N-s/m

[0

N

Plot the step response for Problem 6 using MATLAB. From your plots find the time
constant, rise time, and setting tme.

. For each of the transfer functions shown below, find the locations of the
poles and zeros. plot them on the s-plane, and then write an expression for
the

general form of the step response without solving for the inverse Laplace
transform. State the nature of each response (overdamped, underdamped,
and so on).

o

a T = siz

b. 7(s) = (:+_3)5(?6)
c I(s) = #ﬂ)zm
a. 7(s) — ﬁ
e T(s) = :2129

£ 7(s) = (s+5)

(s + 10)?
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tate Space

Figure P4.4

MATLAB

Figure PAS

Figure P4.6

J

10.

13.

15.
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. Use MATLAB to find the poles of

s°+2s+2

TS = Sresvaw T 5 A2

Find the wransfer funcuon and poles of the system represented n state space

here:
8 -4 1 1
x=|-3 2 0ix+|3|u@®
5 7 -9 7

0
y=[2 8 -3|x x(0) = [O]
0

Repeat Problem 10 using MATLAB

. Write the general form of the capacitor voltage for the electrical network

shown in Figure P4.4.

Ry = 10K

(1) =nu(n R;=10kQ C— 10 uF

T

Use MATLAB to plot the capacitor voltage n Problem 12.
Solve for x(7) in the system shown in Figure P4.5 if £(¢) is a unit step.
M-lkg = j -(n
K.-5Nm f1 K
f=tNsm 0000 M | — =sn
Fo=uwoN | K
LT T

The system shown in Figure P4.6 has a unit step input. Find the output
response as a function of time. Assume the system is underdamped. Notice
that the result will be Eq. (4.28).

R(s) o} [o2)

524200,5+ 0}

. Denive the relationship for damping ratio as a function of percent overshoot,

Eq. (4.39).
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MATLAB

GUl Tool

Figure P4.7

17.

-

8.

19,

2

S

21,

22

23.

24,

&

25,

o

26.

Calculate the exact response of each system of Problem 8 using Laplace
transform techniques, and compare the resulis to those obtained in that
problem.

Find the damping ratio and natural frequency for each second-order system
of Problem 8 and show that the value of the damping ratio conforms to the
type of response (underdamped, overdamped, and so on) predicted in that
problem.

A system has a dampmg ratio of (.5, a natural frequency of 100 rad/s. anda
de gain of 1. Find the response of the system to a unit step input.

. Foreach of the second-order systems that follow, find £, e, T, Tp. T, and %0S.

16
279 = 735716
0.04
b 1O = s+ 004
05 % 107
e To) 1.05 % 10

TS 6X 10+ LS X 107
Repeat Problem 20 using MATLAB. Have the computer program estimate the given
specifications and plot the step responses. Estimate the nise time from the plots.

Use MATLAB's LTI Viewer and obtain setting time, peak time, rise time, and percent
oversheot for each of the systems in Problem 20.

For each pair of second-order system specifications that follow, find the loca-
tion of the second-order pair of poles.

a. %08 = 12%:; T, = 0.6 second
b. %08 = 10%; T, — 5 seconds
¢. Ty = 7 seconds; T, = 3 seconds

Find the wransfer function of a second-order system that yields a 12.3%
overshoot and a settling time of 1 second.

For the system shown in Figure P4.7, do the following:
a. Find the transfer function G(s) = X(s) F(s).
b. Find . w, %08, T, Ty, and T;..

15 N-s/m

. For the system shown in Figure P4.8, a step torque is applied at 6;(f). Find

a. The transfer function, G(s) = 6:(s) T(s).
b. The percent overshoot, settling time, and peak time for 6:(¢).
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Figure P4.8 Tw) B840

I N-m-s/rad 1 N-m/rad

27. Derive the unit step response for each transfer function in Example 4.8.
28. Find the percent overshoot, settling time, rise time, and peak time for

14.145

T6) = G+ 12045 4 28290 1 9

29, For each of the unit step responses shown in Figure P4.9, find the transfer
function of the system.

FigureP4.9
{figure conbinves)

Response

0 005 01 015 02 025
Time (seconds)
(@)

25

20

Response

©

0 1 2 3 4 5
Time (seconds)

®)
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Figure P4.9
{continued)

MATLAB

30. For the tollowing response functions, determine if pok

3

32,

=

L4
12
1.0
[k
0.6 |-

Response

04
02

0 s 10 15 20 25
Tme (seconds)
©

can
be approximated. If 1t can, find percent overshoot, settling time, rise time,
and pcak time.

+3)

0O = I L3710

{s+2.5)

b Q9 = T 1 A5 20)

(s+21)

)= T 5T

(s +2.01)

4 = Tt 557 20)

Using MATLAB, plot the time response of Problem 30(a) and from the plot determine
percent overshoot, settling time, rise time, and peak time.

Find peak ume, settling time. and percent overshoot for only those responses
below that can be approximated as second-order responses.

a c(r) = 0.003500 — 0.001524¢ ¥ — 0.001976¢ ¥ cos(22.16¢) —
0.0005427¢ 5in(22.161)

b. c(r) = 0.05100-0.007353¢ % ~(.007647¢ ' cos(8)—0.01309¢ ¢ sin(8r)

€. () = 0.009804 — 0.0001857¢>" — 0.009990¢ 2 c0s(9.7961) —
0.001942¢% 5in(9.7961)

d. (1) = 0.007000 — 0.001667¢~"" — 0.008667¢ % cos(9.9511) —
0.0008040e 2 sin(9.9511)
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3.

34,

35.

36.
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For each of the following transfer functions with zeros. find the component
parts of the unit step response: (1) the derivative of the response without a
zero and (2) the response without a zero, scaled to the negative of the zero
value. Also, find and plot the total response. Describe any nonminimum-
phase behavior.

s+2
8 G0 = 5335436
s—2
e e
Use MATLAB's Simulink to obtain the step response of a system,

1
66 - 35710

under the following conditions:
a. The system is linear and driven by an amplifier whose gan 1s 10.

b. An amplfier whose gain is 10 drives the system. The amplifier saturates at
+0.25 volts. Describe the effect of the saturation on the system’s output.

c. An amplifier whose gamn 1s 10 drives the system. The amplifier saturates at +0.25
volts. The system drives a 1:1 gear frain that has backlash. The deadband width
of the backlash is 0.02 rad. Describe the effect of saturation and backlash on the
system's output.

A system is represented by the state and ourput equations that follow. With-
out solving the state equation, find the poles of the system.

X = [:§ :;]x + [;]u(t)
y=[3 2x

A system is represented by the state and output equations that follow. With-
out solving the state equation, find

a. the characteristic equation;
b. the poles of the system

023 0
x=[0 6 S|x+|1|w@®
1 42 1

y=[ 2 ox
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State Space 37. Given the following state-space representation of a system. find ¥(s):

X = [_; _ﬂx-o— [:]sinjt
y=0 2x X(©0) = [ﬂ

State Space 38. Given the following system represented in state space, solve for ¥(s) using
the Laplace transform method for solution of the state equation:

o 1 0] [o
x=|-2 -4 afx+]ofe
0 0 -6 1
0
y=[1 0 0x;. xO=|0
0

State Space 39. Solve the following state equation and output equation for w(1), where u(s) is
the unit step. Use the Laplace transform method.

x= [:f 7(1)]7( + mu(o

v=[0 1|x: x(0) = [(1)]

State Space 40. Solve for y(#) for the following system represented in state space, where
- 2(1) is the unit step. Use the Laptace transform approach to solve the state

equation.
-3 1 0 0
x=| 0 -6 1|x+]|1|un
0O o -5 1

0
y=[0 1 1x x(O):[O]
0
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MATLAB 41. Use MATLAB to plot the step response of Problem 40.
Symbolic Math  42. Repeat Problem 40 using MATLAB's Symbolic Math Toolbox and Eq. (4.96). In

1
addition, run your program with an intial condition, xI0) = |1}

State Space 43. Using classical (not Laplace) methods only, solve for the state-transition
matrix, the state vector, and the output of the system represented here:

i‘=[—? —;]"; y=[1 2= x(0)=[(‘)]

State § sce 44. Using classical (not Laplace) methods only, solve for the state-transition
matrix, the state vector, and the output of the system represented here. where

() is the unit step:
01 0
[ o i}

y=[3 2Jx xO=

State Space 45. Solve for_ ¥(¢) for the followin_g system represented 1n state space, where u(f)
is the unit step. Use the classical approach to solve the state equation.

-2 1 0 1
k=] 0 0 1|x+|0fus
0 -6 -1 0

0
y=[ 0 Ox x@=|0
0

Symbolic Math ; 6. Repeat Problem 45 using MATLAB's Symbolic Math Toolbox and €q. (4.109). In

1
addition, run your program with an initial condition, xi0) = [ jl
0
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State Space 47. Using methods described in Appendix G.1 on the accompanying CD-ROM,
- simulate the following system and plot the step response. Verify the expected
values of percent overshoot, peak time, and settling time

1
T® = From
48. Using methods described in Appendix G.1 on the accompanying CD-ROM,
simtlate the following system and plot the output, y(z), for a step input:

0 1 0 0
X=|-10 -7 1x+|0]us)
0O 0 -2 1

-1
Yo =0 1 ox; x(OJ:[ 0}

]

49. A human responds to a visual cue with a physical response, as shown in
Figure P4.10. The transfer function that relates the output physical response,
#P(s). o the input visual command. V(s), is

PO (5405
S e Rl P

(Stefani, 1973). Do the following:

a. Evaluate the output response for a unit step input using the Laplace

transform.
State Space b. Represent the transfer tunction in state space.
MATLAB c. Use MATLAB to simulate the System and obtan a plot of the step response.

N\

Step I: Lightsourceon  Step2 Recognize light source Step 3 Respond to hight source
Figure P4.10
Steps i determinng the transfer
function relating output physical
response to the input visual command
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50. Industrial robots are used for myriad applications. Figure P4.11 shows a
robot used to move 55-pound bags of salt pellets; a vacuum head lifts the
bags before positioning. The robot can move as many as 12 bags
per minute {(Schneider. 1992). Assume a model for the open-loop swivel
controller and plant of

w,(s) _ K
Vi) (5 + 10}s2 + 45 + 10)

where e,(s) is the Laplace transform of the robot’s output swivel velocity
and V(s) is the voltage applied to the controller.

Ge(s) =

a. Evaluate percent overshoot, setthing time, peak time, and rise time of the
response of the open-loop swivel velocity to a step-voltage input. Justify
all second-order assumptions.

State Space b, Represent the open-loop system in state space.

MATLAB c. Use MATLAB or any other computer program to simulate the system and compare
your results to (a).
Figure P4.11 R R
Vacuum robot lifts
two bags of salt T L ‘ l
‘ -
- :— 13
A4
t -
a
aets-
- ”
—
—_—
5L A ia induces muscle ion (paralysis) and i inthe
patient. Muscle ion can be i using gram signals

from nerves in the hand; unconscionsness can be monitored using the cardio-
vascular system’s mean arterial pressure. The anesthetic drug is a mixture of
isoflurane and atracurium. An approximate model relating muscle relaxation
to the percent isoflurane in the mixture is
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52,

Ps) _ 763x1072
U(s) ~ 2+ 1155 + 0.28

where P(s) is muscle relaxation measured as a fraction of total paralysis
(normalized to unity) and U(s) is the percent mixture of isoflurane (Linkens,
1992)

a. Find the damping ratio and the natural frequency of the paralysis transient
response.

b. Find the maximum possible percent paralysis if a 2% mixture of
isoflurane is used.

¢. Plot the step response of paralysis if a 1% mixture of isoflurane is used.
d. What percent 1soflurane would have to be used for 100% paralysis?

To treat acute asthma, the drug theophylline is infused intravenously. The
rate of change of the drug concentration in the blood is equal to the differ-
ence between the infused ion and the eliminated i

The infused concentration is i(f) V,, where i(z) is the rate of flow of the drug
by weight and V is the apparent volume and depends on the patient. The
eliminated concentration is given by kyoc(#), where c(f) is the current concen-
tration of the drug in the blood and k¢ is the elimination rate constant. The
theophylline concentration in the blood is critical—if it is too low, the drug
is ineffective; if too high, the drug is toxic (Jannett, 1992). You will help the
doctor with your calculations.

a. Derive an equation relating the desired blood concentration, Cp, to the

required infusion rate by weight of the drug, Iz.

b. Derive an equation that will tell how long the drug must be administered
to reach the desired blood concentration. Use both tise time and settling
time.

. Find the infusion rate of theophylline if Vp = 600 ml, kg = 0.07h~",
and the required blood level of the drug is 12 meg/ml (“mcg” means
micrograms). See Jannett (1992) for a description of parameter values.

d. Find the rise and settling times for the constants in (c).

I

Design Problems

® :: 2 53. Fiod an equation that relates 2% settling time to the value of £, for the

Figure P4.12

translational mechanical system shown in Figure P4.12. Neglect the mass
of all components.

I
(U]

2N/m
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54, Consider the translational mechanical system shown in Figure P4.13. A
1-pound force, £(#), is applied at 1 = 0.If £, = 1, find K and M such that the
response is characterized by a 2-second settiing time and a 1-second peak
time. Also, what is the resulting percent overshoot?

Figure P4.13

§5. Given the translational mechanical system of Figure P4.13, where K = 1
and £(7) is a unit step, find the values of M and hr £, to yield a response with
30% overshoot and a settling time of 10 seconds.

56. Find J and K in the rotational system shown in Figure P4.14 to yield a 30%
overshoot and a settling time of 4 seconds for a step input in torque.

Figure P4.14 T L

K

57. Given the system shown in Figure P4.15, find the damping, D, to yield a
30% overshoot in output angular displacement for a step input in torque.

Figure P4.15 () 61
Ny=25

Ny=5 Ny=10
D

Nos| g N
=

.( 58. For the system shown in Figure P4.16, find Ny N so that the settling time
s for a step torque input is 16 seconds.

Figure P4.16 T

1 N-m-s/rad
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59. Find M and K, shown in the system of Figure P4.17, to yield x{r) with 10%
overshoot and 10 seconds settling time for a step input in motor torque,

Tole).
Figure P4.17 T
Al
For the motor:
I = 1kgm?
D, N-m-s/rad
Q
V-sfrad
, = LN-m/A
60. If v,(¢) is a step voltage in the network shown in Figure P4.18, find the value
of the resistor such that a 20% overshoot in voltage will be seen across the
capacitorif C = 10 °Fand L = 1 H.
Figure P4.18 R L

o) c

I vi(¢) is a step voltage in the network shown in Figure P4.18, find the values
of R and C to yield a 20°¢ overshoot and a 1 ms settling time for v (f)

62. Given the circuit of Figure P4.18, where C = 10 i, find R and L to yield
15% overshoot with a settling time of 2 ms for the capacitor voltage. The
input, v{z), is a unit step.

63. For the circuit shown in Figure P4.19, find the values of R; and C to yield
15% overshoot with a settling time of 1 ms for the voltage across the capaci-
tor, with vi(f) as a step input.

Figure P4.19 IH Ry
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FigureP4.20

Large actuator
Pup diagram 4 \.”/ Swashplate
Ponplate
_\ k Fo—
Truake port A 4
6w /
Piston
; . r \
{
&
Barrel © ]
Discharge port
r A—
SectionA-A  Fe— Slipper

N

State Space 64. Hydraulic pumps are used as inputs to hydraulic circuits to supply pressure,
just as voltage sources supply potential to electric circuits. Applications for
hydraulic circuits can be found in the robotics and aircraft industries, where
hydraulic actuators are used to move component parts. Figure P4.20 shows
the internal parts of the pump. A barrel containing equally spaced pistons
rotates about the i-axis. A swashplate, set ar an angle, causes the slippers at
the ends of the pistons to move the pistons in and out. When the pistons are
moving across the intake port, they are extending, and when they are moving
across the discharge port, they are retracting and pushing fluid from the port.
The large and small actuators at the top and bottom, respectively, control the
angle of the swashplate, . The swashplate angle affects the piston stroke
length. Thus, by controlling the swashplate angle, the pump discharge flow
rate can be regulated. Assume the state equation for the hydraulic pump is

(3.45 — 14000K,) —0.255 % 107° —3.45 + 14000K, b _|e

0499 x 101 -3.68 —0499 x 1O | O WIEEX = (g
and Py is the pump discharge pressure (Manring, 1996). Find the value

of controller flow-gain, K, so that the damping ratio of the system’s poles
is 0.9.

Small actuator

Progressive Analysis and Design Problem
65. High-speed rail pantograph. Problem 55(c) in Chapter 2 asked you to find
G(s) = (Yn(s) — Yea(s)); Fup(s) (O*Connor, 1997).
a. Use the dominant poles from this transfer function and estimate percent over-
shoot, damping ratio, natural frequency, settling time, peak time, and rise time.
b. Determine if the second-order approximation is valid.
MATLAB . Obtain the step response of Gls} and compare the results to (a).
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Cyber Exploration Laboratory

Experiment 4.1

Objective: To evaluate the effect of pole and zero location upon the time response
of first- and second- order systems.

Minimum required software packages MATLAB, Simulink, and the Control
System Toolbox

Prelab

1. Given the transfer function G(s) = ﬁ: Evaluate settling time and rise time
for the following values of a: 1, 2, 3, 4. Also, plot the poles.
b -
Sras+b
(2) Evaluate percent overshoot, settling time, peak time, and rise time for the
following values: @ = 4, b = 25. Also, plot the poles.

2. Given the transfer function G(s) =

(h) Calculate the values of @ and b so that the imaginary part of the poles re-
mains the same but the real part is increased 2 times over that of (a), and
repeat Prelab 2(a).

(€} Calculate the values of ¢ and & so that the 1maginary part of the poles re-
mains the same but the real part is decreased 1 time over that of (a), and
repeat Prelab (2a).

(ay For the system of Prelab 2(a), calculate the values of @ and b so that the
real part of the poles remains the same but the imaginary part is increased
2 times over that of Prelab 2(a), and repeat Prelab 2(a).

(b) For the system of Prelab 2(a), calculate the values of @ and b so that the
real part of the poles remains the same but the imaginary part is increased
4 times over that of Prelab 2(a), and repeat Prelab 2(a).
4.
(a) For the system of Prelab 2(a), calculate the values of @ and b so that the
damping ratio remains the same but the natural frequency is increased 2
times over that of Prelab 2(a), and repeat Prelab 2(a)

(b) For the system of Prelab 2(a), calculate the values of @ and b so that the
damping ratio remains the same but the natural frequency is increased 4
times over that of Prelab 2(a), and repeat Prelab 2(a).
5. Briefly describe the effects on the time response as the poles are changed in
each of Prelabs 2, 3, and 4.

Lab

1. Using Simulink, set up the systems of Prelab 1 and plot the step response of
each of the four transfer functions on a single graph by using the Simulink LTI
Viewer. Also, record the values of settling time and rise time for each step
response.
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N

. Using Simulink, set up the systems of Prelab 2. Using the Simulink LTI Viewer,
plot the step response of each of the 3 transfer functions on a single graph. Also,
record the values of percent overshoot, settling time, peak time, and rise time
for each step response.

3. Using Simulink, set up the systems of Prelab 2(a) and Prelab 3. Using the
Simulink LTI Viewer, plot the step response of each of the 3 transfer functions
on a single graph. Also, record the values of percent overshoot, settling time,
peak time, and rise time for each step response.

4. Using Simulink, set up the systems of Prelab 2(a) and Prelab 4. Using the
Simulink LTI Viewer, plot the step response of each of the 3 transfer functions
on a single graph. Also, record the values of percent overshoot. settling time.
peak time, and rise time for each step response.

Postiab

1. For the first-order systems, make a table of calculated and experimental values
of settling time, rise time. and pole location.
2. For the second-order systems of Prelab 2, make a table of calculated and experi-

mental values of percent overshoot, settling time, peak time, rise time, and pole
location.

3. For the second-order systems of Prelab 2(a) and Prelab 3, make a table of cal-
culated and experimental values of percent overshoot, settling time, peak time,
rise time, and pole location.

4 For the second-order systems of Prelab 2(a) and Prelab 4, make a table of cal-
culated and experimental values of percent overshoot, settling time, peak time,
rise time, and pole location.

5. Discuss the effects of pole location upon the ume response for both first- and

second-order systems. Discuss any di ies between your calculated and
experimental values.

Experiment 4.2

Objective: To evaluate the effect of additional poles and zeros upon the time re-
sponse of second- order systems.

Minimum Required Software F MATLAB, Simulink, and the Control
System Toolbox
Prelab:
1
25

(a) Given the transfer function G(s) = 5 " : Evaluate the percent
overshoot, settling time, peak time, and rise time. Also. plot the poles.

(b) Add a pole at —200 to the system of (a). Estimate whether the transient
response in (a) will be appreciably affected.

(c) Repeat (b) with the pole successively placed at —20, —10, and —2.
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2. A zero is added to the system of Prelab 1(a) at —200 and then moved to —50,
—20, —10, —5, and —2. List the values of zero location in the order of the
greatest to the least effect upon the pure second-order transient response.
@5+ a)fs + a)

CIhE+45+25) Leta=3andb =

3.01, 3.1, 3.3, 3.5, and 4.0. Which values of b will have minimal effect upon

the pure second-order transient response?

i . _ (2500h a)(s +a) _
4. Given the transfer function G(s) = @ BT 1 405 1 2500) Leta = 30 and

b = 30,01, 30.1, 30.5, 31, 35, and 40. Which values of b will have minimal
effect upon the pure second-order transient response?

Lab

3. Given the transfer function G(s) =

-

- Using Simulink, add a pole to the second-order system of Prelab 1(z) and plot the
step responses of the system when the higher-order pole is nonexistent, at —200,
—20, —10, and —2. Make your plots on a single graph, using the Simulink
LT1 Viewer. Normalize all plots to a steady-state value of unity. Record percent
overshoot, settiing time, peak time, and rise time for each response.

N

. Using Simulink, add a zero to the second-order system of Prelab 1(a) and plot
the step responses of the system when the zero is nonexistent, at —200, —50,
—20, —10, —5, and —2. Make your plots on a single graph, using the Simulink
LTI Viewer. Normalize all plots to a steady-state value of unity. Record percent
overshoot, settling time, peak time. and rise time for each response.

3. Using Simulink and the transfer function of Prelab 3 with @ = 3, plot the step
responses of the system when the value of b is 3, 3.01, 3.1, 3.3, 3.5, and 4.0.
Make your plots on a single graph using the Simulink LTI Viewer. Record per-
cent overshoot, settling time, peak time, and rise time for each response.

. Using Simulink and the transfer function of Prelab 4 with a = 30, plot the step
responses of the system when the value of b is 30, 30.01, 30.1, 30.5, 31, 35, and
40. Make your plots on a single graph, using the Simulink LTI Viewer. Record
percent overshoot, settling time, peak time, and rise time for each response.

Postlab

r'S

1. Discuss the effect upon the transient response of the proximity of a higher-order
pole to the dominant second-order pole pair.

N

Discuss the effect upon the transient response of the proximity of a zero to the
dominant secand-order pole pair. Explore the relationship between the length of
the vector from the zero to the dominant pole and the zero’s effect upon the pure
second-order step response.

w

Discuss the effect of pole-zero cancellation upon the transient response of a
dominant second-order pole pair. Allude to how close the canceling pole and
zero should be and the relationships of (1) the distance between them and (2)
the distance between the zero and the dominant second-order poles.
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* Reduction of Multiple
Subsystems

Chapter Objectives
In this chapter you will learn the following:

= How to reduce a block diagram of multiple subsystems to a single block
tepresenting the transfer function from input to output

m How to analyze and design transient response for a system consisting of
multiple subsystems

State Space m  How to represent 1n state space a system consisting of multiple subsystems
State Space u How to convert between alternate representations of a system in state space

Case Study Objectives

You will be able to your dge of the chapter objectives with case
studies as follows:

m Given the antenna azumuth position control system shown on the front
endpapers, you will be able to (a) find the closed-loop transfer function
that represents the system from input to output; (b) find a state-space
representation for the closed-loop system; {(c) predict, for a simplified system
model, the percent overshoot, settling time, and peak time of the closed-loop
system for a step input; (d) calculate the step for the closed-1
system; and (e) for the simplified model, design the system gain tomeet a
transient response requirement.

State Space m Given the block diagrams for the UFSS vehicle’s pitch and heading control
systems on the back endpapers, you will be able to represent each control
system in state space.
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5.1 Introduction

‘We have been working with individual subsystems represented by a block with its
input and output. More complicared systems, however, are represented by the in-

of many sub Since the response of a single transfer function
can be calculated, we want to rep multiple sub: as a single transfer
function. We can then apply the analytical techniques of the previous chapters and
obtain transient response information about the entire system.

In this chapter multiple subsystems are represented in two ways: as block di-
agrams and as signal-flow graphs. Although neither representation is limited to a
particular analysis and design technique, block diagrams are usually used fur fre-
quency-domain analysis and design, and signal-flow graphs for state-sp:

Signal-fiow graphs rep transfer ions as lines, and signals as smal]
circular nodes. Summing is implicit. To show why it is convenient to use signal-
flow graphs for state-space analysis and design, consider Figure 3.10. A graphical
representation of a system’s transfer function is as simple as Figure 3.10(). How-
ever, a graphical representation of a system in state space requires representation
of each state variable, as in Figure 3.10(b). In this example, a single-block transfer
function requires seven blocks and u summing junction to show the state variables

i Thus, signal-flow graphs have over block di such as
Figure 3.10(p): they can be drawn more quickly, they are more compact, and they
emphasize the state variables.

‘We will develop techniques to reduce each representation to a single transter
function. Block diagram algebra will be used toreduce block diagrams and Mason’s
rule to reduce signal-flow graphs. Again, it must be emphasized that these methods
are typically used as described. As we shall see, however, either method can be used
for frequency-domain or state-space analysis and design.

5.2 Block Diagrams

As yon already know, a subsystem is represented as a block with an input, an output,
and a transfer function. Many systems are composed of multiple subsystems, as m
Figure 5.1. When multiple subsystems are interconnected, a few more schematic
elements must be added to the block diagram. These new elements are surmming
Junctions and pickoff points. All component parts of a block diagram for a linear,
time-invariant system are shown in Figure 5.2. The characteristic of the summing
Junction shown in Figure 5.2(c) is that the output signal, C(s), is the algebraic sum
of the input signals, R(s), Ra(s), and R(s). The figure shows three inputs, but any
number can be present. A pickoff point, as shown in Figure 5.2(d), distributes the
input signal, R(s). undiminished, to severat output points.

‘We will now examine some common topologies for interconnecting subsys-
tems and derive the single transfer function representation for each of them. These
common topologies will form the basis for reducing more complicated systems to
a single block.

Cascade Form
Figure 5.3(a) shows an example of cascaded subsystems. Intermediate signal val-
ues are shown at the output of each subsystem. Each signal is derived from the
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product of the input times the transfer function. The equivalent transfer function,
Ge(s), shown in Figure 5.3(b), is the output Laplace transfurm divided by the input
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Similarly, the network of Figure 5.4(b) has the fullowing transfer function:

1
Va(s) _ R
Vils) 1

StEE

Gas) =

(5.3)

If the networks are placed in cascade, as in Figure 5.4(c), you can verify that the
transfer function found using loop or node equations is

1

oo = 0 = ——PGRG i 6a
! :1+(rq+m+m)-wm
But, using Eq. (5.1),
1
G} = GAIGyls) = RG&G 65

1 1 1
24 —
i R C, * chz)s RGR,G;

Equations (5.4) and (5.5) are not the same: Eq. (5.4) has one more term for the
coefficient of s in the denominator and is correct.

One way to prevent loading is to use an amplifier between the two networks, as
shown in Figure 5.4(d). The amplifier has a high-impedance input, so that it does
not load the previous network. At the same time it has a low-impedance output, so
that it keoks like 2 pure voltage source to the subsequent network. With the amplifier
included, the equivalent transfer function is the product of the transfer functions
and the gain, K, of the amplifier.

Parallel Form

Figure 5.5 shows an example of parallel subsysters. Agam, by writing the output
of each subsystem, we can find the equivalent transfer function. Parallel subsys-
tems have a common input and an output formed by the algebraic sum of the
outputs from all of the subsystems. The equivalent transfer function, Ge(s), is
the output transform divided by the input transfurm from Figure 5.5(a), or

Gels)  *Gps) = Gasy = Gals) (5.6

which is the algebraic sum of the subsystems’ transfer functions; it appears in
Figure 5.5(b).

Feedback Form

‘The third topology is the feedback form, which will be seen repeatedly in sub-
sequent chapters. The feedback system forms the basis for our study of control
systems engineering. In Chapter I we defined open-loop and closed-loop systems
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Xi(s) = R$)Gy(s)

R(s) X)(s)=R(5)Ga(s) C(5) = [£Gy(s) + G(s) + G3()| R(s}

Gals)

®)
and pointed out the ad ge of closed-loop, or control, systems over
open-loop systems. As we move ahead, we will focus on the analysis and design

of feedback systems.

Let us derive the transfer function that represents the system from its input to its
output. The typical feedback system, described in detail in Chapter 1, is shown in
Figure 5.6(a); a simplified model is shown in Figure 5.6(b).! Directing our attention
to the simplified model,

E(s5} = R(s) ¥ C(s)H(s) (&)}
But since C(s) = E($)G(s),
C(s)
E(s) = G(S) 5.8)

Substituting Eq. (5.8) into Eq. (5.7) and solving fur the uansfer function, C(s)/ R(s)
= G,(s), we obtain the equivalent, or closed-loop, transfer function shown in
Figure 5.6(c),
. Gis}
G = T Gl ad
The product. G(s)H(s). in Eq. (5.9) is called the open-loop transfer function, or
loop gain.

So far, we have explored three different configurations for multiple sub-
systems. For each, we found the equivalent transfer function. Since these three
forms are combined into complcx an'angements in physical systems, recognizing
these topologies is a p to the equivalent transfer function of a

"The system is said to have negative feedback if the sign at the summing Junction 1s negative
and positive feedback if the sign is positive.
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Flgure 5.6
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complex system. In this section we will reduce complex systems composed of mul-
tiple subsystems to single transfer functions.

Moving Blocks to Create Familiar Forms

Before we begin to reduce block diagrams, it must be explained that the familiar
forms (cascade, parallel, and feedback) are not always apparent in a block diagram.
For example, in the feedback form, if there is a pickoff point after the summing
junction, you cannot use the feedback formula to reduce the feedback system toa
single block. That signal disappears, and there is no place to reestablish the pickoff
point.

‘This subsection will discuss basic block moves that can be made to order to
establish familiar forms when they almost exist. In particular, it will explain how
to move blocks left and right past summing junctions and pickoff points.

Figure 5.7 shows equivalent block diagrams formed when transfer functions
are moved left or right past a summing junction, and Figure 5.8 shows equiva-
Ient block diagrams formed when transfer functions are moved left or right pasta
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Example 5.1

Figure 5.5
Block diagram for
Example 5.1

pickoff point. In the diagrams the symbol = means “equivalent to.” These equiva-
lences, along with the forms studied earlier in this section, can be used to reduce a
block diagram to a single transfer function. In each case of Figures 5.7 and 5.8, the
equivalence can be verified by tracing the signals at the input through to the output
and recognizing that the output signals are identical. For example, in Figure 5.7(a),
signals R(s) and X(s) are multiplied by G(s) before reaching the output. Hence, both
block diagrams are equivalent, with C(s) = R(s)G(s) ¥ X(s)G(s). In Figure 5.7(b),
R(s) is multiplied by G(s) before reaching the output, but X(s) is not. Hence, both
block diagrams in Figure 5.7(b) are equivalent, with C(s) = R(s)G(s) + X(s). For
pickoff points, similar reasoning yields similar results for the block diagrams of
Figure 5.8(a) and (b).

Let us now put the whole story together with examples of block diagram re-
duction.

Block diagram reduction via familiar forms

Problem Reduce the block diagram shown in Figure 5.9 to a single transfer func-
tion.

Cis)
—

Hy(s)
L]

Hi(s)

Solution We solve the problem by following the steps in Figure 5.10. First, the
three ing juncti anbe into a singl ing junction, as shown
in Figure 5.10(a).

Second, recognize that the three feedback functions, H,(s), H(s), and Hais),
are connected in parallel. They are fed from a common signat source, and their
outputs are summed. The equivalent function is Hy(s) — Ha(s) + Hs(s). Also rec-
ognize that G,(s) and Gs(s) are connected in cascade. Thus, the equivalent transfer
function is the product. Ga(sYG(+). The results of these steps are shown in Figure
5.10¢b).

Finally, the feedback system is reduced and multiplied by G(s) to yield the
equivalent transfer function shown in Figure 5.10(c).




Figure 5.10

Steps 1 solving
Example 5 1
a.Colapse summing
unctions;

b form equwvalent
cascaded system
nthe forward path
and equivalent
parallel system in the
fesdhack path,
c.form equvalent
feednack system and
mutply by cascaded
Gyts).

Example 5.2

5.2 Block Diagrams 261

Ris) Ga9)GAIG(%) <)
U+ G3(5)Ga(s) H {s) — Hals) + Fs(s)]

©

Block diagram reduction by maving blocks
Problem Reduce the system shown in Figure 5.11 10 a single transfer function.

Figure 5.11
Block diagram for
Example 5.2

Solution In this example we make use of the equivalent forms shown in Figures
5.7 and 5.8. First, move Gy(s) 10 the left past the pickoff point to create parallel
subsystems, and reduce the feedback system consisting of Gs(s) and Hs(s). This
result is shown in Figure 5.12(a).

Second, reduce the parallel pair consisting of 1 G(s) and unity, and push
G (5) 10 the right past the summing junction, creating parallel subsystems in the
feedback. These results are shown in Figure 5.12(b).
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Third, collapse the summing junctions, add the two feedback elements
together, and combine the last two cascaded blocks. Figure 5.12(c) shows these
results.

Fourth, use the feedback formula to obrain Figure 5.121d).

Finally, multiply the two cascaded blocks and obtain the final result, shown in
Figure 5.12(¢).

MATLAB _ ) Students who are using MATLAB should now run chSpl i Appendix B to perform block

diagram reduction.

Skill-Assessment Exercise 5.1

Figure 5.13
Block diagram for
SkitAssessment
Bercise 5.1

Problem Find the equivalent transfer function, 7(s) = C(s); R(s), for the system
shown in Figure 5.13.

s
—

S+1
5% + 52+ 25

Answer I{s) = 3
The complete solution is on the accompanying CD-ROM.

In this section we examined the equivalence of several block diagram configu-
rations containing signals, systems, summing junctions, and pickoft points. These
configurations were the cascade, parallel, and feedback forms. During block di-
agram reduction, we attempt to produce these easily recognized forms and then
reduce the block diagram to a single transfer function. In the next section we will
examine some applications of block diagram reduction.

5.3 Analysis and Design of Feedback Systems

An immediate application of the principles of Section 5.2 is the analysis and design
of feedback systems that reduce to second-order systems. Percent overshoot, set-
tling time, peak time, and rise time can then be found from the equivalent transfer
function.

Consider the system shown in Figure 5.14, which can model a control system
such as the antenna azimuth position control system. For example, the transfer
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Figure 5.14
Second-order
feedback control
system

Example 5.3

Figure 5.15
Feedback system for
Example 5.3

R(s)

C(s)
— -

function, K s(s + a), can model the ampliers, motor, load, and gears. From Eq,
(5.9). the closed-loop transfer function, 7(s), for this system is

K

9= sT+as+K

{5.10)
where K models the amplifier gain, that is, the ratio of the cutput voltage to the
input voltage. As K varies, the poles move through the three ranges of operation of
a second-order system: overdamped, critically damped, and underdamped. For ex-
ample, for K between Oand a® 4, the poles of the system are real and are located at

a_ 4K
Sz =5t —0— 6.1
- 2 2
As K increases, the poles move along the real axis, and the system remains
overdamped until K = a? ‘4. At that gain, or amplification, both poles are real and
equal. and the system is critically damped.
For gains above o? 4, the system is underdamped, with complex poles lo-
cated at

n2 = —g i G129
Now as K increases, the real part remains constant and the imaginary part increases.
Thus, the peak time decreases and the percent overshoot increases, while the set-
tling time rematns constant.
Let us look at two examples that apply the concepts to feedback control sys-
tems. In the first example we determine a system'’s transient response. In the second
example we design the gain to meet a transient response requirement.

Finding transient response

Problem For the system shown in Figure 5.15, find the peak time, percent over-
shoot, und settling time.

Cls)
.
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Solution The closed-loop transfer function found from Eq. (5.9) is

@) = ﬁ (5.13)
From Eq. (4.18),
w=V25=5 (5.14)
From Eq. (4.21),
2w, = 5 (5.15)
Substituting Eq. (5.14) into (5.15) and solving for { yields
=05 5.16)

Using the values for { and w, along with Egs. (4.34), (4.38), and (4.42), we find,
respectively,

T
T, = ——== = 0.726second (8 )]
e wa 1 -2
%0S = ¢ 7178 % 100 = 16303 (5.18)
T, = - = 16seconds 5.19)
{w,

Students who are using MATLAB should now run ch5p2 in Appendix B. You will learn how
o perform block diagram reduction followed by an evaluation of the closed-loop system's
transient response by finding T,,, %O0S, and T.. Finally, you will learn how to use MATLAB to
generate a closed-loop step response. This exercise uses MATLAB to do Example 5.3.

MATLAB's Simulink provides an method of sir feedback systems to obtain
the time response. Students who are performing the MATLAB exercises and want to explore
the added capabilty of MATLAB's Simulink should now consult Appendix C, “MATLAB's
Simulink Tutorial”, Example C.3 includes a discussion about, and an example of. the use of
Sinulink to simulate feedback systems with nonlineartes.

Gain design for transient response

Problem Design the value of gain, K, for the feedback control system of Figure
5.16 so that the system will respond with a 10% overshoot.

Solution The closed-loop transfer function of the system is

) = (5:20)

s2+55+ K

_K_
SG+5)
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From Eq. (5.20),

2w, = 5 (5.21)
and
w, = JK 5.22
Thus,
=2 62
2/

Since percent overshoot is a function only of £, Eg. (5.23) shows that the percent
overshuot is a function of X.
A 10% overshoot implies that = 0.591. Substituting this value for the damp-
ing ratio into Eq. (5.23) and solving for X yields
K=179 G249

Although we are able to design for percent overshoot in this problem, we could
not have selected settling time as a design criterion because, regardless of the value
of K, the real parts, —2.5, of the poles of Eq. (5.20) remain the same.

Skill-Assessment Exercise 5.2

Problem  For a unity feedback control system with a forward-path transfer

function G(s) = design the value of 4 to yield a closed-loop step re-

_16
s(s +a)”
sponse that has 5% overshoot.
Answer a =552

The complete solution is on the accompanying CD-ROM.

5.4 Signal-Flow Graphs

Signal-flow graphs are an alternative to block diagrams. Unlike block dragrams.
which consist of blocks, signals, summing junctions, and pickoff points, a signal-
flow graph consists only of branches, which represent systems, and nodes, which
represent signals. These elements are shown in Figure 5.17(a) and (b), respectively.
A system s represented by a line with an arcow showing the direction of signal flow
through the system. Adjacent to the line we write the transfer function. A signal is
anode with the signal’s name written adjacent to the node.

Figure 5.17(c) shows the interconnection of the systems and the signals. Each
signal is the sum of signals flowing into it. For example, the signal
Vi) = Ri(5)Gi(s) — Ra(s)Gas) + Ra(s)Gts). The signal Cals) = V(s)Gsls) =
Ri©)GIGs(S) — RiASGIGs(s) + Ra(9)G3(s)Gs(s). The signal Cils) =
—V(5)Ge(s) = —Ry(DGi(5)Ge(s) + Ra(s)Ga(5)Ge(s) — Rs(s)G3(3)Ge(s). Notice
that in summing negative signals we associate the negative sign with the system
and not with a summing junction. as in the case of block diagrams.

To show the parallel between block diagrams and signal-flow graphs, we will
take some of the block diagram forms from Section 5.2 and convert them to signal-
flow gruphs in Example 5.5. In each case we will first convert the signals to nodes



Flgure 5.17
SignaHlow graph
components:

a. system;
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Flgure 5.18
Pukiing signaHiow
graphs:

a. cascaded system
nodes {from Figure
53(a)

b. cascaded system
sgrakiow graph;

€. parallel system
nodes (from Figure
550l

0. parallei system
signaHiow graph;
e.feedback system
nodes (from Figure
5600,

Ffeedback system
signaHlow graph
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Riis)

Ry
Gis)
O Rafsy
Visy
@ ® ©

and then interconnect the nodes with system branches. In Example 5.6 we will
convert an intricate block diagram to a signal-flow graph.

Converting common block diagrams to signal-flow graphs
Problem Convertthe cascaded, parallel, and feedback forms of the block diagrams
shown in Figures 5.3(a), 5.5(a), and 5.6(b), respectively, into signal-flow graphs.

Solution In each case we stant by drawing the signal nodes for that system. Next
we interconnect the signal nodes with system branches. The signal nodes for the
cascaded, parallel, and feedback forms are shown in Figure 5.18(a), (c), and (¢),

Gi(s)  Gas) _ Gals)
RO @] O Ocw R O——0O0——0——_C
Vals) Viis) Vatsy Vis)

(@ @

O

Vits)

RO O Oc)
Va(s)

O

Vil
©

R0 O O OaGs
El5)

te) (3]
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respectively. The interconnection of the nodes with branches that represent the
subsystems is shown in Figure 5.18(b), (d), and (£} for the cascaded, parallel, and
feedback forms, respectively.

Example 5.6
Converting a block diagram to a signal-flow graph
Problem Convert the block diagram ot Figure 5.11 1o a signal-flow graph.
Figure 5.19 RO e} e} e} O (e} O as
Signallow graph Viis) Vags) Wt Vits) Vsiar
development:
a. signal nodes, O O O
b. signaHlow graph, V() Va03) Vis)
c. smplfied s1 gnak @
flow graph

1]
Riy) O

Hi®
®)

~Hy(s)
(e)
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Solution Begin by drawing the signal nodes, as shown m Figure 5.19(a). Next,
interconnect the nodes, showing the direction of signal flow and identifymg each
transfer function. The result is shown in Figure 5.19(p). Notice that the negative
signs at the summing junctions of the block diagram are represented by the negative
transfer functions of the signal-flow graph. Finally. if desired, simplify the signal-
flow graph to the one shown in Figure 5.19(c) by eliminating signals that have a
single flow in and a single flow out, such as Va(s), Ve(s), V(s), and Vg(s).

Skill-Assessment Exercise 5.3
Problem Convert the block diagram of Figure 5.13 to a signal-flow graph.
Answer  The complete solution is on the accompanying CD-ROM.

5.5 Mason’s Rule

Earlier in this chapter, we discussed how to reduce block diagrams to single transfer
functions. Now we are ready to discuss a technique fur reducing signal-flow graphs
to single transfer functions that relate the output of a system fo its input.

The block dlagram reduction lechmque we studied in Section 5.2 requires suc-
cessive i of fi ips in order to arrive at the system
transfer function. On the other hand, Mason’s rute for reducing a signal-flow graph
to a single transfer function requires the application of one formula. The formula
was derived by S. J. Mason when he related the signal-flow graph to the simulta-
neous equations that can be written from the graph (Mason, 1953).

In general, it can be complicated to implement the formula without making

istakes. Specifically. the exi of what we will later call nontouching loops
increases the cornplexity of the formula. However, many systems do not have non-
touching loops. For these systems, you may find Mason’s rule easier to use than
block diagram reduction

Mason’s formula has several components that must be evaluated. First, we
must be sure that the definitions of the components are well understood. Then we
must exert care m evaluating the components. To that end, we discuss some basic

to signal-flow graphs; then we state Mason’s rule and do an

example.

Definitions

Loop gain. The product of branch gains found by traversing a path that starts at a
node and ends at the same node. following the direction of the signal flow, without
passing through any other node more than once. For examples of loop gains, see
Figure 5.20. There are four loop gains:

1. GoH(S) (5.252)
2. Ga($)Ha(s) (5.25b)
3. Gy(s)Gs(s)Ha(5) (5.25¢)
4. Gis)Gs(IH(S) (5.25d)

Forward-path gain. The product of gains found by traversing a path from the
input node to the output node of the signal-flow graph in the direction of signal
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Figure 5.20
Signatfiow graph
for demonstrating
Mason’s rule

Gels)

GH$)

Hils

flow Examples of furward-path gains are also shown in Figure 5.20. There are two
forward-path gains:

1. Gi(NG1(5)G3(5)Ga(5)G5(s)G(5) (5.269)
2. GiS)GANGHSGS)Ge(5)G(5) (5.26b)

Noniouching loops. Loops that do not have any nodes in common. In Fig-
ure 5.20, loop Ga(s)H, (s) does not touch loops Ga(s)Ha(5), Ga(s)Gs(s)Hs(s), and
Gals)Ge(s)H3(s).

Nontouching-loop gain. The product of loop gains from nontouching loops
taken two, three, four, or more at a fime. In Figure 5.20 the product of loop
gain Gy(s)Hi(s) and loop gain Ga(s)Ha(s) is a nontouching-loop gain taken two at
atime. In summary, all three of the nontouching-loop gains taken two at a time are

L GAH ()[C4()H ) (5.273)
2. [GAIHUHCH(5)C5(s)Hs3(5)] (5.275)
3. [CAHUNNGHS)Ge()H3(5)] 52%)

The product of loop gams [Ga(5)Gs(s)H3(5)I[Gals)Gs(s)H3(s)] 15 not anontouching-
loop gain since these two loops have nodes in common. In our example there are
no nontouching-loop gains taken three at a time since three nentouching loops do
not exist in the example.

‘We are now ready to state Mason’s rule.

Mason’s Rule
The transfer function, C(s); R(s). of a system represented by a signal-flow graph s
AT
) o

Gy B % (5.28)

where
k — number of forward paths
Ti = the kth forward-path gain

A =1 -3 loopgains + 3 nontouching-loop gains taken two ata time — 5
nontouching-loop gains taken three at a time + > nontouching-loop
gains taken four at a time — -+
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Figure 5.21
Serabfow graph for
Example 5.7
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Ar = A— Y loop gain terms in A that touch the kth forward path. In other
words, A, is formed by eliminating from A those loop gains that touch
the kth forward path.

Notice the alternating signs for the components of A. The following example will
help clarify Mason's rule.

Transfer function via Mason's rule

Problem Find the transfer function, C(s) R(s), for the signal-flow graph in Figure
5.21.

Gi(s) Gos) Gals) Gy(s) Gs(s)

R O Cas

Hayls)

Solution First, identify the forward-path gains. In this example there is only one:

G1()GASCHSIGa(5)Gs(s) (5:29)
Second. identify the loop gains. There are four, as follows:
1. GoAS)H () (5.30a)
2. Ga($)Hi(s) (5.30b)
3. Gi()Hq(s) (5.30c)
4. GA5)Ga(5)Ga($)Gs(s)Ge(5)G2(s)Gr(s) (5.30d)

Third, identify the nontouching loops taken two at a time. From Egs. (5.30) and
Figure 5.21, we can see that loop 1 does not touch loop 2, loop 1 does not touch
loop 3, and loop 2 does not touch loop 3. Notice that loops 1, 2, and 3 all touch loop
4. Thus, the cornbinations of nontouching loops taken two at a time are as follows:

Loop 1 and loop 2: Go(s)H(()Ga(s)Ha(5) 5.31a)
Loop 1 and loop 3: Ga(s)H(8)G()Hals) (5.31b)
Loop 2 and loop 3: Ga(5)H2(sYG7(s)Ha(s) (5.31¢0)

Finally, the nontouching loops taken three at a time are as follows:
Loops 1, 2, and 3: GAs)H1 ()G 4()H2(5)G(s)Ha(s) (5.32)
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Now, from Eq. (5.28) and 1ts detinitions, we form A and A,. Hence,
A =1 - [Gxs)H(s) + Gals)Ha(s) + G(s)Ha(s)
+ G2As)G3(8)G4($)G5(3)Ge()GHS)G5(5)
+ [GoAMH1(5)Ga(s)H25) + GASIHS)GAS)Hals)
+ Ga(SH)GA5)a(s)]

~ [GAOH ()CS)H2(5YG(5)Ha(9)] (5.33)
‘We form Ay by eliminating from A the loop gains that touch the kth forward path:
Ay = 1 - Gys)Ha(s) (3.34

Expressions (5.29), (5.33), and (5.34) are now subsuituted mto Eq. (5.28),
yielding the transfer fonction:

_ TiA _ [Gi)GAS)G38)Ga(s)Gs I — Gr(s)Ha(s)]
0 =5 - )

5.3

Since there is only one forward path, G(s) consists of only one term, rather than a
sum of terms, each coming from a forward path.

Skill-Assessment Exercise 5.4

Problem  Use Mason’s rule to find the transfer function of the signal-flow
diagram shown in Figure 5.19(c). Notice that this is the same system used
in Example 5.2 to find the transfer function via block diagram reduction,
Answer

Gi(s)GyN + o))
[1+ Ga() (s} + GI(NGH (1 + GaHAs)]

The complete solution is on the accompanying CD-ROM,

() =

stategpace 5.6  Signal-Flow Graphs of State Equations

In this section we draw signal-flow graphs from state equations. At first this process
will help us visualize state variables. Later we will draw signal-flow graphs and
then write alternate representations of a system in state space.

Consider the following state and output equations:

¥ =2x — S50+ 3x5+2r (5.36a)
X2 = —6x; 2x3 4 2x3+ 5r (5.36b)
Jy=x—3n—4dn+Tr (5.36¢)
y = —4x + 63, +Ox3 (5.36d)

First, identify three nodes to be the three state variables, xy, x, and x3; also
identify three nodes, placed to the left of each respective state variable, to be the
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Figire5.22 RO e} e} @) ¢ o o

Stages of X5t Xy aXals)  Xofs)  sKst Xy(e)
development of 2 (a)

sgrafion graph
for the system of
Fas 536 ! H H

. Place nodes; RO o—-0 Oo——0 Oo——=0 Oris
b.tercomect KK A X Y X

stae variables and @

dematves;
cfomdy d;
d. form dog cit;
(figure contmues)

Ovs

derivatives of the state variables. as in Figure 5.22(a). Also identify a node as the
input, r, and another node as the output, y.

Next interconnect the state variables and their derivatives with the defin-
g integration, 1 s, as shown in Figure 5.22(b). Then using Eqs. (5.36), feed
to each node the indicated signals, For example, from Eq. (5.364), X receives
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Figure 5.22
{continued)
e.form dxg d;
1. form output.

(63

2x,—5x2+3x3+2r, as shown in Figure 5.22(c). Similarly, i, recerves —6x—2x+
2x3+5r, a5 shown in Figure 5.22(d), and i3 receives x; — 3x; —4x3+7r, as shownin
Figure 5.22(e). Finally, using Eq. (5.36d), the output. y, receives —4x, + 6x2 +9x3,
as shown in Figure 5.22(f ), the final phase-variable representation, where the state
variables are the outputs of the integrators,
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Skill-Assessment Exercise 5.5

State Space

Problem Draw a signal-flow graph for the following state and output equations:

-2 1 [ 0
x-| 0 -3 I[x+|0|r
-3 -4 -5 1

y=[0 1 O

Answer The complete solution is on the accompanying CD-ROM.

In the next scetion, the signal-flow model will help us visualize the process of
determining alternative representations in state space of the same system. We will
see that even though a system can be the same with respect to its input and output
terminals, the state-space representations can be many and varied,

5.7 Alternative Representations in State Space

In Chapter 3 systems were represented in state space in phase-variable form. How-
ever, system modehing in state space can take on many representations other than
the phase-variable form. Although each of these models yields the same cutput for
a given input, an engineer may prefer a particular one for several reasons. For ex-
ample, one set of state variables, with its unique representation. can model actual
physical variables of a system, such as amplifler and filter outputs

Another motive for choosing a particular set of state variables and state-space
model is ease of solution. As we will see, a particular choice of state variables can
decouple the system of si differential equations. Here each equation is
written in terms of only one state variable, and the solution is effected by solving
n first-order differential equations individually.

Ease of modeling is another reason for a particular cheice of state variables.
Certain choices may facilitate converting the subsystem to the state-variable repre-
sentation by using recognizable features of the model. The engineer learns quickly
how to write the state and output equations and draw the signal-flow graph, both
by inspection. These converted subsystems generate the definition of the state vari-
ables.

‘We will now look at a few representative forms and show how to generate the
state-space representation for each.

Cascade Form

‘We have seen that systems can be represented in state space with the state variables
chosen tobe the phase variables, that is, variables that are successive derivatives of
each other. This is by no means the only choice. Returning to the system of Figure
3.10(a), the transfer function can be represented alternately as

C) 24

Ro) T GrG e+ 531

Figure 5.23 shows a block diagram representation of this system formed by cascad-
ing each term of Eq. (5.37). The vutput of each first-order system block has been
labeled as a state variable. These state variables are not the phase variables.
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Figure 5.23
Representahon of
Figure 3.10 system as
cascaded frstorder
systems

Figure 5.24

a, Firstorder
subsystem;

. signal-fiow graph
for Figure 5 23
system

LI I 1 L JEI e
s+2 [ xg9) | 543 [Xyx9) | s+4 |x9

‘We now show how the signal-flow graph can be used 10 obtain a state-space
representation of this system. In order to write the state equations with our new set
of state variables, it is helpful ro draw a signal-flow graph first, using Figure 5.23 as
a guide. The signal flow for each first-order system of Figure 5.23 can be found by
transforming each block into an equivalent differential equation. Each first-order
block is of the form

Gl _ 1
R~ ra 69
Cross-multiplying, we get
(s + a)Ci(s) = R{s) (539
After taking the inverse Laplace transform, we have
4D+ e = ret 640
;3
Solving for dedn) dt yields
? = —aici{t) + 1 () .41

Figure 5.24(a) shows the implementation of Eq. (5.41) as a signal-flow graph. Here
again, a node was assumed for c(7) at the output of an integrator, and its derivative
was formed at the input.

Cascading the transfer tunctiens sbown n Figure 5.24(a), we arnve at the sys-
tem representation shown in Figure 5.24(b).2 Now write the state equations for the

ZNote that node X3(s) and the following node cannot be merged, or else the input fo the first
integrator would be changed by the feedback from X(s), and the signal Xa(s) would be lost. A
simufar argument can be made for X;(s) and the following rode.
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new rep ion of the system. R ber that the derivative of a state variable
will be at the input to each integrator:
=4+ x (5.42a)
iy = -3+ x3 (5.42b)
iy = — 23 + 24r (5.42c)

The output equation is written by inspection from Fignre 5.24b):

y=dn=x (5.43)
The state-sp ion is by rewniting Eqs. (5.42) and (5.43) in
vector-matrix form
-4 1 0 0
k=10 -3 1[x+|o|r (5.442)
0 0 -2 24
y=[ 0 0Ox (5.44b)

Comparing Egs. (5.44) with Figure 5.24(b), you can form a vivid picture of the
meaning of some of the components of the state equation. For the following discus-
sion, please refer back to the general form of the state and output equations, Egs.
(3.18) and (3.19).

For example, the B matrix is the input matrix since it contains the terms that
couple the input, r{¢), to the system. In particular, the constant 24 appears in both
the signal-flow graph at the input, as shown in Figore 5.24(b), and the input matrix
in Egs. (5.44). The C maltrix is the output matrix since it contains the constant
that couples the state variable, xy, to the output, €{2). Finally, the A matrix is the
system matrix since it contains the terms relative to the internal system itself. In
the form of Egs. (5.44), the system matrix actually contains the system poles along
the diagonal.

Compare Egs. (5.44) to the phase-variable represenlalmn in Eqs (3 59) In lhal
representation the coefficients of the system’s istic p
along the last row, whereas in our current representation the roots of the Lharacter-
istic equation, the system poles, appear along the diagonal.

Parallel Form

Another form that can be used to represent a system is the parallel form. This form
leads to an A matrix that is purely diagonal, provided that no system pole is a
repeated root of the characteristic equation.

Whereas the previous form was arrived at by cascading the individual first-
order subsystems, the parallel form is derived from a partial-fraction expansion of
the system transfer function. Performing a partial-fraction expansion on our exam-
ple system, we get

C(s) 24 12 24 12

Ro)  GroG+de+d) G+ Grd) o+ d 645
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Figure 5.25
SignaHiow

of Eq. {5.45)

Equation (5.45) the sum of the indivi first-order To
arrive at a signal-flow graph, first solve for C(s).
12 24 12
C) = R(s)—(s T ROy 3+ RO v (5.46)

and recognize that C(s) is the sum of three terms. Each term is a first-order subsys-
tem with R(s) s the input. Formulating this idea as a signal-flow graph renders the
representation shown in Figure 5.25

Once again, we use the signal-flow graph as an aid to obtaining the state equa-
tions. By inspection the state variables are the outputs of each integrator, where the
derivatives of the state variables exist at the integrator inputs. We write the state
equations by summing the signals at the integrator inputs:

* = —2x +12r (5.:475)
3= -3x, -24r (5470
ja = x4 12r (5479

The output equation is found by summing the signals that give c{r):
y=c®) =x1+x2+x; (548)
In vector-matrix form Eqgs, (5.47) and (5.48) become

-2 0 0 12
x=| 0 -3 Ofx+|-24|r 549
0 0 -4 12
and
y=[I 1 1x (5.50)

Thus, our third representation of the system of Figure 3.10{a) ytelds a diagonal
system matrix, What is the advantage of this representation? Each equation is 2
first-order differential equation in only one variable. ‘Thus, we would solve these

quations indep ly. The ions are said to be decoupled.
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Students who are using MATLAB should now run chSp3 in Appendix B. You will lear how to
use MATLAB to convert a transfer function to state space in a specified form. The exercise
solves the previous example by representing the transfer function in Eq. (5.45) by the
state-space representation n parallel form of Eq. (5.49).

If the denominator of the transfer function has repeated real roots, the parallel
form can still be derived from a partial-fraction expansion. However, the system
matrix will not be diagonal. For example, assume the system

) __ s+3)

R - GHDG+D 651
which can be expanded as partial fractions:
cw_ 2 1 1
Ro) G+ G D G D 65D
P; ing as before, the signal-flow graph for Eq. (5.52) 1s shown in Figure

5.26. The term —1 (s + 1) was formed by creating the signal flow from X,(s) to
C(s). Now the state and output equations can be written by inspection from Figure
5.26 as follows:

X1 =-—x +x (5.53a)
Xy = - X2 +2r (5.53b)
i = -2+ r (5.53¢)
y=ct)= x — %xz + x3 (5.53d)
or, in vector-matrix form,
ERE
x=| 0 -1 O]x+[2]|r (5.54a)
0 0 -2 1
[ (5.54b)
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This system matrix, although not diagonal, has the system peles along the diagonal,
Notice the 1 off the diagonal for the case of the repeated root. The form of the systen
matrix is known as the Jordan canonical form.

Controller Canonical Form

Another representation that uses phase variables is called the conrroller canoncal
Jform, so named for its use in the design of controllers, which is covered in Chapter
12. This form is obtained from the phase-variable form simply by ordering the
phase variables in the reverse order. For example. consider the transfer function

Cis) _ 24+ TIs+2
R $+97+265+24
The phasc-variable form was derived in Example 3.5 as

S| l
| = + 0 r (5.562)
X3 —24 —26

y=12 1 l][xz} (5.560)

X3

G(s) — (5.55)

where y = c{r). Renumbering the phase variables 1n reverse order yields

& 1
q| - + o r (5.57)
3 —24 —26 -9 x|

X3
y-[2 7 lijx
X1
(.57)
Finally, rearranging Egs. (5.57) in ascendmng numerical order yields the controller

canonical form’® as
I —9 —26 —z4
2 + O r (5.58a)
X I

x
y=[1 7 2|[x (5.58b)
x

*Readers who are usmg MATLAB to convert from transfer functions to state space using the
ccommand tf2ss will notice that MATLAB reports the results in controller canomcal form.
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Figure 5.27
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Figure 5.27 shows the steps we have taken on a signal-flow graph. Notice that the
controller canonical form is obtained simply by renumbering the phase variables
in the opposite order. Equations (5.56) can be obtained from Figure 5.27(a). and
Eqgs. (5.58) from Figure 5.27(b).

Nonce that the phase-variable form and the controller canonical form contain
the of the ck istic poly ial in the bottom row and in the top
row, respectively. System matrices that contain the coefficients of the character-
istic polynomial are called companion matrices to the characteristic pelynomial.
The ph: riable and il ical forms result in a lower and an upper
companion system matrix, respectively, Companion matrices can also have the co-
efficients of the characteristic polynomial in the left or right column. In the next
subsection, we discuss one of these representations.

Observer Canonical Form

The observer canonical form, so named tor its use mn the design of observers (cov-
ered in Chapter 12), is a representation that yields a left companion system matrix.
As an example, the system modeled by Eq. (5.55) will be represented in this form.
Begin by dividing all terms in the numerator and denominator by the highest power
of 5, 5%, and btain

1,7,2
cw__s &8
—_— 5.59
R 9 26 24 639
stety
Cross-muluplying yields
[' +7+—]R(\)— [l +9+E+7]C(s) (5.60)

Combiming terms of like powers of integralion gives

Clsy = ! [Ris) — 9C(s)] + LA [7R(s) — 26C(s)) + 1 [2R(s) — 23C(s)  (5.61)
5 st 3
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Figure 5.28
Signalfiow graph for
observer canorwcal
form vanables:

. planming;

b. implementation

or

Ci) = 5[[12(3‘) —9C(s) + %({mm — 26C(s) + ;[ZR(J) - 24C(s)])]

(5.62)

Equation (5.61) or (5.62) can be used to draw the signal-flow graph. Start with three
integrations. as shown in Figure 5.28(a).

Using Eq. (5.61), the first term tells us that output C(s) is formed, in part, by
integrating [R(s)—9C(s)]. We thus form [R(s) ~ 9C(5)] at the input to the integrator
closest to the output, C(s). as shown in Figure 5.28(b). The second term tells us that
the term [7R(s) — 26C(s)] must be integrated twice. Now form [7R(s) — 26| (s a
the input to the second integrator. Finally. the last term of Eq. (5.61) says [2R(s) -
24C(s)) must be integrated three times. Form [2R(s) — 24C(5)] at the input to the
first integrator.

Identifying the stete variables as the outputs of the integrators, we write the
following state equations:

X = —9x +x;z +r (5.63a)
k) = —26x, +x3+7r (5.630}
3 = —24x, +2r (5.63c)

The output equation from Figure 5.28(b) is
y=cd=x (5.64)

1
5 t
RO O_’_O_’—O—’—O—'—O—'—O———k, Cis1

-
|
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Figure 5.29
Feedback
contral system
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In vector-matrix torm Egs. (5.63) and (5.64) become

-9 10 1
Xx=|-26 0 1|x+|7|r (5.65a)
—24 0 0 2

y=[1 0 Ox (5.6b)

Notice that the form ot Egs. (5.65) 1s similar to the phase-variable form. except that
the coefficients of the denominator of the transfer function are in the first colurn.
and the coefficients of the numerator form the input matrix. B. Also notice that
the observer canomcal form has an A matrix that is the transpose of the controller
canonical form, a B vector that is the pose of the 2! ical form’s
C vector. and a C vector that is the pose of the ! form’s
B vector. We therefore say that these two forms are duals. Thus, if a system is
described by A. B, and C, its dual is described by Ap = A7.Bp = C7.Cp = B7
You can verify the significance of duality by comparing the signal-flow graphs of
a system and its dual. Figures 5.27(b) and 5.28(b), respectively. The signal-fiow
graph of the dual can be obtained from that of the original by reversing all arrows,
changing state variables to their derivatives and vice versa, and interchanging ({(s)
and Ris), thus reversing the roles of the input and the output.

We conclude this section with an example that demonstrates the application of
the previously discussed forms to a feedback control system.

Stat

P Pl fion of systerns.

Problem Represent the teedback control system shown in Figure 5.29 in state
space. Model the forward transfer function in cascade form.

Ro) < onEe) | 1
. (s+2)(s+ 3 .

Solution First we model the forward transfer function in cascade form. The gain
of 100, the pole at —2, and the pole at —3 are shown cascaded in Figure 5.30(a).
The zero at —5 was obtained using the method for implementing zeros for a system
represented in phase-variable form, as discussed in Section 3.5.

Next add the feedback and input paths, as shown in Figure 5.30(b). Now, by
nspection, write the state equations:

Crs
-

=3+ x (5.662)
Jp = —2x2 + 100(- — ©) (5.66b)

But, from Figure 5.30(b),
€ =5x+02—30) =2 +x; (5.67)
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Figure 5.30
Creating a signal-
flow graph for the
Figure 5.29 system:
. forward transfer
funchon;

b. complete system

Substituting Eq. {5.67) into (5.66b). we find the state equations for the system:

¥ = —3x +x; (5.68a)
X3 = —200x, — 102x2 + 1007 (5.68b)
The output equation is the same as Eq. (5.67). or
y=clt) = 2x; +x; (5.69
In vector-matrix form
= [72'0(3) 7[0;],( + []wo]r (5.700)
y=[2 1]x {5-700)

Skill-Assessment Exercise 5.6

Problem Represent the feedback control system shown in Figure 5.29 in state
space. Model the forward transfer function in controller canonical form.

Answer
o= [F105 —s0s]  [1],
- | 0 0
y=[100 500Ix
The complete solution is on the accompanying CD-ROM.
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Figure 5.31 State-space forms for Cis) R(s) = {s + 3)/I(s + 4)s + 6]l. Note: y = cit).
Form Transter Function Signal-Flow Diagram State Equations

Phase )
variable F ety
—12 32
Parallel Faateee
] G+3)
Cascade ey sl
10 —24 1
Cnntn_)lle‘r ' . x= ": 20]" * [0]’
_1l .
canonical  pmqpn s+ R velt 3
Observer 12
canonical o 2
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State Space

In this section we used transfer functions and signal-flow graphs to represent
systems in parallel, cascade, controller canonical, and observer canonical forms, in
addition to the phase-variable form. Using the transfer function C(s), R(s) = (s +
3) [(s+4)(s +6)] as an example, Figure 5.31 compares the aforementioned forms
Notice the duality of the ller and observer ical forms, as
by their respective signal-flow graphs and state equations. In the next section we
will explore the possibility of transforming between representations without using
transfer functions and signal-flow graphs.

5.8 Similarity Transformations

In Section 5.7 we saw that systems can be represented with different state variables
even though the transfer function relating the output to the input remains the same.
The various forms of the state equations were found by manipulating the transfer
function, drawing a signal-fiow graph, and then writing the state equations fromthe
signal-flow graph. These systems are called similar systems. Although their state-
space representations are different, similar systems have the same transfer function
and hence the same poles and eigenvalues.

‘We can make transformations between similar systems from one set of state
equations to another without using the transfer function and signal-flow graphs.
The results are presented in this section along with examples. Readers who have
not broached this subject in the past or who wish to refresh their memories are en-

d to study Appendix K on the panying CD-ROM for the derivation.
The result of the derivation states: A system represented in state space as

x Ax Bu (5.71a)
vy Cx-Du G.71b)
can be transformed to a similar system,
z =P 'APz +P 'Bu (5.72a)
y -CPx Du (5.72b)

where, for 2-space,

PoIu, Uy = (5.720)
:[”“ ”””:‘] P2 (5.72d)
P2y paajiza
and
z P (5.72¢)

Thus, P is a transformation matrix whose columns are the coordinates of the basis
vectors of the z;22 space expressed as linear combinations of the xx; space. Let us
look at an example.
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Example 5.9
Similarity transformations on state equations

Problem Given the system represented in state space by Eqgs. (5.73),
0 1 0 0
x=[ 0 o0 1|x+iof« (5.73a)
-2 -5 -7 1
y=[ 0 0)x {5.73b)

transform the system to a new set of state variables, 2, where the new state vanables
are related to the original state variables, x, as follows:

=2x (5.742)
z3 = 3n +2x; (5.74b)
z3= x; +4x3+5x; (5.74c)

Solution Expressing Egs. (5.74) in vector-matrix form,

200
z=13 2 o|x=P'x (5.75)
145
Using Egs. (5.72) as a guide,
200 1 0 05 0 0
PT'AP = |3 2 0 0 -075 05 0
1 -5 —7 05 04 02
-15 1
=|-125 07 0,4 (5.76)
-25 04 -62

SR T N

CP=[1 0 0][—075 05 0 ]=[0,5 o0 0l (5.78)
05 —04 02

Therefore. the transformed system is
-15 1 0 0
z=|-125 07 04|z+|0ju (5.79a)
-25 04 -62 5
y=[05 0 0=z (5.79b)



288

Chapter 5 Reduction of Multiple Subsystems

MATLAB

Students who are using MATLAB should now run chSp4 i Appendix B. You will learn howto
perform smilarity transformations. This exercise uses MATLAB to do Example 5.9

Thus far we have talked about transforming systems between basis vectors in
a different state space. One major advantage of finding these similar systems is
apparent in the transformation to a system that has a diagonal matrix.

Diagonalizing a System Matrix

In Section 5.7 we saw that the parallel form of a signal-flow graph can yield o
diagonal system matrix. A diagonal system matrix has the advantage that each state
equation is a function of only one state variable. Hence, each differential equation
can be solved indep ly of the other i We say that the equations are
decoupled.

Rather than using partial fraction expansion and signal-flow graphs, we can
decouple a system using matrix transfurmations. If we find the correct matrix, P,
the transformed system matrix, P~'AP, will be a diagonal matrix. Thus, we are
looking for a transformation to another state space that yields a diagonal matrix
in that space. This new state space also has basis vectors that lie along its state
variables. We give a special name to any vectors that are collinear with the basis
vectors of the new system that yields a diagonal system matrix: they are called
eigenvectors. Thus, the coordinates of the eigenvectors form the columns of the
transformation matrix, P, as we demonstrate in Eq. (K.7) in Appendix K on the
accompanying CD-ROM.

First, let us formally define eigenvectors from another perspective and then
show that they have the property just described. Then we will define eigenvalues.
Finally. we will show how 1o diagonalize a matrix.

Definitions
Eigenvector. The eigenvectors of the matrix A are all vectors. X; # 0. which under
the transformation A become multiples of themselves: that is.

AX; - AXi (5.80)

where A,'s are constants
Figure 5.32 shows this definition of eigenvectors. If Ax is not collinear with
x after the transformation, as in Figure 5.32(a), x is not an eigenvector. If Ax

is collinear with X after the transformation, as in Figure 5.32(b). x is an eigen-
vector.

Eigenvalue. The eigenvalues of the matrix A are the values of A; that sarisfy
Eq. (5.80) for x; # 0.

To find the eigenvectors, we rearrange Eq. (5.80). Eigenvectors. x;, satisfy

0 =I-Ax (5.81)
Solving for x; by premultiplying both sides by (A1~ 4)~! yields

adj(AI - 2
det(A] —A)

x=0AI-A7'0= (5.82)
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x X2
ax
v
" /“./ *
X x
@) ®)

Figure 5.32
Tobe an eigenvector, Since x; # 0, a nonzero solution exists if
Betarsiomabon Ax det(Al Ay =0 (5.83)
mustbe collnear with

¥ thus, m (2), x1s not
anesgemector, in {b),
s,

Example 5.10

from which A;. the eigenvalues, can be found.

We are now ready to show how to find the eigenvectors, x;. First we find the
eigenvalues, A;, using det(A1 — A) = 0, and then we use Eq. (5.80) to find the
eigenvectors.

Finding eigenvectors

Problem Find the eigenvectors of the matrix

_[-3 1
A—[ . 73] (5.84)

Solution The eigenvectors, x;, satisfy Eq. (5.81). First, use det(AI — A) = O to
find the eigenvalues, A;, for Eq. (5.81):

R A

_A+3 1
-1 a+3
=N +6A+8 (5.85)

from which the eigenvalues are A = —2, and —4.
Using Eq. (5.80) successively with each eigenvalue, we have

Ax; = Ax;
=3 U]l L.
[ sl - =L o
or
=3 +x = —2n (5.87a)

x—3n =2 (5.87b)
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Example 5.11

from which x; = x;. Thus,

x = [‘] (588
(s
Using the other eigenvalue, -4, we have
x= [ ”] (589
—C

Using Eqs. (5.88) and (5.89), one choice of eigenvectors is
X = m and % = [_:] 90

‘We now show that if the eigenvectors of the matrix A are chosen as the basis
vectors of a transformation, P, the resulting system matrix will be diagonal. Let the
transformation matrix P consist of the eigenvectors of A, x;.

= |X1. X2, Xa, ... Xnl (3.91)

Since x; are eigenvectors, Ax; = A;x;, which can be written equivalently as a set
of equations expressed by

AP = PD (5.92)

where D is a diagonal matrix consisting of A,’s, the eigenvalues, along the diagonal,
and P is as defined in Eq. (5.91). Selving Eq. (5.92) for D by premultiplying by
P!, we get

D =P 'AP 693

Wthh is the system matrix of Eq. (5.72).

y, under th onP, ftheei of the sys-
tem matrix, lhe transformed system is diagonal, with lhe elgenva]ues of the system
along the diagonal. The transformed system is identical to that obtained using
partial-fraction expansion of the transfer function with distinct real roots.

In Example 5.10 we found eigenvectors of a second-order system. Let us con-
tinue with this problem and diagenalize the system matrix.

Diagonalizing a system in state space

Problem Given the system of Eqs. (5.94), find the diagonal system that 1s sim-
ilar.

x= [’f _;]x+ B]u (594
y=12 3Ix (5.9%)
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Solution First find the eigenvalues and the eigenvectors. This step was performed

in Example 5.10. Next form the transformation matrix P, whose columns consist
of the eigenvectors.

o
3 [1 71] (5.95)

Finally, form the sumilar system’s system matrx, mput matrx, and ougput
matrix, respectively.

S A B R

g2 12]_] 32
P B_[I 2 -1 2][2]‘[71 2] (5-96b)
P2 3]“ 7”—[5 -1 (5.969)
Substituting Egs. (5.96) into Egs. (5.72), we get
- [‘g _2]z+[_7 g]u 697
y=0 -z (5.970)

Notice that the system matrix is diagonal, with the eigenvalues along the diagonal.

Students who are using MATLAB should now run ch5p5 in Appendix B. This problem, which
uses MATLAB to diagonalize a system, 1s similar {but not identical) to Example 5.11.

Skill-Assessment Exercise 5.7

. @ Problem For the system represented in state space as follows:
S

w=[ i e fle

y=1[ 4]x
convert the system to one where the new state vector, z. is
2=} %«
I —4

Answer
z_[65 -85),,.[-3
“los —nsf* Tt -nf*
y=[08 -14)z
The complete solution 1s on the accompanying CD-ROM.
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Skil-Assessment Exercise 5.8

Figure 5.33
Alvn. 2 manned
submersible, explored
the wreckage of the
Titanic with a tethered
vobot, Jason dunior

Problem For the ongmal system of Skill-Assessment Exercise 5.7, find the
diagonal system that is similar.

Answer
._[-2 o] 839
i[5 S5
y=1I[-2121 26z

The complete solution is on the accompanying CD-ROM

In this section we learned how to move between different state-space rep-
resentations of the same system via matrix transformations rather than transfer
function manipulation and signal-flow graphs. These different representations are
called similar. The characteristics of similar systems are that the transfer functions
relating the output to the input are the same, as are the eigenvalues and poles.
A particularly useful transformation was converting a system with distinct, real
eigenvalues to a diagonal system matrix.

We now summarize the concepts of block diagram and signal-flow representa-
tions of systems, first through case study problems and then in a written Summary.
Our case studies include the antenna azimuth position control system and the Un-
manned Free-Swimming Submersible vehicle (UFSS). Block diagram reductionis
important for the analysis and design of these systerns as well as the control systems
on board Alvin (Figure 5.33), used to explore the wreckage of the Titanic 13,000
feet under the Atlantic in July 1986 (Ballard, 1987).




Case Studies

State Space

Case Studies 293

Antenna Control: Designing a Closed-Loop Response

This chapter has shown that physical subsystems can be modeled mathematically
with transfer functions and then interconnected to form a feedback system. The
interconnected mathematical models can be reduced to a single transfer function
representing the system from input to output. This transfer function. the closed-
loop transfer function, is then used to determne the system response.

The following case study shows how to reduce the subsystems of the antenna
azimuth position control system to a single, closed-loop transfer function in order
to analyze and design the transient response characteristics.

Problem Given the antenna azimuth position control system shown on the front
endpapers. Configuration 1. do the following:

a. Find the closed-loop transfer tunction using block diagram reduction.

b. Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

¢ Use the signal-flow graph found in (by along with Mason’s rule to find the
closed-loop transter function.

d. Replace the power amplifier with a transfer function of unity and eval-
uate the closed-loop peak time, percent overshoot, and settling time for
K = 1000.

€. For the system of (d). derive the expression for the closed-loop step
response of the system.

. For the simplified model of (d), find the value of K that yields a 10%
overshoot.

Solution Each subsystem’s transfer function was evaluated in the case study in
Chapter 2. We first assemble them into the closed-loop, feedback control system
block diagram shown in Figure 5.34(a).

a. The steps taken to reduce the block diagram to a single, closed-loop trans-
fer function relating the output angular displacement to the input angular
displacement are shown in Figure 5.34(a)(d). In Figure 5.34(b) the inpot
potentiometer was pushed to the right past the summing junction, creating a
unity feedback system. In Figure 5.34(c) all the blocks of the forward transfer
function are multiplied together, forming the equivalent forward transfer
function. Finally, the feedback formula is applied, yiclding the closed-loop
transfer function in Figure 5.34(d).

b. In order to obtain the signal-flow graph of each subsystem, we use the state
equations derived in the case study of Chapter 3. The signal-flow graph for
the power amplifier is drawn from the state equations of Egs. (3.87) and
(3.88), and the signal-flow graph of the motor and load is drawn from the
state equation of Eq. (3.98). Other subsystems arc pure gains. The signal-
fow graph for Figure 5.34(a) is shown in Figure 5.35 and consists of the
interconnected subsystems.
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Figure 5.34
Block diagram
reduction for the
antenna azmuth
position control
system-

a_ orignal;
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potentiometer to

the rght past the
summing junction,
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forward transfer
function;
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transfer function

Power Motor, load,

amplifier and gears

6,5
>

-

L

Output
potentiometer
@)
Preamplifier Power Motor, load,
and potentiometers  amplifier and gears

The state equations are written from Figure 5.35. First define the state
variables as the outputs of the integrators. Hence. the state vector is

X=|x2 (5.98)

Using Figure 5.35, we write the state equations by inspection:

+x2 {5.993)
— 1.71xz + 2.083¢, (5.99b)
— 100, + 31.8K6; (5.9%)
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Figure 5.35
SignaHflow graph for
the antenna azimuth
position control
system

along with the output equation,

y=86,=0Ix (5.100)
where | 7 = 0.318.
In vector-matrix form,
0 1 0 0
X = 0 —171 2083|x+| O |6 (5.1013)
—3.18K 0 =100 3L8K
y=[01 0 Ok (5.101b)

€. We now apply Mason’s rule to Figure 5.35 to derive the closed-loop trans-
fer function of the antenna azimuth position control system. First find the
forward-path gains. From Figure 5.35 there is only one forward-path gain:

= (l)(K)(IOO)(l)(2.083)(1)(1)(0.I) - 603K (5.102)
T s sNAs

&

Next identify the closed-loop gains. There are three: the power amplifier loop,
Gy, (s), with e, at the outpul; the motor loop, Gy2(s), with ¥z at the output; and
the entire system loop, Gy 3(s), with é, at the output.

Gp(s) = %00 (5.103a)
Grals) — %7' (5.103b)

Gpals) = (K)(l()())(l)(2.014l3)(l)(l )(0.1)(;1) = 76'?31( (5.103¢)
s s\s L s

Only Gy1{s) and Gy(s) are nontouching loops. Thus, the nontouching-loop
gain is
171
Gu©Gil) = (5.104)

Forming A and 4; in Eq. (5.28), we have

A = 1 = [Guls) + Gpa(s) + Grals) + [Gri(s)Gra(s)]

o, 1, 86K, 1l (5.105)

=1+ =
s E 52
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e

ad

and
A =1 (5.106)

Substituting Egs. (5.102), (5.105), and (5.106) into Eq. (5.28), we obtain the

closed-loop transfer function as

CE) _ hidy 6.63K

9= p9 =B = FrI0171I2 + 171s T 6.63K

(5.107)

. Replacing the power amplifier with unity gain and letting the preamplifier

gain, K, in Figure 5.34(b) equal 1000 yield a forward transfer function,
G(s). of

66.3
s+ 17D
Using the feedback formula to evaluate the closed-loop trunsfer function, we
obtain

) = (5.108)

66.3
2+ 1715 + 663
From the denominator, w, = 8.14,{ — 0.105. Using Egs. (4.34), (4.38), and
(4.42). the peak time = 0.388 second, the percenl overshoot = 71.77%, and
the settling time = 4.68 seconds.

T(s) = (5.109)

. The Laplace transform of the step response is found by first multiplying Eq.

(5.109) by 1 s, a unit-step input, and expanding into partial fractions:
66.3 _1_ s+l71
67+ 1T1s+663) s ST+ L7015+ 663

_ 1 _(+085)+010680) .0
T s (s + 08557 + (8.097 .

Taking the mverse Laplace transform. we find
() = 1 — e 505 8.097¢ + 0.1065in8.0971) G111
For the simplified model we have

s =

0.0603K
G(s) = s+ 17D (5.112)
from which the closed-loop transfer function is calculated to be
0.0663K
T(s) = ¢.113)

52+ 1.71s + 0.0663K
From Eq. (4.39) a 10 overshoot yields £ = 0.591. Using the denominator of
Eg. (5.113), w, = J0.0663K and 2{w, = 1.71. Thus,

L= I—ﬂ = 0.591 (5.114)

"~ 200663k

from which K = 31.6.
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Challenge You are now given a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system shown on
the front C jon 2, do the i

a. Find the closed-loop transfer function using block diagram reduction.

b. Represent each subsystem with a signal-flow graph and find the state-space
representation of the closed-loop system from the signal-flow graph.

€. Use the signal-flow graph tound 1n (b) along with Mason’s rule to find the
closed-loop transfer function.

d. Replace the power amplifier with a transfer function of unity and evaluate the
closed-leop percent overshoot, settling time, and peak time for K = 5

€. For the system used for (d), derive the expression for the closed-loop step
response.

{. For the simplified model in (d). find the value of preamplifier gain. X. to yield
15% overshool.

UFSS Vehicle: Pitch-Angle Control Representation

‘We return 1o the Unmanned Free-Swimmng Submersible vehicle introduced in
the case studies in Chapter 4 (Johnson, 1980). We will represent in state space
the pitch-angle control system that is used for depih control.

Problem Consider the block diagram of the pitch control loop of the UFSS
vehicle shown on the back endpapers. The pitch angle, 6, is controlled by a com-
manded pitch angle, 6., which along with pitch-angle and pitch-rate feedback
determines the elevator deflection, &,, which acts through the vehicle dynamics
to determine the pitch angle. Let K; = K3 = 1 and do the following:

a. Draw the signal-flow graph for each subsysten, making sure that pitch an-
gle, pitch rate, and elevator deflection are represented as state variables. Then
interconnect the subsystems.

b. Use the signal-flow graph obtamed in (a) to represent the pitch control loop m
state space.

Solution

a. The vehicle dynamics are split into two transfer functions, from which
the signal-flow graph is drawn. Figure 5.36 shows the division along with the
elevator actuator. Each block is drawn in phase-variable form to meet the
requircment that particular system variables be state variables. This result is
shown in Figure 5.37(«). The feedback paths are then added to complete the
signal-flow graph, which is shown in Figure 5.37(b).

Elevator
actuator Vehicle dynarmcs

| & —0.125(s + 0.435) 1 8is)
s+2 (s+1.23) 52402265 + 0.0169
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-00169

{a)

Figure 5.37
Signatfow graph
representaton of the
UFSS vehicle's pitch-
contral system:

a. without posttion and
rate feedback,

b. with position and
rate feedback

{Note: Explicitly
requred vanables are
X =6x =dod
andx, = &)

®)

b. By wnspection, the denvatives of state variables x; through x, are written as

X = x2
Xz = —0.0169x; — 0.226x; + 0.435x3 — 1.23x3 — 0.125x,
iy = — 1.23x3 — 0.125x,4

Xg = 2 +2x = 2x; — 26c

Finally, the output v = xj.
In vector-matrix form the state and output equations are

1 0 0 0

% =|—00169 0226 -0795 -0.125 x+| © 0
[} 0 -1.23 -0125 0
2 2 0 -2 -2

y=[1 0 0 0]x

(5.115a
(5.115b
(5.115¢
(5.115d

{5116

(5.116t
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] 1 .
s+ z +129)(s+0.193) s

rate
sensor

e
[

Figure 5.38
Block diagram
of the heading
control system
for the UFSS
vehcle

MATLAB

Challenge We now give you a problem to test your knowledge of this chapter’s
objectives. The UFSS vehicle steers via the heading control system shown in Fig-
ure 5.38 and repeated on the back endpapers. A heading command js the input.
The input and feedback from the submersible’s heading and yaw rate are used to
generate a rudder that steers the subi ibl
(Johnson, 1980). Let K; = K> = 1 and do the following:
a. Draw the signal-flow graph for each subsystem, making sure that heading
angle, yaw rate, and rudder deflection are represented as state variables.
Then interconnect the subsystems.
b. Use the signal-flow graph obtained in (a) to represent the heading control
loop in state space.
c. Use MATLAB to represent the closedHoop UFSS heading cantrol system in state
space In controller canonical form.

Summary
One objective of this chapter has been for you to learn how to represent multiple
via block di or signal-flow graphs. Another objective has been

to be able to reduce either the block diagram representation or the signal-flow
graph representation to a single transfer function.

We saw that the block diagram of a linear, time-invariant system consisted
of four elements: signals, systems, summing junctions, and pickoff points. These
elements were assembled into three basic forms: cascade, parallel, and feedback.
Some basic operations were then derived: moving systems across summing
junctions and across pickoff points.

Once we recognized the basic forms and operations, we could reduce a
complicated block diagram to a single transfer function relating input to output.
Then we applied the methods of Chapter 4 for analyzing and designing a second-
order system for transient behavior. We saw that adjusting the gain of a feedback
control system gave us partial control of the transient response.



300 Chapter 5 Reduction of Multiple Subsystems

State Space

ignal-fl ion of linear. time-invariant systems consists
of two elemenl:. nodes Wthh represent signals. and lines with arrows, which
ions and pickoff points are |mphc1t in
slgndl -flow graphs. These graphs are helpful in visualizing the meaning of the
state variables. Also, they can be drawn first as an aid to obtaining the state
equations for a system.

Mason’s rule was used to derive the system’s transfer function from the
signal-flow graph. This formula replaced block diagram reduction techniques.
Mason’s rule seems complicated. but its use is simplified if there are no non-
touching loops. In many of these cases, the transfer function can be written by
inspection, with less labor than in the block diagram reduction technique.

Finally, we saw that systems in state space can be represented using different
sets of variables. In the last three chapters, we have covered phase-variable, cas-
cade, parallel, controller canonical, and observer canonical forms. A particular
representation may be chosen because one set of state variables has a different
physical meaning than another set, or because of the ease with which particular
state equations can be solved.

In the next chapter we discuss system stability. Without stability we cannot
begin to design a systern for the desired transient response. We will find out how
to tell whether a systemn is stable and what effect parameter values have on a sys-
tem’s stability.

Review Questions

1. Name the four components of a block diagram for a linear, time-invanant
system.

N

Name three basic forms for interconnecting subsystems.

-

For each of the forms in Question 2. state (respectively) how the equivalent
transfer function is found.

&

Besides knowing the basic forms as discussed in Questions 2 and 3, what other
equivalents must you know m order to perform block diagram reduction?

-

For a simple, second-order feedback control system of the 1ype shown in Figure
5.14, describe the effect that variations of forward-path gaim, X, have oo the
transient response.

k4

For a simple. second-order feedback controt system of the type shown i Figure
5.14. describe the changes in damping ratio as the gain, K., is increased over the
underdamped region.

7. Name the two componients of & signal-flow graph

®

How are summing junctions shown on a signal-flow graph?

»©

If a forward path touched all closed loops. what would be the value of 4,7

10. Name five representations of systems in state space.
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11. Which two forms of the state-space representation are found using the same

method?

State Space 12. Which form of the state-space representation leads to a diagonal matrix?

Stats Space 13. When the system marrix 1s diagonal. what quantities lie along the diagonal?

State Space 14. What terms lie along the diagonal for a system represented in Jordan canonical
form?

State Space 15. What is the advantage of having a system represented in a form that has a
dingonal system matrix?

State Space 16. Give two reasons for wanting to represent a system by alternative forms.

State Space 17. For what kind of system would you use the observer canonical form?

State Space 18. Describe stat t ions from the ive of different bases.

State Space 19. What is the definition of an eigenvector?

State Space 20. Based upon your definition of an eigenvector, what is an eigenvalue?

State Space 21. What is the significance of using eigenvectors as basis vectors for a system
transformation?

. Problems

1. Reduce the block diagram shown in Figure P5.] to a single transfer function.
T(s) = Cis} R(s). Use the following methods:

a. Block diagram reduction
MATLAB ) b. MATLAB

Figure P5.1 Ry +

2. Find the closed-loop transfer function. 7(s} = C{s) R(s). for the system shown
in Figure P5.2. using block diagram reduction.

Figure P5.2
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3. Find the equivalent transfer function, T(s) = C(s): R(s), for the system shown in
Figure P5.3.

Figure P5.3
Cls)
e
4. Reduce the system shown in Figure P5.4 to a single transfer function, T(s) =
C(s) Rs).
Figure P5.4
Cis)
-
1
S. Find the tansfer function, T(s) = C(s} R(s), for the system shown in Figure
P5.5. Use the following methods:
a. Block diagram reduction
MATLAR b. MATLAB. Use the followng transfer functions: Gyis} = 1 (s + 7), GAs} =

114s2+ 25 +3), Gslsh = 1, (s + 4), Gyfs) = 1 s, Gyls} = 5°(s + 7),
Gels) = 1 {s?+ 55+ 10}, Gy(s) = 3 (s +2), Gdst = 1 (s +6).

Hint: Use the append and connect commands in MATLAB's Control System
Toolbox.
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igure P5.5
C(s)
L
6. Reduce the block diagram shown wn Figure P5.6 to a single block, T(s) =
C(s) RE)-
igure P5.6
igure P5.7

[o%)

8. Given the block diagram of a system shown in Figure P5.8, find the transfer
function G(s) = B2(s)? 8y(s).
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Figure P5.8
9. Reduce the block diagram shown in Figure P59 to a single transfer function.
T(s) = C(s) R(s).

Figure P5.9
Cls)
-

1 G5 |—
@l 10. Reduce the block diagram shown in Figure P5.10 to a single block representing
B the transfer fuuction. T(s) = C(s) R(s).

Figure P5.10

C

)
-
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11. For the system shown mn Figure P5.11, find the percent overshoot, settling time,
and peak time for a siep input if the system’s response is underdamped. (Is it

Why?)
P5.11
Fiure P, [<0]
-
s(s+12)
12. For the system shown in Figure P5.12. find the output, c(s), if the mput, (1), is a
unit step.
Figure P512
13. For the system shown in Figure P5.13, find the poles of the closed-loop transfer
function, T(s) — C(s) R(s).
Figure P5.13

1

»

For the system of Figure P5.14. find the value of K that yields 20% overshoot for
a step input.

Figure P5.14
Rs) + K C(s)
.:‘ -

15. For the system shown in Figure P5.15, find X and « to yield a settling time of
0.2 second and a 30% overshoot.

Figure P5.15

Ris) + E(s)

'V
. s(s+a) .
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16. For the system of Figure P5.16, find the values of K, and K to yield a peak time
of 1 second and a settling time of 2 seconds for the closed-loop system’s step
response.

Figure P5.16 C(s)
—
® < 17. Find the following for the system shown in Figure P5.17:
B
a. The equivalent single block that represents the transfer function, T(s) =
C(s). R(s).
b. The damping ratio. natural frequency, percent overshoo, settling time, peak
time, rise fime. and damped frequency of oscillation.
Figure P5.17
Cls)
F .
18. For the system shown in Figure P5.18, find {. «,. percent overshoot, peak time,
rise time. and settling time
Figure P5.18

19. A motor and generator are set up to drive a load as shown in Figure P5.19. If
the generator output voltage is eg(t) = K| prp(0), where § f{l) is the generator's
field current, find the transfer function G(s) = 8,(s): E,(s). For the generator,
Ky = 2. For the motor, K; = | N-m/A. and Ky, = 1 V-s/rad.
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Figure P5.19 Generator | 1 o Motor

egt) J,=075 kg-m?
¢ O m

20 1kg-m?

4 N-m-s/rad

20. Find G(s) = E,\s} T{(s) for the system shown mn Figure P5.20.
0

Figure P5.20 i

6]
oy -t 1 Tum pot

C

Buffer _l *

R el

21. Find the transfer function G(s} = E(s); T(s) for the system shown 1n

Figure P5.21.
T
‘ Jy =025 kg-m? 5
K =5 N-m/rad S50V
20
10 T it
D=2 N-meshrad el
S50V 10 uF
+
Buffer
amphfier | 20060 =, )
gain=1 o
T

Flgure P5.21 =
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22

©

State Space 23.

=

State Space 25.

26.

Figure P5.22

24,

Label signals and draw a signal-flow graph for each of the block diagrams
shown in the following problems:

a. Problem 1
b. Problem 3
c. Problem 5
Draw a signal-flow graph for each of the following state equations:

0o 1 0 [1]
a x=| 0 0 1|x+|0|r
-2 -4 -6 1

¥y=0 1 0]x

Given the system below, draw a signal-flow graph and represent the system in
state space in the following forms:

a.  Phase-variable form

b. Cascade form

10
GO = TN+ 6+ 9
Repeat Problem 24 for
20
G(s)

T A DEFNE+H

Using Mason's rule. find the transfer function, T(s) = C{ (8), R(s), for the system
represented in Figure P5.22.

Gy(s) Gys) Gyls) Gofs)
R0 C O Q
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27. Usmg Mason’s rule. find the transfer function. T(s} = C(s) Ris). for the system

represented by Figure P5.23.
Figur P5.23 Gr i Gols) _ Gys) _ Gefs) 1 Gs)
Rist 0, 0 ®, Q
Has)
28. Use Mason’s rule to find the transfer function of Figure 5.13 in the text.
29, Use block diagram reduction to find the transfer function of Figore 5.21 in the
text, and compare your answer with that obtained by Mason's rule.
e Space 30. Represent the following systems in state space in Jordan canonical form. Draw
the signal-flow graphs.
_ s+ 1)s+2) _ {(s+2)
AT R e
s+3)
GG =
& 00 = e G
State Space 31. Represent the systems below in state space in phase-variable form. Draw the
signal-flow graphs.
s+3 S+25+6
R Tt B by ey oo
+
o Goym DRI AISHL
#4334+ 57+65+4

State Space 32. Repeat Problem 31 and represent each system in controller canonical and
observer canonical forms.

State $ ace 33. Represent the feedback control systems shown in Figure P5.24 in state
space. When possible, represent the open-loop transfer i

Figure P5.24
{hgure contnues)
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Figure P5.24
{continued)

Ris) +

EGs) Cis)
i

()

in cascade and complete the feedback loop with the signal path from output to
input. Draw your signal-flow graph to be in 1 cor tothe
block diagrams (as close as possible).

State Space 34. You are given the system shown in Figure P5.25.

Figure P5.25
a. Represent the system in state space 1n phase-variable form.
b. Represent the system in state space in any other form besides phase-
variable.
35, Repeat Problem 34 for the system shown in Figure P5.26.
Figure P5.26

10(s + 2)(s + 3)
{5+ 1)(s +4)(s+ 5}s +6)

Cls)

“MATLAB 36. Use MATLAB to solve Problem 35.
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37. Represent the system shown in Figure P5_27 in state space where x;(f), x3(1),

State Space
and x,4(t), as shown, are among the state variables, (7} is the output, and x(7)
is internal to X;(s)- X3(s)-
Figure P5.27 Cisy
—
38. Consider the rotational mechanical system shown in Figure P5.28.
a. the system as a signal-flow graph.
State Space b. Represent the system in state space if the output is 6,(f).
Figure P5.26 Blm Ty 64n
2 N-me-s/rad

3 N-m-s/rad YA

2 N-m-s/rad
o i e
LAY
4 N-m/rad | N-m/rad

2 N-m/rad

MATLAB 39. Given a unity feedback system with the forward path transfer funcbon

State Space _ 7
O8 = vors+ 12

use MATLAB to represent the closeddoop systemin state space in
a. phase-variable form;
b. parallel form.
Consider the cascaded subsystemns shown in Figure P5.29_If Gy (s) is
represented in state space as
&1 = Ax + Byr

s

State Space 40,

» = Cix
and Ga(s) is represented in state space as
= A%y + Boyy
y2 = Coxz
show that the entire system can be represented in state space as

RRESHELD)
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Figure P5.29

Ris)}

State S ace 41. Consider the parallel subsystems shown in Figure P5.30. If G,(s) is represented
in state space as

% = Ajxg +Byr
Cixy

»
and G(s) is represented in siate space as
X2 — Apxy + Byr
2 =Cx

show that the entire system can be represented in state space as

B RSN

(G Czl[;’:]

Figure P5.30

R(s)

N

$pace 42.

Consider the subsystems shown in Figure P5.31 and connected to form a feed-
back system. If G(s) is represented in state space as

X = Ayx; + Bye
y=GCx

and H(s) 1s represented in state space as
X2 = Agxy + Byy
p=Gx

show that the closed-loop system can be represented in state space as
* A BIG[x B,
= N +| -l
Xz B, A; ||x []

v=1C of [:;]
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gure P5.31

43. Given the system represented in state space as follows:

2 0 -1 2
k=] 0 4 6[|x+|0|r
-6 -5 -8 1

y=12 5 3Ix

State Space

convert the system to one where the new stage vector. z. 1s

44. Repeat Problem 43 for the following system:

A3

y=[ -3 4x

State Space

and the ing state-vector
4 -1 4]
z=|2 3 -2[x
8 5 1
State Space 45. Diagonalize the following system:
o — -5 -5 4 —I
X 2 0 -2x+]| 2{r
0 -2 -1 -2
- 1 2)x

State Space 46. Repeat Problem 45 for the following system:
-10 -3 7 1
x=| 1825 625 —-I1L75|x+|3|r
=125 -225 575 2
y=0 -2 4

313
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MATLAB

Figure P5.32
Space shuttle pitch
control system
{simplied)

Reduction of Multiple Subsystems

47. Diagonalize the system in Problem 46 using MATLAB.
48. During ascent the space shuttle is sicered by commands generated by the com-

puter’s guidance calculations. These commands are in the form of vehicle
attitude, attitude rates, and awitude accelerations obtained through measure-
ments made by the vehicle’s merlml measuring unit, rate gyro assembly, and

ly. The ascent digital autopilot uses the errors
between the actual and commanded amlude rates, and accelerations to gimbal
the space shuttle main engines (called thrust vectoring) and the solid rocket
boosters to effect the desired vehicle attitude. The space shuttle’s attitude control
system employs the same method in the pitch, roll, and yaw control systems. A
simplified model of the pitch control system is shown in Figure P5.32.4

a. Find the closed-loop transfer function relating actual pitch to commanded
pitch. Assume all other inputs are zero.

b. Find the closed-loop transfer function relating actual pitch rate to
commanded pitch rate. Assume all other inputs are zero.

. Find the closed-loop transfer function relating actual pitch acceleration to
commanded pitch acceleration. Assume all other inputs are zero.

Commanded  Commanded
pitch pitch
rale acceleration
Shutrle
Commanded | l Controller  dynamics
At .
pich + . Pitow
iy

Rate gyro

M -
L

Inential measuring unit

L]

9. An AM radio modulator generates the product of a carmier waveform and a

message waveform, as shown in Figure P5.33 (Kurland, 1971). Represent the
system in state space if the carrier is a sinusoid of frequency @ = @, and the
message is a sinusoid of frequency & = b. Note that this system is

nonlinear because of the multiplier

“Source of background information for this problem: Rockwell International.



Figure P5.33
AM modulator

Figure P5.34
Feedback control
system representing
fuman eye movement

Problems 315

Antenna

Multiplier

50. A mode] for human eye movement consists of the closed-loop system shown
in Figure P5.34, where an object’s position is the input and the eye position is
the output. The brain sends signals to the muscles that move the eye. These sig-
nals consist of the difference between the object’s position and the position and
rate information from the eye sent by the muscle spindles. The eye motion is
modeled as an inertia and viscous damping and assumes no elasticity (spring)
(Milhorn, 1966). Assurning that the delays in the brain and nervous system are
negligible. find the closed-loop transfer function for the eye position control.

Nervous
Bram system Muscle

et K pn,m(
i ! sls+ a,)

Muscle spindles position feedback
L®r
Muscle spindles rate feedback

[ ke |

s+

Object
position

51. A HelpMate transport robot, shown in Figure P5.35(a) is used to deliver goods
in a hospital setting. The robot can deliver food, drugs, laboratory materials,
and patients’ records (Evans, 1992). Given the simplified block diagram of
the robot’s bearing angle control system, as shown in Figure P5.35(b). do the
following.

a. Find the closed-loop transfer function.

State Space b. Represent the system 1n state space. where the mnput 1s the desired bearing

angle, the output is the actual bearing angle, and the actual wheel position
and actual bearing angle are among the state variables.
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MATLAB

Figure P5.35
a. HelpMate robot
used for ivhospitat

delvenes;

b. simplified block
dhagram for beanng
angle control

c. Simulate the closed-loop system using MATLAB. Obtain the unit step response

for different values of K that yield from to
to unstable.
n L
l -
[ ] - \\
4\\ sy
o .
~»
Y
)
I
A I o
b ’
\\ . ]
\ /
»~ 8,
\ y
@
Desired Actual
bearing Motor and bearing
angle Computer ‘::“:Id controller | vVecle angle
v +

(]

52. Automatically controlled load testers can be used to test product reliability undes
real-life conditions. The tester consists of a load frame and specimen as shown
in Figure P5.36(a). The desired load is input via a voltage, e,(f), to a current
amplifier. The output load is measured via a voltage, ec(¢). from a load cell mea-
suring the load on the specimen. Figure P5.36(b) shows an approximate model
of a Joad testing system without compensation {Bailey, 1992).
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State Space a. Model the system mn state space.
MATLAB b. Simulate the step response using MATLAB. Is the response predominantly first or
second order? Describe the charactenstics of the response that need correction,
Figure P5.36
. Load tester Crosshead
i® 1992 IEEE)
b. appromate Load & -
block diagram cell
Grip
Specimen

H H

E ] £

g o g

£ *E Actuator
E
{a@)
Currens Load, frame. specimen.
Desired load Controller amphfier load celt Actud nad
) 4 Eq 006 15 % 106 Fis)
1666 67 .(\-+720 S+ 82T x4 x 10% + 2% 107

g [ ]
L

()

State Space 53. Consider the F4-E aircraft of Problem 22, Chapter 3. If the open-loop transfer
function relating normal acceleration, An(s). to the input deflection command,
8:(s), is approximated as
Anls) _ =272(s% + 195 + 84)
8(s)  (s+ 14)s — L8Ys +49)

(Cavallo, 1992), find the state-space representation in
a. Phase-variable form

b. Controller canonical form

€. Observer canonical form

d. Cascade form

€. Parallel form
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54. Find the closed-loop transfer function of the Unmanned Free-Swimming
Submersible vehicle’s pitch control system shown on the back endpapers
(Johnson. 1980).

MATLAB §5. Repeat Problem 54 using MATLAB.

Simulink 56. Use Smulink to plot the effects of nonknearites upon the closeddoop step response
- of the antenna azimuth position control system shown on the front endpapers, Con
figurahon 1. In particular, consider indndually each of the following nonlinearities:
saturation (=5 volts), backlash {deadband width 0.15), deadzone (—2 to +2), as wel
as the linear response. Assume the preamplifier gain is 100 and the step inputis
2 rachans.
57. Problem 12 in Chapter I describes a high-speed proportional solenoid valve.
A subsystem of the valve is the solenoid coil shown in Figure P5.37. Current
through the coil, L, generates a magnetic field that produces a force to operate
the valve. Figure P5.37 can be represented as a block diagram (Vaughan, 1996).

Figure P5.37
Solenoid coil circuit

a. Derive a block diagram of a feedback system that represents the coil circuit,
where the applied voltage. vg(r). is the input, the coil voltage. vp(). is the
error voltage, and the current. i(r), is the output

b.  For the block diagram found in (a). find the Laplace transform of the output
current, I(s).

€. Solve the circuit of Figure P5.37 for I(s), and compare to your result in (b).

Design Problems

58. The motor and load shown in Figure P5.38(a) are used as part of the unity feed-
back system shown in Figure P5.38(b). Find the value of the coefficient of
viscous damping, Dy. that must be used in order to yield a closed-loop transient
response having a 20% overshoot.

59. Assume that the motor whose transfer function 1s shown m Figure P5.39(a) is
used as the forward path of a closed-loop, unity-feedback system.
a.  Calculate the percent overshoot and settling time that could be expected.
b. You want to improve the response found in (a). Since the motor and the

motor constants cannot be changed, an amplifier and a tachometer (voltage



Figure P5.38
Postion cortrol:
& motor and load;
b. block diagram

Figure P5.38
. Position control;

b. position control with
tachometer

Design Problems
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K, =2N-m/A Ouls)
K,=2V-sirad
J,=2kg-m? 1
D, =2 N-m-sirad
R-20 10 1
o,
Dy
’ J; = 800 kg-m?
Motor
Ri E Byl 8,
DeR e 1000 o & [P Gearerain dl
b toad
[
Motor
Ry + Fis1 25 Cis)
=,
s+ D)
@
Moror

Amp

Tachometer

generator) are inserted into the loop, as shown in Figure P5.39(b). Find
the values of K; and K to yield a 25% overshoot and a settling time of

0.2 second.

60. The system shown in Figure P5.40 will have its transient response altered by

(0]

adding a tachometer. Design K and K, n the system to yield a damping ratio of
0.5. The natural frequency of the system before the addition of the tachometer is

10 rad/s.
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Figure P5.40
Position control

Tachomeler

)
=Y

Preamplifier Power amplifier
and motor

. ! 61. The mechanical system shown in krigure P5.41(a) is used as part of the unity-

Figura P5.41

a. Motor andload,
b. Motor and foad in
feedtack system

feedback system shown in Figure P5.41(b). Find the values of M and D to yield
20% overshoot and 2 seconds settling time.

For the motor:
1, = 1kgm? v
Do=1Nomsirad i
R,=10Q
K,=1V-sirad £, = 1Nsim
K, =1 N-mA
(@)
Risr 4 o Els] In Motor X(s)
500 & |+ Gear
s load
)

Progressive Analysis and Design Problem

62. High-speed rail pantograph. Problem 17 in Chapter | discusses the active
control of a pantograph mechanism for high-speed rail systems. In this problem
you found a functional block diagram relating the output force (actual) to the
input force (desired output). In Problem 55, Chapter 2, you found the transfer
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function for the pantograph dynamics, that is. the transfer function relating the

displacement of the spring that models the head to the applied force, or G(s) —

(¥4(s) — Year(s)) Fipls) (O'Connor, 1997). We now create a pantograph acnve-

control loop by adding the followi and fe ing your

block diagram found in Problem 17, Chapler - input transducer (G,-(s) =1 100),

controller (G.(s) — K), actuator (Ga(s) = 1 '1000), pantograph spring (K, =

823 X 10° N m), and sensor (F(s) = 1 100).

a. Using the functionat block diagram from your solution of Problem 17 in Chapter
1, and the pantograph dynamics. G(s), found in Problem 55, Chapter 2, assemble
ablock diagram of the active pantograph control system.

b. Find the closed-loop transfer function for the block diagram found in (2) if K =
1000.

[ the ics in ph: riable form and find a state-
|  space representation for the closed-loop syslem if K = 1000.

Cyber Exploration Laboratory

Figure P5.42

Experiment 5.1

Objectives  To verify the equivalency of the basic forms, including cascade, par-
allel, and feedback forms. To verify the equivalency of the basic moves, including
moving blocks past summing junctions, and moving blocks past pickoff puints.

Minimum required MATLAB, Simulink, and the Control
System Toolbox
Prelab
1. Find the equivalenl transfer function of three cascaded blocks, G(s) = 3 _:_ 1
+3
Gofs) = *. and Gy(s) = o
2. Find the equivalenl transfer function of three paralle] blocks, Gy(s) = 5 i 1
+3
Gos) = 512G = rad

3. Find the equlva!em !ransfer function of the negative feedback system of Figure
P5.42if G(s) = and His) = 3

+4°

(+2)
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4.

5.

For the system of Prelab 3, push H(s) to the left past the summing yunction and
draw the equivalent system.

For the system of Prelab 3, push H(s) to the right past the pickoff point and draw
the equivalent system.

Lab

1. Using Simulink, set up the cascade system of Prelab 1 and the equivalent single

~

»

Iy

block. Make separate plots of the step response of the cascaded system and its
equivalent single block. Record the values of settling time and rise time for each
step response.

Using Smmulink, set up the parallel system of Prelab 2 and the equivalent single
block. Make separate plots of the step response of the parallel system and its
equivalent single block. Record the values of settling time and rise time for
each step response.

Using Simulink. set up the negative feedback system of Prelab 3 and the equiv-
alent single block. Make separate plots of the step response of the negative feed-
back system and its equivalent single block. Record the values of settling time
and rise time for eacb step response.

. Using Simulink, set up the negative feedback systems of Prelabs 3, 4, and 5.

Make separate plots of the step response of each of the systems. Record the
values of setiling time and rise time for each step response.

Postiab

1

Using your lab data, verify the equivalent transfer function of blocks in cascade.

2. Using your lab data, verify the equivalent transfer function of blocks in paraliel

w

Iy

n

. Using your lab data, verify the equivalent transfer function of negative feedback

systems.

. Using your lab data, verify the moving of blocks past summing junctions and

pickoff points.

. Discuss your results. Were the equivalencies venfied?
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Stability

Chapter Objectives
In this chapter you will learn the following:
®»  How to determine the stability of a system represented as a transfer function
State Space = How to determine the stability of a system represented in state space
u  How to determine system parameters to yield stability

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with case

studies as follows:

w  Given the antenna azimuth position control systemn shown on the front
endpapers, you will be able to find the range of preamplifier gain to keep
the system stable.

& Given the block diagrams for the UFSS Vehicle’s pitch and heading control
systems on the back endpapers, you will be able to determine the range of
gain for stability of the pitch or heading control system.
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6.1 Introduction

In Chapter | we saw that three requirements enter into the design of a control sys-
tem: transient response, stability, and steady-state errors. Thus far we have covered
transient response, which we will revisit in Chapter 8. We are now ready to discuss
the next requirement, stability.

Stability is the most important system specification. If a system is unstable,
transient response and steady-state errors are moot points. An unstable system can-
not be designed for a specific transient response or steady-state error requirement.
‘What, then, is stability? There are many definitions for stability, depending upon
the kind of system or the point of view. In this section we limit ourselves to linear.
time-invariant systems.

In Section 1.5 we discussed that we can control the output of a system if the
steady-state response consists of only the forced response. But the total response of
a system is the sum of the forced and natural responses, or

(1) = Crorced(t) + Cnaturar(r) ®n

Using these concepts, we present the following definitions of stability, instability,
and marginal stability:
"A linear, time-invariant system is stable if the natural response approaches zero
as time approaches infinity.

A linear, time-invariant system is unstable if the natural response grows without
bound as time approaches infinity.

Alinear, time-i jant systemis. inally stable if the natural response neither
decays nor grows but remains constant or oscillates as time approaches infinity.

Thus, the definition of stability implies that only the forced response remains as the
natural response approaches zero.

These definitions rely on a description of the natural response. When one
is looking at the total response, it may be difficult to separate the natural re-
sponse from the forced response. However, we realize that if the input is bounded
and the total response is not approaching infinity as time approaches infinity,
then the natural response is obviously not approaching infinity. If the input is

we see an total resp , and we cannot arrive at any
conclusion about the stability of the system; we cannot tell whether the total re-
sponse is unbounded because the forced response is unbounded or because the
natural response is unbounded. Thus. our alternate definition of stability, one that
regards the total response and implies the first definition based upon the natural
response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of
stability.

Let us now produce an alternate defimtion for instability based on the total
response rather than the natural response. We realize that if the input is bounded but
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the total response is unbounded, the system is unstable, since we can conclude that
the natural response app infinity as time hes infinity. If the input is
unbounded, we will see an unbounded total response, and we cannot draw any con-
clusion about the stability of the system; we cannot tell whether the total response
is unbounded because the forced response is unbounded or because the natural re-
sponse is unbounded. Thus. our alternate definition of instability, one that regards
the total response, is this:

A system is unstable if anv bounded input yields an unbounded output.

These definitions help clarify our previous definition of margwnal stability,
which really means that the system is stable for some bounded inputs and unstable
for others. For example, we will show that if the natural response is undamped, a
bounded sinusoidal input of the same frequency yields a natural response of growing
oscillations. Hence, the system appears stable for all bounded inputs except this one
sinusoid. Thus, marginally stable systems by the natural response definitions are
included as unstable systems under the BIBO definitions.

Let us summarize our definitions of stability for linear, time-invariant systems.
Using the natural response:

1. A system is stable if the natural response
infinity.

zero as time

2. A system is unstable if the natural response approaches infinity as time ap-
proaches infinity.

3. A system 1s margmally stable if the natural response neither decays nor grows
but remains constant or oscillates.

Using the total response (BIBO):
1. A system s stable if every bounded input yields a bounded ougput.
2. A system is unstable if any bounded input yields an unbounded cutput.

Physically. an unstable system whose natural response grows without bound
can cause damage to the system, to adjacent property, or to human life. Many times
systems are designed with limit stops to prevent total runaway. From the perspec-
tive of the time response plot of a physical system, instability is displayed by tran-
sients that grow without bound and. consequently, a total response that does not
approach a steady-state value or other forced response.!

How do we determine if a system is stable? Let us focus on the natural
response definitions of stability. Recall from our study of system poles that
poles in the left half-plane (lhp) yield either pure exponential decay or
damped sinusoidal natural responses. These natural responses decay to zero as

'Care must be Iaken here to distinguish between natural responses growing without bound and a
forced response, mcrease, that also grows without bound. A system
whose forced response approaches infinity 15 stable as long as the natural response approaches
zero.
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time approaches infinity. Thus. if the closed-loop system poles are in the left half
of the s-plane and hence have a negative real part, the system is stable That
is, stable systems have closed-loop transfer functions with poles only in the left
half-plane.

Poles in Lhe right half plane (rhp) yield either pure exponentially increasing
or i i natural resp These natural responses
appmach infinity as time approaches infinity. Thus, if the closed-loop system
poles are in the right half of the s-plane and hence have a positive real part, the
systemn is unstable. Also, poles of multiplicity greater than one on the imagi-
nary axis lead to the sum of responses of the form At" cos(wr + &), where
n=12_.. which also approaches infinity as time approaches infinity. Thus,
unstable systems have closed-loop transfer functions with at least one pole in the
right half-plane and/or poles of multiplicity greater than one on the imaginary
axis.

Finally, a system that has imaginary axis poles of multiphcity 1 yields pure
sinusoidal osclllallons as a natural response. These responses neither increase nor

decrease in Thus. Iy stable systemns have closed-loop transfer
f ions with only imaginarv axis poles of multiplicity 1 and poles in the left half-
plane.

As an example, the unit step response of the stable system of Figure 6.1(a) is
compared to that of the unstable system of Figure 6.1(). The responses, also shown
in Figure 6.1, show that while the oscillations for the stable system diminish, those
for the unstable system increase without bound. Also notice that the stable system’s
response in this case approaches a steady-state value of unity.

It is not always a simple matter to determine if a feedback control system is
stable. Unfortunately. a typical problem that arises is shown in Figure 6.2. Although
we know the poles of the forward transfer function in Figure 6.2(a), we do not
know the location of the poles of the equivalent closed-loop system of Figure 6.2(b)
without factoring or otherwise solving for the roots.

However, under certain conditions, we can draw some conclusions about the
stability of the system. First, if the closed-loop transfer function has only left-half-
plane poles, then the factors of the denominator of the closed-loop system transfer
function consist of products of terms such as (s +a;). where g, is real and positive, or
complex with a positive real part, The product of such terms is a polynomial with all
positive coefficients.> No term of the polynomial can be missing, since that would
imply cancellation between positive and negative coefficients or imaginary axis
roots in the factors, which is not the case. Thus, a sufficient condition for a system
to be unstable is that all signs of the coefficients of the denominator of the closed-
loop transfer fonction are not the same. If powers of s are missing, the system is
cither unstable or. at hest, marginally stable. Unfortunately, if all coefficients of the
denominator are positive and not missing, we do not have definitive information
about the system’s pole locations.

*The coefficients can also be made all ncgative by multiplying the polynormal by —1. This
operation does not change the root Jocation.



328  Chapter 6 Stability

Stable system
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Figure 6.1
Closed-oop poles
and response: 1f the method described in the previous paragraph is not sufficient. then a com-
a. stable system; puter can be used to determine the stability by calculating the root locations of the
b. unstable system denominator of the closed-loop transfer function. Today some hand-held calculs-

tors can evaluate the roots of a polynomial. There is, however. another method to
test for stability without having to solve for the roots of the denominator. We discuss
this method in the next section.
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Common cause of
prablems in finding
closedoop poles:
a.ongnal system;
b. equvalent system

Figure 6.3
Equualent closedHoop
ranster function

6.2 Routh-Hurwitz Criterion 329

(s +2) )
s(s+4)(s + 6)}(s + 8)(s + 10)
@
R(s) 10(s+2) ]| e
35+ 2859+ 28453 + 123252+ 19305 + 20 |
®

6.2 Routh-Hurwitz Criterion

In this section we learn a method that yields stability information without the need
to solve for the closed-loop system poles. Using this method, we can tell how many
closed-loop system poles are in the left half-plane, in the right half-plane, and on
the jew-axis. (Notice that we say how many, not where.) We can find the number
of poles in each section of the s-plane, but we cannot find their coordinates. The
method is called the Routh-Hurwitz criterion for stability (Routh, 1905).

The method requires two steps: (1) Generate a data table called a Routh table
and (2) interpret the Routh table to tell how many closed-loop system poles are in
the left half-plane, the right half-plane, and on the je-axis. In this section we make
and interpret a basic Routh table. In the next section we consider two special cases
that can arise when generating this data table.

Generating a Basic Routh Table

Look at the equivalent closed-loop transfer function shown in Figure 6.3. Since
we are interested in the system poles, we focus our attention on the denominator.
We first create the Routh table shown in Table 6.1. Begin by labeling the rows
with powers of s from the highest power of the denominator of the closed-loop
transfer function to s°. Next start with the coefficient of the highest power of s in
the denominator and list, horizontally in the first row, every other coefficient. In
the second row list horizontally, starting with the next highest power of s, every
coefficient that was skipped in the first row.

The remaining entries are filled in as follows. Each entry is a negative deter-
minant of entries in the previous two rows divided by the entry in the first column
directly above the calculated row. The left-hand column of the determinant is al-
ways the first column of the previous two rows, and the right-hand column is the

R(s) Ns) (5]
— —

ags* + a3 +agstraps+ag
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Example 6.1

Table 6.1 initial layout for Routh table

st ag ay ap

r @ a [}
2

5

o

&

Table 6.2 Completed Routh table

s ay a a
s az a, 0
_las @ _les @ _les 0’
a3 ar a3 a3 O
2 =b -
¢ P 1 - by P 0
Jas @ _las o _las o
b, by b o b o
1 = = =
B b I B [1] B 0
by b o
g O e, O
i = 4 =0
S P h e

elements of the column above and to the right. The table is complete when all of
the rows are completed down to s°. Table 6.2 is the completed Routh table. Let us
look at an example.

Creating a Routh table
Problem Make the Routh table for the system shown in Figure 6.4(a).

Solution The first step is to find the equivalent closed-loop system because we
want to test the denominator of this function, not the given forward transfer
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Figure 6.4
a.Feedback system
for Example 6.1;

b. equwalent closed-

loop system
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R(s) 1000 )
53+ 102 + 315+ 1030

@

Table 6.3 Completed Routh table for Example 6.1

s 1 31 0
s A0 1 1630 103 0
nom _r o
o II . 103| i |11 0| -0
_| 10
© __7722 9y

function, for pole location. Using the feedback formula, we obtain the equiv-
alent system of Figure 6.4(b). The Routh-Hurwitz criterion will be applied to
this denominator. First label the rows with powers of s from s* down to s° in
a vertical column, as shown in Table 6.3. Next form the first row of the table.
using the coefficients of the denominator of the closed-loop transfer function.
Start with the coefficient of the highest power and skip every other power of s.
Now form the second row with the coefficients of the denominator skipped in
the previous step. Subsequent rows are formed with determinants. as shown in
Table 6.2.

For convemence any row of the Routh table can be multiplied by a positive
constant without changing the values of the rows below. This can be proved by ex-
amining the expressions for the entries and verifying that any multiplicative con-
stant from a previous row cancels out. In the second row of Table 6.3, for example,
therow was multipliedby 1 10. We see later that care must be taken not to multiply
the row by a negative constant.
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Interpreting the Basic Routh Table

Now that we know how to generate the Routh table, let us see how to interprer it.
The basic Routh table applies to systems with poles in the left and right half-planes.
Systems with imaginary poles and the kind of Routh table that results will be dis-
cussed in the next section. Simply stated, the Routh-Hurwitz criterion declares that
the number of roots of the polynomial that are in the right half-plane is equal 16
the number of sign changes in the first column.

If the closed-loop transfer function has all poles in the left half of the s-plane,
the system is stable. Thus, a system is stable if there are no sign changes in the first
column of the Routh table. For example, Table 6.3 has two sign changes in the first
column. The first sign change occurs from 1 in the 52 row to —72 in the s row,
The second occurs from —72 in the s! row to 103 in the s° row. Thus, the system
of Figure 6.4 is unstable since two poles exist in the right half-plane.

Skill-Assessment Exercise 6.1

Example 6.2

Problem Make a Routh table and tell how many roots of the following poly-
nomial are in the right half-plane and in the left half-plane.

P =37 +9°+ 65 +4% + I + 87 + 25+ 6
Answer  Four in the right half-plane (rhp), three in the left half-plane (lhp).
The complete solution is on the accompanying CD-ROM.

Now that we have described how to generate and interpret a basic Routh
table, let us look at two special cases that can arise.

6.3 Routh-Hurwitz Criterion: Special Cases

Two special cases can occur: (1) The Routh table sometimes will have a zero only
in the first column of a row, or (2) the Routh table sometimes will have an entire
row that consists of zeros. Let us examine the first case.

Zero Only in the First Column

If the first element of a row is zero, diviston by zero would be required to form the
next row. To avoid this phenomenon, an epsilon, e, is assigned to replace the zero
in the first column. The value € is then allowed to approach zero from either the
positive or the negative side, after which the signs of the entries in the first column
can be determined. Let us look at an example.

Stability via epsilon method
Problem Determne the stability of the closed-loop transfer function

10

T = S +29+33+652 +55+3

©2)
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Table 6.4 Completed Routh table for Example 6.2

s 1 3 5
5 2 6 3
s o€ % 0
o 6e—7 3 0
€

' 42 —49 — 6¢2 o o
s 26 — 14
0 3 0 0

333

Solution The solution is shown in Table 6.4. We form the Routh table by using the
denominator of Eq. (6.2). Begin by assembling the Routh table down to the row
where a zero appears only in the first column (the s* row). Next replace the zero
by a small number, €, and complete the table. To begin the interpretation, we must
first assume a sign, positive or negative, for the quantity €. Table 6.5 shows the first
column of Table 6.4 along with the resulting signs for choices of € positive and e

negative.

Table 6.5 Determining signs in first column of a Routh table with

zero as first element in a row

Label First column €=+ €=
s 1 + +
@ 2 + +
s o e + -
s? be-7 +

€
' 42¢ — 49 ~ 6¢? . .
$ 2e—14
0 3 + +
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Symbolic Math |

If € is chosen positive, Table 6.5 will show a sign change from the s> row to
the 52 row, and there will be another sign change from the s? row to the ' row.
Hence, the system is unstable and has two poles in the right half-plane.

Alternatively, we could choose € negative. Table 6.5 would then show a sign
change from the s* row to the s* row. Another sign change would occur from the s*
row 10 the s? row. Our result would be exactly the same as that for a positive choice
for €. Thus, the system is unstable, with two poles in the right half-plane.

Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Math Toolbox should now run chéspl in Appendix E. You will learn
how to use the Symbolic Math Toolbox to calculate the values of cells in a Routh table
even ff the table contans symbolic objects, such as e. You will see that the Symbolic Math
Toolbox and MATLAB yield an alternate way to generate the Routh table for Example 6.2.

Another method that can be used when a zero appears only in the first
cotumn of a row is derived from the fact that a polynomial that has the recip-
rocal roots of the original polynomial has its roots distributed the same—right halt
plane, left half-plane, or imaginary axis—because taking the reciprocal of the root
vatue does not move it to another region. Thus, if we can find the polynomial that
has the reciprocal roots of the original, it is possible that the Routh table for the
new polynomial will not have a zero in the first column. This method is usually
computationally easier than the epsilon method just described.

‘We now show that the polynomial we are looking for, the one with the recipro-
cal roots, is simply the original polynomial with its coefficients written in reverse
order (Phillips, 1991). Assume the equation

St S+ ras+ta — 0 ©3)

I sis replaced by 1.'d, then d will have roots which are the reciprocal of s. Making
this substitution in Eq. (6.3),

LA LA SRR £ PR 64
3 "”"Z “'Z ap = X

Factoring out (1/d)",

]

- G)”[l Faudt -+ ad™ D +agd — 0 65

Thus, the p ial with reciprocal roots is a polynomial with the coefficients
written in reverse order. Let us redo the previous example to show the computa-
tional advantage of this method.
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Table 6.6 Routh table for Example 6.3

s 3 6 2
st 5 3 1
st 42 14

s* 133 1

s —-175

0 1

Stability via reverse coefficlents
Problem Determine the stability of the closed-loop transfer function

10

T - S+26 4353+ 652+ 5543

©.6)
Solution First write a polynomial that has the reci roots of the

of Eq. (6.6). From our discussion this polynomial is formed by writing the denom-
inator of Eq. (6.6) in reverse order. Hence,

D(s) =35 4+ 55 +65° +352+ 25 + 1 ®7

‘We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there are two
sign changes, the system is unstable and has two right-half-plane poles. This is the
same as the result obtained in Example 6.2. Notice that Table 6.6 does not have a
zero in the first column.

Entire Row Is Zero

We now look at the second special case. Sometimes while making a Routh 1able,
we find that an entire row consists of zeros because there is an even polynomiat that
is a factor of the original polynomial. This case must be handled differently from
the case of a zero in only the first column of a row. Let us look at an example that
demonstrates how to construct and interpret the Routh table when an entire row of
zeros is present.

Stability via Routh table with row of zeros
Problem Determine the number of right-half-plane poles in the closed-loop trans-
fer function

10

TO) = S 77 167 + 427 1 85 1 56

(6.8)
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Table 6.7 Routh table for Example 6.4

55 1 6 ¥
s Z 1 26 568
s o A1 & 13 B 80
st 3 8 0
s % 0 [
E 8 0 0

Solution  Start by forming the Routh table for the denominator of Eq. (6.8) (see
Table 6.7). At the second row we multiply through by | 7 for convenience. We
stop at the third row, since the entire row consists of zeros, and use the follow-
ing procedure. First we return to the row immediately above the row of zeros
and form an auxiliary polynomial, using the entries in that row as coefficients.
The polynomial will start with the power of 5 in the label column and continue
by skipping every other power of 5. Thus, the polynomial formed for this exam-
pleis

P(s) =s*+65°+8 69)
Next we differentiate the polynomial with respect to s and obtain
dP(s)
ds

=43 +125+ 0 (6.10)

Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros. Again,
for convenience the third row is multiplied by 1 4 after replacing the zeros

The remainder of the table is formed in a straightforward manner by following
the standard form shown in Table 6.2. Table 6.7 shows that all entries in the first
column are positive. Hence, there are no right-half-plane poles.

Let us look further into the case that yields an entire row of zeros. An enfire
row of zeros will appear in the Routh table when a purely even or purely odd poly-
nomial is a factor of the original polynomial. For example, s* + 552 + 7 is an even
polynomial; it has only even powers of s. Even polynomials only have roots that are
symmetrical about the origin.* This symmetry can occur under three conditions of
root position: (1) The roots are symmetrical and real, (2) the roots are symmetrical

*The polynomial ° + 55° + 7 is an example of an odd polynormal; it has only odd powers of s.
Odd of jal and powerof s. Thus, th

term of an 0dd polynomial is always missing.



Figure 6.5

Root positions
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jo

Example 6.5

X xc

A: Real and symmetrical about the crigin
Imaginary and symmetrical about the origin ~ =——smmn
Quadrantal and symmetrical about the origin ———-—-~

and imaginary, or (3) the roots are quadrantal. Figure 6.5 shows examples of these
cases. Each case or combination of these cases will generate an even polynomial.

It is this even polynomial that causes the row of zeros to appear. Thus, the
row of zeros tells us of the existence of an even polynomial whose roots are
symmetric about the origin. Some of these roots could be on the jew-axis. On the
other hand, since je roots are symmetric about the origin, if we do not have a row
of zeros, we cannot possibly have jo roots

Another characteristic of the Routh table for the case in question is that the
row previous to the row of zeros contains the even polynomial that is a factor of the
original polynomial. Finally, everything from the row containing the even polyno-
mial down to the end of the Routh table is a test of only the even polynomial. Let
us put these facts together in an example.

Pole distribution via Routh table with row of zeros
Problem For the transfer function

20
S84 57 4 1255 +225% + 395 + 595 + 48s% + 385 + 20

T = 6.11)

tell how many poles are in the right half-plane, in the left half-plane, and on the
Jew-axis.
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Table 6.8 Routh table for Example 6.5

# 1 12 39 48 20
57 1 22 59 38 0
£ —K-1 ~20-2 1 202 0
s 20 1 603 402 [} [}
5 1 3 2 0 1}
S|l e A2 o £ 3 o &0 0 0
- ,;( 3 F) 0 0 0
st 1 0 0 0 0
3
© 4 [} [} [} 0

Solution Use the denominator of Eq. (6.11) and form the Routh table in Table 6.8.
For cnnvcmeme the s® row is multiplied by 110, and the 55 row is mulnphed by
1, 20. At the s* row we obtain a row of zeros. Moving back one row to s*, we extract
the even polynomial, P(s), as

P(sy =5 +3s+2 6.12)
This polynomial will divide evenly into the denominator of Eq. (6.11) and thus isa

factor. Taking the derivative with respect to s to obtain the coefficients that replace
the row of zeros in the 5* row, we find

dP(s)
ds
Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for conve-
nience. Finally, continue the table to the s° row, using the standard procedure.
How do we now interpret this Routh table? Since all entries from the even
polynomial at the s* row down to the s° row are a test of the even polynomial, we
begin to draw some conclusmns about the roots of the even polynomial. No sign
changes exist from the s* row down to the s° row. Thus, the even polynomial does
not have right-half-plane poles. Since there are no right-half-plane poles, no left-
half-plane poles are present because of the requirement for symmetry. Hence, the
even polynomial. Eq. (6.12), must have all four of its poles on the jw-axis.? These
results are summarized in the first column of Table 6.9.

=45+ 6540 ©.13)

“A necessary condition for stability is that the jes roots have nmit multiplicity. The even poly-
nomial must be checked for muliple je roots. For this case. the exsstence of multiple je roots
would lead 10 a perfect, fourth-order square polynomial Since Eg. (6.12) is not a perfect square,
the four jw roots are distinct.
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Table 6.8 Summary of pole locations for Example 6.5

Polynomial

Even Other Total
Location {fourth-order) {fourth-order) {eighth-order)
Right half-plane 0 2 2
Left half-plane [ 2 2
jo 4 0 4

The remaining roots of the total polynomial are evaluated from the s® row down
to the 5* row. We notice two sign changes: one from the 57 row to the s* row and
the other from the s° row to the s* row. Thus, the other polynomial must have two
roots in the right half-plane. These results are included in Table 6.9 under “Other”.
‘The final tally is the sum of roots from each component, the even polynomial and
the other polynomial, as shown under “Total” in Table 6.9. Thus, the system has
two poles in the right half-plane, two poles in the left half-plane, and four poles on
the jeo-axis; it is unstable because of the right-half-plane poles.

We now summarize what we have learned about polynomials that generate
entire rows of zeros in the Routh table. These polynomials have a purely even factor
with roots that are symmetrical about the origin. The even polynomial appears in
the Routh table in the row directly above the row of zeros. Every entry in the table
from the even polynomial’s row to the end of the chart applies only to the even
polynomial. Therefore, the number of sign changes from the even polynomial to the
end of the table equals the number of right-half-planc roots of the even polynomial.
Because of the symmetry of roots about the origin, the even polynomial must have
the same number of left-half-plane roots as it does right-half-plane roots. Having
accounted for the roots in the right and left half-planes, we know the remaining
roots must be on the jw-axis.

Every row in the Routh table from the beginning of the chart to the row contain-
ing the even polynomial applies only to the other factor of the original polynomial.
For this factor the number of sign changes, from the beginning of the table down
to the even polynomial, equals the number of right-half-plane roots. The remain-
ing roots are left-half-plane roots. There can be no jes roots contained in the other
polynomial.

Skill-Assessment Exercise 6.2
Problem Use the Routh-Hurwitz criterion to find how many poles of the fol-
lowing closed-loop system, 7(s), are in the rhp, in the lhp, and on the je-axis:

3 + 75 —21s + 10
Bt —67 02 —s5+6

1) =

Answer  Two rhp, two thp, and two jw.
The complete solution is on the accompanying CD-ROM.
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Example 6.6

Figure 6.6
Feedback
control system
for Example 6.6

Let us demonstrate the usefulness of the Routh-Hurwitz criterion with a few
additionat examples.

6.4 Routh-Hurwitz Criterion: Additional Examples

The previous two sections have mntroduced the Routh-Hurwitz criterion. Now we
need to demeonstrate the method’s application to a number of analysis and design
problems.

Standard Routh-Hurwitz

Problem Find the number of poles in the left halt-plane, the right half-plane, and
on the jw-axis for the system of Figure 6.6.

Solution First find the closed-loop transfer function as

200

1) = g6+ 112+ 65 + 200

©.19

Yable 6.10 Routh table for Example 6.6

st i 1 200
R £ 1 1

52 w1 200 20

st -19

¢ 20

The Routh table for the denominator of Eg. (6.14) is shown as Table 6.10. For
clarity we leave most zero cells blank. At the s' row there is a negative coefficient;
thus, there are two sign changes. The system is unstable, since it has two right-half-
plane poles and two left-half-plane poles. The system cannot have jes poles since
a row of zeros did not appear in the Routh table.
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Figure 6.7
Feedback control
system for
Example 6.7
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The nextexample demonstrates the occurrence of a zero in only the first column
of arnw.

Routh-Hurwitz with zero in first column

Problem Find the number of poles in the left half-plane, the right haf-plane, and
on the je-axis for the system of Figure 6.7.

1
S(25%+ 35+ 252+ 354 2)

C(s}

Solution The closed-loop transfer function is

T i P AR AL 71

6.15)
Form the Routh table shown as Table 6.11, using the denominator of Eq. (6.15).
A zero appears in the first column of the s* row. Since the entire row is not zero,
simply replace the zero with a small quantity, €, and continue the table. Permitting
€ to be a small, positive quantity, we find that the first term of the 5 row is negative.
Thus, there are two sign changes, and the system is unstable, with two poles in the
right half-plane. The remaining poles are in the left half-plane.

We also can use the alternative approach, where we produce a polynomial
whose roots are the reciprocal of the original. Using the denominator of Eq. (6.15),

Table 6.11 Routh table for Example 6.7

s 2 2 2
s 3 3 1
4
3 z
5 o€ 3
2 3e—4 1
€
o 126 — 16 —3e?
% —12
0 1
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MATLAB

Example 6.8

Figure 6.8
Feedback
control system
for Example 6.8

Table 6.12 Alternative Routh table for Example 6.7

s 1 3 3
s 2 2 2
s 2 2
s* o€ 2
1 2¢—4
s
€
s 2

we form a polynomial by writing the coefficients in reverse order,
S+28 438 +27 +35 42 ©6.16)

The Routh table for this polynomnial is shown as Table 6.12. Unfortunately, in this
case we also produce a zero only in the first column at the s? row. However, the
table is easier to work with than Table 6.11. Table 6.12 yields the same results as
Table 6.11—three poles in the left half-plane and two poles in the right half-plane.
The system is unstable.

Students who are using MATLAB shou!d now run chbpl in Appendix B. You will learn how to
perform block diagram reduction to find T(s), followed by an evaluation of the closed-loop
system's poles to determine stability. This exercise uses MATLAB to do Example 6.7.

In the next example we see an entire row of zeros appear along with the pos-
sibility of imaginary roots.

Routh-Hurwitz with row of zeros

Problem Find the number of poles in the left half-plane, the right half-plane, and
on the jw-axis for the system of Figure 6.8. Draw conclusions about the stability
of the closed-loop system

R(S) +pon ES) 128 CGs)
o,
(574 355+ 1055 + 2459 + 4853 + 9652 + 1285+ 192)




Table 6.13 Routh table for Example 6.8
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W 1 10 48 128 128
v &1 28 56 32 197 64
* 21 a6 8 £ 32 128 64
S| o3 o 3716 o 6 32 o 80
5 A By £ 24
3 3
5 =8 -1 —40 -5
< &1 208
! 3
o 8

Solution The closed-loop transfer function for the system of Figure 6.8 is

128

T6) = § 1371 1055 1 285 + 485" 1 965° + 12857 + 1905 + 128

©.17)

Using the denominator, form the Routh table, asshown in Table 6. 13. A row of zeros
appears in the s* row. Thus, the closed-loop transfer function denominator must
have an even polynomial as a factor. Retum to the s® row and form the even poly-
nomial:

P(s) = s® + 85" + 325 + 64 6.18)

Differentiate this polynomial with respect to s to form the coefficients that will
replace the row of zeros:

? =65 +325 + 645+ 0 (6.19)
Replace the row of zeros at the s* row by the coefficients of Eq. (6.19) and multiply
through by L 2 for convenience. Then complete the table.

‘We note that there are two sign changes from the even polynomial at the s® row
down to the end of the table. Hence, the even polynomial has two right-half-plane
poles. Because of the symmetry about the origin, the even polynomial must have
an equal number of left-half-plane poles. Therefore, the even polynomial has two
left-half-plane poles. Since the even polynomial is of sixth order, the two remaining
poles must be on the jw-axis.
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Figure 6.9
Jasonis an
underwater, remote-
contrc led vehicle
that has been used to
explore the wreckage
of the Lusitansa. The
manpulator and
cameras compfice
some of the vehicle's
control systems.

Table 6.14 Summary of pole locations for Example 6.8

Polynomial

Even Other Total
Lacation (sixth-order) {second-order) {eighth-order)
Raght half-plane 2 0 2
Left half-plane 2 2 4
jw 2 0 2

Note: hp = right half-plane, Ihp = Icft half-plane.

There are no sign changes from the begmning of the table down to the even
polynomial at the 5% row. Therefore, the rest of the polynomial has no right-half-
plane poles. The results are sunimarized in Table 6.14. The system has two polesin
the right half-plane, four poles in the left half-plane, and two poles on the je-axis,
which are of unit multiplicity. The closed-loop system is unstable because of the
right-half-plane poles.

Long Baselime & i . Thrusters Syntactic
SErey Beacon LitingBal g of7)

Flotation Module
(12001bs)

Aluminum

-Manjpulator Electromcs Housing
“Computer Housing w/Gyro

Side-Scan Sonar
Electronics Housing
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Figure 6.10
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The Routh-Hurwitz criterion gives vivid proof that changes in the gain of
a feedback control system result in differences in transient response because of
changes in closed-loop pole Jocations. The next example demonstrates this con-
cept. We will see that for control systems, such as those shown in Figure 6.9, gain
variations can move poles from stable regions of the s-plane onto the jew-axis and
then into the right half-plane.

Stability design via Routh-Hurwitz

Problem Find the range of gain, K, for the system of Figure 6.10 that will cause
the system to be stable, unstable, and marginally stable. Assume K > ().

Solution First find the closed-loop transfer function as

K

L e Py <

(6.20)

Next form the Routh table, as shown in Table 6.15.

Table 6.15  Routh table for

Example 6.9
s 1 77
« 18 K
o 1386 — K
18
s K

Since K is assumed positive, we see that all elements in the first column are
always positive except the s' row. This entry can be positive, zero, or negative,
depending upon the value of K. If K < 1386, all terms in the first column will be
positive, and since there are no sign changes, the system will have three poles in
the left half-plane and be stable.
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If K > 1386, the s term in the first column is negative. There are two sign
changes, indicating that the system has two right-half-plane poles and one left-
half-plane pole, which makes the system unstable.

If K = 1386, we have an entire row of zeros, which could sigmfy jew poles.
Returning to the s> row and replacing K with 1386, we form the even polynomial

P(s) = 18s% + 1386 (6.21)
Differentiating with respect to 5, we have
9 _ 36540 ©.22)
ds

Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the Routh-
Hurwitz table shown as Table 6.16 for the case of K = 1386.

Table 6.16 Routh table for
Example 6.9 with K = 1386

s* 1 77
s 18 1386
st | o 36

0 1386

Since there are no sign changes from the even polynomial (s> row) down
to the bottom of the table, the even polynomial has its two roots on the jew-axis
of unit multiplicity. Since there are no sign changes above the even polynomial,
the remaining root is in the left half-plane. Therefore the system is marginally
stable

Students who are using MATLAB should now run ch6p2 in Appendix 8. You will learn how to
set up a loop to search for the range of gain 1o yield stability. This exercise uses MATLAB
1o do Example 6.9.

Students who are performing the MATLAB exercises and want to explore the added capability
of MATLAB's Symbolic Math Toolbox should now run chésp2 i Appendix E. You wil learn
how to use the Symbolic Math Toolbox to calculate the values of cells m a Routh table even
if the table contains symbolic objects, such as a vanable gan, K. You will see that the
Symbolic Math Toolbox and MATLAB yeld an alternative way to solve Example 6.9

The Routh-Hurwitz criterion is often used in limited applications to factor poly-
nomials containing even factors. Let us look at an example.
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Factoring via Routh-Hurwitz

Problem Factor the polynomial

s* + 3% + 3057 + 305 + 200 (6:23)

Solution Form the Routh table of Table 6.17. We find that the s' row is a row of
zeros. Now form the even polynomial at the s? row:

P(s) — 2+ 10 (6.24)

Table 6.17 Routh table for Example 6.10

s 1 30 200
s a1 3610

s 201 200 10

s o2 &0

B 10

This polynomial is differentiated with respect to s in order to complete the Routh
table. However, since this polynomial is a factor of the original polynomial in
Eq. (6.23). dividing Eq. (6.23) by (6.24) yields (s + 3s + 20) as the other factor.
Hence,

5%+ 35 + 3057 + 305 + 200 = (52 + L0Ks? + 35 + 20)

= (s +j3.1623)(s — j3.1623)
X {s + L5+ j4213)(s + 1.5 — j4.213) (6.25)

Skill-Assessment Exercise 6.3

® < Problem  For a unity feedback system with the forward transter function
H
_ Kis+20
GO = G a6+

find the range of K to make the system stable.
Answer (O<K<2

The complete solution is on the accompanying CD-ROM.
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6.5 Stability in State Space

Up to this point we have examined stability from the s-plane viewpoint. Now we
Took at stability from the perspective of state space. In Section 4.10, we mentioned
that the values of the system’s poles are equal to the eigenvalues of the system
matrix, A. We stated that the eigenvalues of the matrix A were solutions of the
equation det (sT — A) = 0, which also yielded the poles of the transfer function.
Eigenvalues appeared again in Section 5.8, where they were formally defined and
used to diagonalize a matrix. Let us now formally show that the eigenvalues and
the system poles have the same values.

Reviewing Section 5.8, the eigenvalues of a matrix, A, are values of A that
permit a nontrivial solution (other than 0) for x in the equation

Ax = Ax (6.26)

In order to solve for the values of A that do indeed permit a solution for x, we
rearrange Eq. (6.26) as follows:

Ax Ax=10 6.27)
or
A Ax=0 (6.28)
Solving for X yields
x=@Ql-A (6.29)
or
_ adj(AL - A)

*T daI— A) 630
We see that all solutions will be the null vector except for the occurrence of

zero in the denominator. Since this is the only condition where elements of x will

be 0. 0, or indeterminate, it is the only case where a nonzero solution is possible.
The values of A are calcul by forcing the d i 1o zero:

det(Al A)=0 (6.31)

This equation determines the values of A for which a nonzero solution for x in Eq.
(6.26) exists. In Section 5.8 we defined x as eigenvectors and the values of A as the
eigenvalues of the matrix A

Let us now relate the eigenvalues of the system matrix, A, to the system’s
poles. In Chapter 3 we derived the equation of the system transfer function,
Eq (3.73), from the state equations. The system transfer function has det (sI — A)
in the denominator because of the presence of (sI — A) . Thus,

det(sI —A) =0 6.32)

is the characteristic equation for the system from which the system poles can be
found.
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Since Egs. (6.31) and (6.32) are identical apart from a change in variable name,
we conclude that the eigenvalues of the matrix A are identical to the system’s poles.
Thus, we can determine the stability of a system represented in state space by
finding the eigenvalues of the system matrix. A. and determining their locations on
the s-plane.

Stability in state space
Problem Given the system

o 3 1 10
x=| 2 & 1|x+| ol (6.33a)
-10 -5 -2 0
y=I1 ¢ Ok (6.33b)

find out how many poles are i the left half-plane, in the right half-plane, and on
the jw-axis.

Solution First furm (s — A):

s 00 o 3 s -3 -1
6l-A)=fo s of-] 2 8 1|=|—2 s-8 -1 6.34)
00 s] l-10 -5 -2 10 5 s+2

Now find the det (sT — A):
det(sI — A) = * — 652~ 75— 52 (6.35)
Using this polynomial, form the Routh table, as shown in Table 6.18.

Table €.18 Routh table for Example 6.11

s L -7

2 -6 -3 -52-26

s -4 -1 o0
3

5° -26

Since there is one sign change in the first column, the system has one right-
half-plane pole and two left-half-plane poles. It is therefore unstable

Students who are using MATLAB should now run ch6p3 in Appendix B. You will learn how to
determine the stability of a system represented in state space by finding the eigenvalues of
the system matrix. This exercise uses MATLAB to do Example 6.11.
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Skill-Assessment Exercise 6.4

o

Figure 6.11

The FANUC Robot
M-400 can be
configured for 4 or
 axes of moton. ltis
seen here moving and
stacking boxes.

Problem  For the following system represented in state space, find out how
many poles are in the left half-plane, in the right half-plane, and on the je-axis.

21 1 o
k=17 1|x+|C|r
-3 4 -5 1

=0 1 0x
Answer Two rhp and one lhp.

The complete solution is on the accompanying CD-ROM.

In this section we have evaluated the stability of feedback control systems
from the state-spz ive. Since the closed-loop poles and the eigt
of a system are the same Ihc stability requirement of a system represented in state
space dictates that the eigenvalues cannot be in the right half of the s-plane nor be
multiple on the jew-axis.

‘We can obtain the ei; from the state eqs without hirst converting
to a transfer function to find the poles: The equation det(sI — A) = 0 yields the
eigenvalues directly. If det(sI — A), a polynomial in s, cannot be factored easily,
we can apply the Routh-Hurwitz criterion to it to evaluate how many eigenvalues
are in each region of the s-plane.

‘We now summarize this chapter, first with case studies and then with a written
summary. Our case studies include the antenna position control system and the
UFSS. Stability is as important to these systems as it is to the system shown in
Figure 6.11.
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Antenna Control: Stability Design via Gain

This chapter has covered the elements of stability. We saw that stable systems
have their closed-loop poles in the left half of the s-plane. As the loop gain is
changed, the locations of the poles are also changed, creating the possibility that
the poles can move into the right half of the s-plane, which yields instability.
Proper gain settings are essential for the stablity of closed-loop systems. The
following case study demonstrates the proper setting of the loop gain to ensure
stability.

Problem You are given the antenna azimuth position control system shown on
the front endpapers, Configuration 1. Find the range of preamplifier gain required
to keep the closed-loop system stable.

Solution The closed-loop transfer function was derived in the case studies in
Chapter 5 as

6.63K

T = S5 T01712 + 1715 + 663K

(6.36)
Using the denomunator, create the Routh table shown as Table 6.19 The third
row of the table shows that a row of zeros occurs if K = 2623, This value of K
makes the system marginally stable. Therefore, there will be no sign changes in
the first column if 0 < K < 2623. We conclude that, for stability, 0 < K < 2623.

Table 6.19  Routh table for antenna control

case study
s 1 171
52 101.71 6.63K
st 17392.41 — 6.63K [
& 6.63K

Challenge 'We now give you a problem to test your knowledge of this chapter’s
objectives, Refer to the antenna azimuth position control system shown on the
front endpapers, Configuration 2. Find the range of preamplifier gain required to
keep the closed-loop system stable.

UFSS Vehicle: Stability Design via Gain

For this case study we return to the UFSS vehicle and study the stability of the
pitch control system, which is used to control depth. Specifically, we find the
range of pitch gain that keeps the pitch control loop stable.

Probiem The pitch control loop for the UFSS vehncle (Johnson, 1980) is shown
on the back endpapers. Let Kz — 1 and find the range of K that ensures that the
closed-loop pitch control system is stable.
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Solution The first step is to reduce the pitch control system to a single. closed-loop
transfer function. The equivalent forward transfer function. Gg(s). is

0.25K,(s + 0.435)

Cel®) = 733456 + 345757 + 07155 + 00416 ©3
With unity feedback the closed-loop transfer function, 7(s), is
T(s) = 0.25K,(s + 0435)
4+ 3.45653 + 3.457s2 + (0.719 + 0.25K))s + (0.0416 + 0.109K;)
(6.38)

The denuminator of Eq. (6.38) is now used to form the Routh table shown as
Table 6.20.

Table 6.20 Routh table for UFSS case study

s 1 3.457 0.0416 + 0.109K,
s 3.456 0.719 + 0.25K,
2 11.228 — 0.25K; 0.144 + 0.377K,

| | —00625K2 + L324K, +7.575
11228 — 025K,

e 0.144 + 0.377K,

Note: Some rows have been multiplicd by a posstive constant for convenience.

Looking at the first column, the s* and s® rows are positive. Thus, all
elements of the first column must be positive for stability. For the first column
of the s? row to be positive, — < K; < 44.91. For the first column of the 5'
row to be positive, the numerator must be positive, since the denominator is
positive from the previous step. The solution to the quadratic term in the
numerator yields roots of K; = —4.685 and 25.87. Thus, for a positive
numerator, —4.685 < K| < 25.87. Finally, for the first column of the O row
to be positive, —0.382 < K < o, Using all three conditions, stability will be
ensured if —0.382 < K, < 25.87.

Challenge You are now given a problem to test your knowledge of this chap-
ter’s objectives. For the UFSS vehicle (Johnson, 1980) heading control system
shown on the back endpapers and introduced in the UFSS case study challenge in
Chapter 5, do the following®

a. Find the range of heading gain that ensures the vehicle’s stability. Let K> = 1.
b. Repeat (a) using MATLAB.
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In our case studies we calculated the ranges of gain to ensure stability. The
reader should be aware that although these ranges yield stability, setting gain
within these limits may not yield the desired transient response or steady-state
error characteristics. In Chapters 9 and 11, we will explore design techniques,
other than simple gain adjustment, that yield more flexibility in obtaining
desired characteristics. We conclude this chapter with a summary of the concepts
of stability.

Summary

In this chapter we explored the concepts of system stability from both the classical
and the state-space viewpoints. We found that for linear systems, stabiliryis based on
anatural response that decays to zero as time approaches infinity. On the other hand,
if the natural response increases without bound, the forced response is overpowered
by the natural and we | itrol. This ition is known as instability.
A third possibility exists: The natural response may neither decay nor grow without
bound but oscillate. In this case the system is said to be marginally stable.

We also used an alternative definition of stability when the natural response
is not explicitly available. This definition is based on the total response and says
that a system is stable if every bounded input yields a bounded output (BIBO)
and unstable if any bounded input yields an unbounded output.

Mathematically, stability for linear, time-invariant systems can be deter-
mined from the location of the closed-loop poles:

m  If the poles are only in the left half-plane, the system is stable.
= Ifany poles are m the nght half-plane. the system is unstable.

u  If the poles are on the jw-axis and in the left half-plane, the system is
marginally stable as long as the poles on the jew-axis are of unit multiplic-
ity; it is unstable if there are any multiple jo poles.

Unfortunately, although the open-loop poles may be known, we found that in
higher-order systems it is difficult to find the closed-loop poles without a com-
puter program.

The Routh-Hurwitz criterion lets us find how many poles are in each of
the sections of the s-plane without giving us the coordinates of the poles. Just
knowing that there are poles in the right half-plane is enough to determine that
asystem is unstable. Under certain limited conditions, when an even polyno-
mial is present, the Routh table can be used to factor the systemn’s characteristic
equation,

Obtaining stability from the state-space representation of a system 1s based
on the same concept—the location of the roots of the characteristic equation.
These roots are equivalent to the eigenvalues of the system matrix and can be
found by solving det(sI — A) = 0. Again, the Routh-Hurwitz criterion can
be applied to this polynomial. The point is that the state-space representation
of a system need not be converted to a transfer function in order to investigate
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State Space

State Space

stability. In the next chapter we will look at steady-state errors, the last of three
important control system requirements we emphasize.

Review Questions

1. What part of the output response is responsible for determining the stability
of a linear system?

2. What happens to the response namad in Question 1 that creates instability?

3. What would happen to a physical system that becomes unstable?

4, Why are marginally stable systems considered unstable under the BIBO def-
inition of stability?

5. Where do system poles have to be to ensure that a system is not unstable?

6. What does the Routh-Hurwitz criterion tell us?

7. Under what conditions would the Routh-Hurwitz criterion easily tell us the
actual location of the system’s closed-loop poles?

8. What causes a zero to show up only m the first column of the Routh table?
9. What causes an entire row of zeros to show up in the Routh table?

10. Why do we sometimes multiply a row of a Routh table by a positive con-
stant?

11. Why do we not multiply a row of a Routh table by a negative constant?

12. If a Routh table has two sign changes above the even polynomial and five
sign changes below the even polynomial, how many right-half-plane poles
does the system have?

13. Does the presence of an entire row of zeros always mean that the system has
Jjw poles?

14. If a seventh-order system has a row of zeros at the s* row and two sign
changes below the s* row, how many jeo poles does the system have?

15. Is it true that the eigenvalues of the systerm matrix are the same as the
closed-loop poles?

16. How do we find the eigenvalues?

Problems

1. Tell how many roots of the following polynomial are in the right half-plane,
in the left half-plane, and on the jew-axis:

PE) =543 453 +4% +5+3

2. Using the Routh table, tell how many poles of the following function are in
the right half-plane, in the left half-plane, and on the jes-axis:

s+8

LD Rl e e R P
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3. The closed-loop transfer function of a system is

S+22 +Ts+21

TO =5 2730 15 3

Determine how many closed-loop poles lie in the right half-plane, in the left
half-plane. and on the jw-axis.

4. How many poles are in the right half-plane, in the left half-plane. and on the
Jjw-axis for the open-loop system of Figure P6.17

Figure P6.1
R} Cls)
54457+ 852+ 205+ 15

5. How many poles are in the right half-plane, the left half-plane, and on the
Je-axis for the open-loop system of Figure P6.2?

Figure P6.2 RG)
MATLABR 6. Use MATLAB to find the pole locations for the system of Problem 5
'8 mbolic Math 7. Use MATLAB and the Symbolc Math Toolbox to generate a Routh table to solve

Problem 2.
8. Determine whether the unity feedback system of Figure P6.3 is stable if

240
G+ Ds+2)(s+3)s+ 4

G(s) =

Figure P6.3

MATLAB 9. Use MATLAB to find the pole locations for the system of Problem 8.
10. Consider the unity feedback system of Figure P6.3 with

9= 77D



356  Chapter 6 Stability

Using the Routh-Hurwitz criterion, find the region of the s-plane where the
poles of the closed-loop system are located.

11. Given the umty feedback system of Figure P6.3 with

84

OO = T3 T 129 3 255 1 457 TS0 T 85 7 60)

find out how many poles of the closed-loop transfer function lie in the right
half-plane. in the left half-plane, and on the jo-axis.

12. Using the Routh-Hurwitz criterion and the unity feedback system of Figure
P63 with

1
0O = oy

tell whether or not the closed-loop system is stable.
13. Given the unity feedback system of Figure P6.3 with

G(s) =

8
S —25 -5 + 23 +4s2—8s— 4
tell how many closed-loop poles are located in the right half-plane, in the left
half-plane, and on the jw-axis.
MATLAB 14. Repeat Problem 13 using MATLAB.

15. Consider the following Routh table. Notice that the s® row was originally all
zeros. Tell how many roots of the original polynomial were in the right half-
plane, in the left half-plane, and on the jw-axis.

s 1 2 -1 -2
st | 2 —1 -2
s 3 4 -1 0
st 1 -1 -3 0
s 7 8 0 0
5 -15 -21 0 0
st -9 0 0 0
W —21 0 0 0
% 16. Fo( Iheisystem of Figur_e P6.4, tell how many cIosed—looP pole_s are lt_pcated
in the right half-plane, in the left half-plane, and on the jw-axis. Notice that

there is positive feedback.
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Figure P6.4

R(s) + 18

5 +59-753-752- 18

C(s)

17. Using the Routh-Hurwitz criterion, find out how many closed-loop poles of
the system shown in Figure P65 lie in the left half-plane, in the right half-
plane. and on the jo-axis.

Figure P6.5

Risy + 507

43554 1057+ 305 + 169

C(s)

18. Determine if the unity feedback system of Figure P6.3 with

K + 1)

G = s+ D

can be unstable.
19. For the unity feedback system of Figure P6.3 with

K(s + 6)

09 = GG+

determine the range of K to ensure stability.
2

&

. For the unity feedback system of Figure P6.3 with

K(s+3)s+5)

6= -2

determine the range of K for stability.
MATLAB 21. Repeat Problem 20 using MATLAB.
Symbollc Math 22, Use MATLAB and the Symbolic Math Toolbox to generate a Routh table in terms of K
to solve Problem 20.
23. Find the range of K for stability for the unity feedback system of Figure P6.3
with

K(s+2)s—2)

6O~ @y
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Figure P6.6

24. For the unity feedback system of Figure P6.3 with

Kis+1)

6= a6i)

find the range of X for stability.

25. Find the range of gain. X. to ensure stability in the unity feedback system of
Figure P6.3 with

Kis = (s + 4)s + 5)

6o = (&)

26. Find the range of gamn, K. to ensure stability in the unity feedback system of
Figure P6.3 with
K(s+2)

69 = @TDe+96=D

27. Using the Routh-Hurwitz criterion, find the value of X that will yield oscilla-
tions for the unity feedback system of Figure P6.3 with

K
T s+ 15)s + 27)(s + 38)

28. Use the Routh-Hurwitz criterion to find the range of X for which the system
of Figure P6.6 is stable.

G(s)

R(s) +

o ::I-::::. 29. Repeat Problem 28 for the system of Figure P6.7.

Figure P6.7

30. Given the unity-feedback system of Figure P6.3 with

K(s+4)

Gis) = s(s+ D(s +2)
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MATLAB
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find the following:
a. The range of K that keeps the system stable
b. The value of K that makes the system oscillate

. The frequency of oscillation when K is set to the value that makes the
system oscillate

3

1=

. Repeat Problem 30 for
Kis— )(s—2)
G+ +25+2)

32. For the system shown in Figure P6.8, find the value of gain, K, that will
make the system oscillate. Also. find the frequency of oscillation.

s(s+2)(5+3)

G(s) =

C(s)

33. Given the unity feedback system of Figure P6.3 with
Ksis + 2
OO = a5+ 8)(1 T3
a. Find the range of K for stability.
b. Find the frequency of oscillation when the system is marginally stable
34. Repeat Problem 33 using MATLAB.
35. For the unity feedback system of Figure P6.3 with
K(s +2)
S+ D +HGs-1)

find the range of K for which there will be only two closed-loop, right-half-
plane poles.

G(s) —

3

S

For the unity feedback system of Figure P6.3 with
K
6O = GG H
a. Find the range of K for stability.
b. Find the frequency of oscillation when the system 1s marginally stable.
37. Given the unity feedback system of Figure P6.3 with
K

0= T i@+ 4TS
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a. Find the range of X for stability
b. Find the frequency of oscillation when the system is marginally stable.

Using the Routh-Hurwitz critetion and the unity feedback system of Figure
P6.3 with

38.

&

GO = T e+ 265

a. Find the range of K for stability.
b. Find the value of K for marginal stability.

¢. Find the actual Jocation of the closed-loop poles when the system is
marginally stable.

39. Find the range of K to keep the system shown in Figure P6.9 stable.

Figure P6.9

40. Find the value of K in the system of Figure P6.10 that will place the closed-
loop poles as shown.

Figure P6.10
Closed-ocp system
with pole plot

jo

41. The closed-loop transfer function of a system is

2+ Kis+ Ky

9= PHEKS+ K2 +5s+1
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Determine the range of K, in order for the system to be stable. What is the
relationship between K and K; for stability?
42. For the transfer function below, find the constraints on K, and K; such that
the function will have only two jw poles.
Kis+ K
Ty = — T2
O = TR Kt

4

=

The transfer function relating the output engine fan speed (rpm) to the in-
put main burner fuel flow rate (Ib/h) in a short takeoff and landing (STOL)
fighter aircraft, ignoring the coupling between engine fan speed and the pitch
control command, is (Schierman, 1992)

1357 4+ 90.55° + 19705° + 15,0005% + 31205° — 41,3005 — 50005 — 1840

GO = & 10357 + 118055 + 404055 + 21505" — 89605° — 10,600% — 15505 — 415

a. Find how many poles are in the right half-plane, in the left half-plane, and
on the jw-axis.

b. 1s this open-loop system stable?
State Space 44. A system is represented in state space as

0 1 3 0
x=2 2 —4[x+|1|u
1 -4 3 0

y=1I01 1 0]x

Determine how many eigenvalues are in the right half-plane, in the left half-
plane. and on the je-axis.

MATLAB 45. Use MATLAB to find the eigenvalues of the following system:
01 o 0
x=| 01 —4|x+|0|u
-11 3 1
y=I0 0 1

State Space 46. The following system in state space represents the forward path of a unity
feedback system. Use the Routh-Hurwitz criterion to determine if the closed-

.("— loop system is stable
) 1 0 0
x=| 0 1 3|x+|0|u
-3 -4 -5 1

y=[0 1 1Ix

MATLAB 47. Repeat Problem 46 using MATLAB.
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Design Problems

48. A mode! for an airplane’s pitch loop is shown in Figure P6.11. Find the range
of gain, K, that will keep the system stable. Can the system ever be unstable
for positive values of K?

Figure P6.11
Aircratt pitch loop
model

Controller Arcraft dynamics

Commanded
pitch angle 4

Pitch ungle

Ml

Gyro

49. A common application of control systems is in regulating the temperature
of a chemical process (Figure P6.12). The flow of chemical reactant to a
process is controlled by an actuator and valve. The reactant causes the tem-
perature in the vat to change. This temperature is sensed and compared to a
desired set-point temperature in a closed loop, where the flow of reactant is
adjusted to yield the desired temperature. In Chapter 9 we will leam how a
PID controller is used to improve the performance of such process control
systems. Figure P6.12 shows the control system prior to the addition of the
PID controller. The PID controller is replaced by the shaded box with a gain
of unity. For this system. prior to the design of the PID controller, find the
range of amplifier gain, K, to keep the system stable.

Actuator Chemical
Future PID and heat
controller  Amplifier valve process

Desired
temperature
setpoint 4

Actwal
temperature
-

0.7
22+ 1754025

Temperaure
sensor
Figure P6.12
Block dhagram of a 50, A robot arm called ISAC (Intelligent Soft Arm Control) can be used as part
chemical process- of a system to feed people with disabilities {see Figure P6.13(«7)). The con-
control system trol system guides the spoon to the food and then to a position near the per-

son’s mouth. The arm uses a special pneumatically controlled actuator called
a rubbertuator. Rubbertuators consist of rubber tubes covered with fiber cord.
The actuator contracts in length when pneumatic pressure is increased and
expands 1n length when pressure is decreased. This expansion and contrac-
tion in length can drive a pulley or other device. A video camera provides the
sight for the robot and the tracking loop (Kara, 1992). Assume the simplified
block diagram



Figure P6.13
a.ISAC used for
feeding;

b. smpiied block

diagram

Figure P6.14
Towed vehicle roll
control
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\ L
l ty - .
- |
(@
Desired Actual
spoon Rubbertuator spoon
position Coniralter and load position
R 4 K(s+0.01)(s+6) w0 | 18
Pl
X (s +20)(s + 100) s2+105+29 | ‘
@

shown in Figure P6.13(b) for regulating the spoon at a distance from the
mouth. Find the range of K for stability. (Use of a program with symbolic
capability is recommended.)

51. Often an arcraft is required to tow another vehicle, such as a practice target
or glider. To stabilize the towed vehicle and prevent it from rolling, pitching,
and yawing, an autopilot is built into the towed vehicle. Assume the block
diagram shown in Figure P6.14 represents the autopilot roll control system
(Cochran, 1992). Find the range of K to keep the roll angle stable

‘Commanded Roll Adual
roll angle ‘Compensator Actuator dynamics  rall angle

0,45 + K(s + 0.6)(s+6) 200 500 (]
il
X (s+0.1)(s + 100) 524 125+ 100 s(s+6) [ ‘




3864  Chapter 6 Stabilty

52. Cutting forces should be kept constant during machining operations to pre-
vent changes in spindle speeds or work position. Such changes would deteri-
orate the accuracy of the work’s dimensions. A control system is proposed to
control the cutting force. The plant is difficult to model, since the factors that
affect cutting force are time varying and not easily predicted. However, as-
suming the simplified force control model shown in Figure P6.15, use the
Routh-Hurwitz criterion to find the range of X 1o keep the system stable
(Rober, 1997).

Figure P6.1S Desred Actua]

Cutting force control torce Controller Plant force

system R(s) + X 63 %106 Cis)
X (s+30)(s + 140)(s + 2.5)

Figure P6.16

a. Amagnetc

levitabon

transportabion syster:

b. smplfied block
diagram {©1998 IEEE}

)
Controller Plant
L9 3, K(s +0.8)(s + 103) 570 Zoondh
A s (5 +6261)s—6261)

®)
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53. Transportation systems that use magnetic levitation can reach very high
speeds, since contact friction at the rails is eliminated (see Figure P6.16(a)).
Electromagnets can produce the force to elevate the vehicle. Figure P6.16(5)
iis a simulation model of a control system that can be used to regulate the
magnetic gap. In the figure Z,,,(s) represents a voltage proportional to the de-
sired amount of levitation, or gap. Z, ..(s) represents a voltage proportional
to the actual amount of levitation. The plant models the dynamic response
of the vehicle to signals from the controller (Bittar, 1998). Use the Routh-
Hurwitz criterion to find the range of gain, K, to keep the closed loop system
stable.

' Progressive Analysis and Design Problem

54. High-speed rail pantograph. Problem 17 in Chapter 1 discusses active con-
trol of a pantograph mechanism for high-speed rail systems. In Problem 62(a),
Chapter 5, you found the block diagram for the active pantograph control
system. Using your solution for Problem 62(a) in Chapter 5 and the Routh-
Hurwitz criterion, find the range of controller gain, K, that will keep the system
stable (O’Connor, 1997).

Cyber Exploration Laboratory

Figure P6.17

Experiment 6.1

Objectives To verify the effect of pole location upon stability. To verify the
effect upon stability of loop gain in a negative feedback system.

it qi software K MATLAB, Simulink, and the Control
System Toolbox
Prelab
1. Find the equivalent transfer fonction of the negative feedback system of
Figure P6.17 if G(s) = m and H(s) — 1.

R(s) +

2. For the system of Prelab 1, find two values of gain that will yield closed-loop,
overdamped, second-order poles. Repeat for underdamped poles.
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3. For the system of Prelab 1. find the value of gain, K, that will make the sys-
tem critically damped.

4. For the system of Prelab 1, find the value of gain, K, thar will make the sys-
tem marginally stable. Also, find the frequency of oscillation at that value of K
that makes the systent marginally stable.

5. For each of Prelab 2 through 4, plot on one graph the pole locations for each
case and write the corresponding value of gain, K, at each pole.

Lab
1. Using Simulink, set up the negative feedback system of Prelab 1. Plot the step

response of the system at each value of gain calculated to yield overdamped,
underdamped, critically damped, and marginally stable responses.

. Plot the step responses for two values of gain, K, above that calculated to yield
marginal stability

»

w

At the output of the negative feedback system, cascade the transfer function

Gi9) = 5.
s+ 4
stability and plot the step response. Repeat for X calculated to yield marginal
stability.
Postlab

Set the gain, K, at a value below that calculated for marginal

1. From your plots, discuss the conditions that lead to unstable responses

2. Discuss the effect of gain upon the nature of the step response of a closed-loop
system.
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Steady-State Errors

Chapter Objectives
In this chapter you will learn the following:
m  How to find the steady-state error for a unity feedback system
How to specify a system’s steady-state error performance
= How to find the steady-state error for disturbance inputs

How to find the steady-state error for nonuniy feedback systems

How to design system parameters to meet steady-state error performance
specifications
m  How to find the steady-state error for systems represented in state space

Case Study Objectives

You will be able yourk Ige of the chap jectives with case
studies as follows:

m  Given the antenna azimuth position control system shown on the front
endpapers, you will be able 1o find the ifier gain to meet steady-stat:
error performance specifications.

& Given a video laser disc recorder, you will be able to find the gain required to
permit the system to record on a warped disc.
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7.1 Introduction

In Chapter 1 we saw that control systems analysis and design focus on three spec-
ifications: (1) transient response, (2) stability, and (3) steady-state errors, taking
into account the robustness of the design along with economic and social consid-
erations. Elements of transient analysis were derived in Chapter 4 for first- and
second-order systems. These concepts are revisited in Chapter 8, where they are
extended 1o higher-order systems. Stability was covered in Chapter 6, where we
saw that forced responses were overpowered by natural responses that increase
without bound if the system is unstable. Now we are ready to examine steady-
state errors. We define the errors and derive methods of controlling them. As
we progress, we find that control system design entails trade-offs between de-
sired transient response, steady-state error, and the requirement that the system be
stable.

Definition and Test Inputs

Steady-state error is the difference between the input and the vutput for a pre-
scribed test input as ¢ — o, Test inputs used for steady-state error analysis and
design are summarized in Table 7.1.

Table 7.1 Test waveforms for evaluating steady-state errors of position control systems

Physical Time Laplace
Waveform Name interpretation function  transform
"o
. 1
Step Constant position 1 5
[
"o
- 1
Ramp Constant velocity H z

ol =

Parabola  Constant acceleration %tz




370  Chapter 7 Steady-State Errors

Figure 7.1

Test mputs for steady-
state error analysis
and design vary with
target type

Satellite in geostationary orbit

Satellite orbiting at
constant velocity *

Accelerating
missile

Tracking system F‘ .

N\

In order to explain how these test signals are used, let us assume a position
control system, where the output position follows the input commanded position.
Step inputs represent constant position and thus are useful in determining the ability
of the control system to position itself with respect to a stationary target, such asa
satellite in geostationary orbit (see Figure 7.1). An antenna position control is an
example of a system that can be tested for accuracy using step inputs.

Ramp inputs represent constant-velocity inputs to a position control system by
their linearly increasing amplitude. These waveforms can be used to test a systen’s
ability 1o follow a linearly i ing input or, equivalently, to track a tant-
velocity target. For example, a position control system that tracks a satellite that
moves across the sky at a constant angular velocity, as shown in Figure 7.1, would
be tested with a ramp input to evaluate the steady-state error between the satellite’s
angular position and that of the control system.

Finally, parabolas, whose second derivatives are constant, represent constant-
acceleration inputs to position control systems and can be used to represent accel-
erating targets, such as the missile in Figure 7.1, to determine the steady-state error
performance.

Application to Stable Sy

Since we are concerned with the difference between the input and the output of
a feedback control system after the steady state has been reached, our discussion
is limited to stable systems, where the natural response approaches zero as ¢ — =
Unstable systems represent loss of control in the steady state and are not acceptable




Figure 7.2
Steady state error.
a. step nput;

b. ramp mput
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for use at all. The expressions we derive to calculate the steady-state error can
be applied erroneously to an unstable system. Thus, the engineer must check the
system for stability while performing steady-state error analysis and design. How-
ever, in order to focus on the topic, we assume that all the systems in examples and
problems in this chapter are stable. For practice you may want to test some of the
systems for stability.

Evaluating Steady-State Errors

Let us examine the concept of steady-state errors. In Figure 7.2(a) a step input and
two possible outputs are shown. Output 1 has zero steady-state error, and output 2
has a finite steady-state error, e(c?). A similar example is shown in Figure 7.2(b),

Tnpur

~+— Qutput 1 e3()

()

/ ~=— Output 2

J

Time

@

€z(=)

= Output 2

()

Inpu /
Output 1
e

Time

®
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Figure 7.3
ClosedHoop control
system error:

a. general represent-
tation;

b. representation for
urity feedback
systems

Figure 7.4

System with

a. finite steadystate
error for a step nput;
b. zero steady-state
error for step mput

@

where a ramp mnput is compared with output 1, which has zero steady-state error,
and output 2, which has a finite steady-state error, e(xc), as measured vertically
between the input and output 2 after the transients have died down. For the ramp
input another possibility exists. If the output’s slope is different from that of the
input, then output 3, shown in Figure 7.2(b), results. Here the steady-state error is
infinite as measured vertically between the input and output 3 after the transients
have died down, and ¢ approaches infinity

Let us now look at the error from the perspective of the most general block dia-
gram. Since the error is the difference between the input and the output of a system,
we assume a closed-loop transfer function, 7(s), and form the exvor, E(s), by taking
thedifference between the input and the output, as shown in Figure 7.3(). Here we
are interested in the steady-state, or final, value of {f). For unity feedhack systems,
E(s) appears as shown in Figure 7.3(b). In this chapter we study and derive expres-
sions for the steady-state error for unity feedback systems first and then expand
to nonunity feedback systems. Before we begin our study of steady-state errors
for unity feedback systems, let us look at the sources of the errors with which we
deal.

Sources of Staady-State Error

Many steady-state errors in control systems arise from nonlinear sources, such as
backlash in gears or a motor that will not move unless the input voltage exceeds a
threshold. Nonlinear behavior as a source of steady-state errors, although a viable
topic for study, is beyond the scope of a text on linear control systems. The steady-
state errors we study here are errors that arise from the configuration of the system
itself and the type of applied input.

For example, look at the system of Figure 7.4(a), where R(s) is the input, C(s)
is the output, and E(s) = R(s)~ C(s) is the error. Consider a step input. In the steady
state, if c(t) equals r{s), e() will be zero. But with a pure gain, K, the error, e{f),
cannot be zero if ¢(f) is to be finite and nonzero. Thus, by virtue of the configuration
of the system (a pure gain of K in the forward path), an error must exist. If we call
Caeaty-sure the steady-state value of the output and €aeqdy-«ue the steady-state value
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of the error, then Cueady-suate = Kegeaty-stase, OF

1
Coeady-state = FrCsteady-state an

Thus, the larger the value of K, the smaller the value of €gieaty-state WOUI have to
be to yield a similar value of Csteady-state- The conclusion we can draw is that with
apure gain in the forward path, there will always be a steady-state error for a step
input. This error diminishes as the value of K increases.

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(b),
there will be zero error in the steady state for a step input. The reasoning is as
follows: As c(r} increases, e{f) will decrease, since e(f) = r{r)— c(f). This decrease
will continue until there is zero error, but there will still be a value for ¢(z) since an
integrator can have a constant output without any input. For example, a motor can
be represented simply as an integrator. A voltage applied to the motor will cause
rotation. When the applied voltage is removed, the motor will stop and remain at
its present output position. Since it does not return to its initial position, we have
an angular displacement output without an input to the motor. Therefore, a system
similar to Figure 7.4(b), which uses a motor in the forward path. can have zero
steady-state error for a step input

We have examined two cases qualitatively to show how a system can be expec-
ted to exhibit various steady-state error istics, d ing upun the system
configuration. We now formalize the concepts and derive the refationships between
the steady-state errors and the system configuration generating these errors.

7.2 Steady-State Error
for Unity Feedback Systems

Steady-state error can be calculated from a system’s closed-loop transfer function,
T(s), or the open-loop transfer function, G(s), for unity feedback systems. We be-
gin by deriving the system’s steady-state error in terms of the closed-loop transfer
function, 7(s), in order to introduce the subject and the definitions. Next we obtain
insight into the factors affecting steady-state error by using the open-loop transfer
function, G(s), in unity feedback systems for our calculations. Later in the chapter
we ize this di ion to nonunity feedback systems.

Steady-State Error in Terms of T(s)
Consider Figure 7.3(a). To find E(s), the error between the mput, R(s), and the
output, C(s), we write

E(s) = Ris) — C(s) a.2)

C(s) = RET(5) a3
Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for E(s) yields
E(s) = R®I1 - T(s)] 74
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Example 7.1

Although Eq. (7.4) allows us to solve for e(f) at any time, £, we are interested in th
final value of the error, (). Applying the final value theorem,! which allows u
to use the final value of (f) without taking the inverse Laplace transform of £(s
and then letting ¢ approach infinity, we obtain

e(™) = ’ILIE e(t) = li:l;l) SE(s) (.5)

Substituting Eq. (7.4) into Eq. (7.5) yields
ef@) — lim s — 7)) (7.6
it

Let us look at an example.

Steady-state error in terms of T(s)

Problem Find the steady-state error for the system of Figure 7.3(a) if 7(s) =
5,(s? + 7s + 10) and the input is a unit step.

Solution From the problem statement, R(s) = 1/'s and 7(s) = 5/ (s> + 7s + 10
Substituting into Eq. (7.4} yields

S+ Ts+5

E) = (@ mr i)

(7.
Since 7'(s) is stable and, subsequently, E(s) does not have right half-plane poles ¢
juw poles other than at the origin, we can apply the final value theorem. Substitutin
Egq. (7.7) into Egq. (7.5) gives e(») = 1,2.

Steady-State Error in Terms of Gis)
Many times we have the system configured as a unity feedhack system with
forward transfer function, G(s). Although we can find the closed-loop transfe

"The final value theorem 1s derved from the Laplace transform of the derivative. Thus,

o1 = [ Fwyemdt = sF(s) —£(0-)
o

Ass >0,
[F#wds = sy ~s10 = tamsren - 0y
) .
F) = g
For finite stead the final 1s valid only if F(s) has poles only in the l

half-plane and, at most, one pole at the origin. However, correct results that yield steady-sta
errors that are infinite can be cbtawned if F(s) has more than one pole at the origin (see D*Az;
and Houpis, 1988). If F(s) has poles in the right half-plane or poles on the maginary axs ofh
than at the origin, the final value theorem is invalid.

2Valid only if (1) E(s) has poles only in the left half-plane and at the ongin, and (2) the close
loop transFer function, 7(s), is stable. Notice that by using Eq. (7.5), numerical results can !
obtained for unstable systems. These results, however, are meaningless.
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function, 7(s), and then proceed as in the previous subsection, we find more insight
for analysis and design by expressing the steady-state error in terms of G(s) rather
than 7(s).

Consider the feedhack control system shown in Figure 7.3(b). Since the feed-
back, H(s), equals 1, the system has unity feedback. The implication is that £(s) is
actually the error between the input, R(s), and the output, C(s). Thus, if we solve
for E(s), we will have an expression for the error. We will then apply the final value
theorem, Itemn 11 in Table 2.2, 1o evaluate the steady-state error.

Writing E(s) from Figure 7.3(b), we obtain

E(s) = R(s)— C(s) (7.8)
But
C(s) = E(s)G(s) 79
Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for E(s) yields
__R@)
E9 = {1 6w (7-10)

We now apply the final value theorem, Eq. (7.5). At this point in a numerical
calculation, we must check to see whether the closed-loop system is stable, using,
for example, the Routh-Hurwitz criterion. For now, though, assume that the closed-
loop system is stable and substitute Eq- (7.10) into Eq. (7.5), obtaining

SR(s)

o) = lim G

.11

Equation (7.11) allows us to calculate the steady-state error, (), given the
input, R(s), and the system, G(s). We now substitute several inputs for R(s) and then
draw ions about the £ ips that exist between the open-loop system,
G(s), and the nature of the steady-state error, e(x).

The three test signals we use to establish specifications for a control system’s
steady-state error characteristics are shown in Table 7.1. Let us take each input and
evaluate its effect on the steady-state error by using Eq. (7.11)

Step input  Using Eq. (7.11) with R(s) = 1/, we find

_ e S 1
) = ) — S T T T Gts) a-12)

The term

lim G(sy

=0
is the dc gain of the forward transfer function, since s, the frequency variable, is
approaching zero. In order to have zero steady-state error,

li:?] G(s) — = 713
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Hence, to satisfy Eq. (7.13), G(s) must take on the following form:

(s +2Z)(s +22) -

G = s+ py)s + p)---

719
and for the limit to be infinite, the denominator must be equal to zero as s goes to
zero. Thus,n = 1; thatis, at least one pole must be at the origin. Since division by s
in the frequency domain is integration in the time domain (see Table 2.2, Item 10),
we are also saying that at least one pure integration must be present in the forward
path. The steady-state response for this case of zero steady-state error is similar to
that shown in Figure 7.2(c), output 1.
If there are no integrations, then n — 0. Using Eq. (7.14), we have

ZjzZp--
pp2e

hm Gs) = 715
50

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), output 2, is
an example of this case of finite steady-state error.

In summary, for a step input to a unity feedback system, the steady-state er-
ror will be zero if there is at least one pure integration in the forward path. If
there are no integrations, then there will be a nonzero finite error. This result is
comparable to our qualitative discussion in Section 7.1, where we found that a
pure gain yields a constant steady-state error for a step input, but an integrator
yields zero exvor for the same type of input. We now repeat the development for a
ramp input.

Ramp input  Using Eq. (7.11) with R(s) = 1 57, we obtain

) = eqampl®) = lim 22 _ g S (7.16)
ramp s—01+G(s)  s—~05+5G(5) lin;n) sG(s)
put
To have zero steady-state error for a ramp input. we must have
lim sG(s) = = @17
50

To satisfy Eq. (7.17), G(s) must take the same form as Eq. (7.14), except thatn = 2,

In other words, there must be at least two integrations in the forward path. An ex-

ample of zero steady-state error for a ramp input is shown in Figure 7.2(5), output 1.
If only one integration exists in the forward path. then, assuming Eq. (7.14).

(7.18)

lim sG(s) = 2277
=0 np2
which is finte rather than infimte. Using Eq. (7.16), we find that this configuration
leads to a constant error, as shown in Figure 7.2(b), output 2.

If there are no integrations in the forward path, then

limsG(s) = 0 (7.19)
=0
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and the steady-state error would be infinite and lead to diverging ramps, as shown
in Figure 7.2(b), output 3. Finally, we repeat the development for a parabolic input.

Parabolic input  Using Eq. (7.11) with R(s) = 1/s%, we obtan

(7.20)

- 1
A=) = Couamonl) — limy 70 c(:) = I FYS00 T imeGm)
=0
In order to have zero steady-state error for a parabolic input, we must have
lin(l) S2G(s) = @ (7.2
e
To satisfy Eq. (7.21), G(s) must take on the same form as Eq. (7.14), except that

n = 3. Inother words, there must be at Jeast three integrations in the forward path.
If there are only two integrations in the forward path, then

l|m :ZG(s) =

i .22
2

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads
t0 a constant exror.
If there is only one or less integration in the forward path, then

lim s2G(s) = 0 (7.23)
=0

and the steady-state error is infinite. Two ! these

Steady-state errors for systems with no integrations

Problem Find the steady-state errors for inputs of 5u(r), Stu(f), and 51%u(t) to the
system shown in Figure 7.5. The function u(f) is the unit step.

Solution First we verify that the closed-loop system is indeed stable. For this
example we leave out the details. Next, for the input Su(f), whose Laplace trans-
form is 5/s, the steady-state error will be five times as large as that given by
Egq. (7.12), or

5
) = eagl™) = 1 mGe  T+20 21 a-24)

which implies a response similar to output 2 of Figure 7.2(a)
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For the input 5fu(z), whose Laplace transform 1s 5/ 52, the steady-state error
will be five times as large as that given by Eq. (7.16), or

5

5
o) = Crumpl(e) = okl ® (7.2
T

which implies a response similar to output 3 of Figure 7.2(h).
For the input 5¢2(2), whose Laplace transform is 10 *s, the steady-state error
will be 10 times as large as that given by Eq. (7.20), or

10

10
_ (- 10 _10_ 7.26
€(%) = epargbolal™) lin‘l):z G - 0 (7.26)
prask

Steady-state errors for systems with one integration

Problem Find the steady-state errors for inputs of Su(f), Stu(t), and S£2ul1) to the
system shown in Figure 7.6. The function u(¢) is the unit step.

Solution  First verify that the closed-loop system is indeed stable. For this example
we leave out the details. Next note that since there is an integration in the forward
path, the steady-state errors for some of the input waveforms will be less than those
found in Example 7.2. For the input 5u(¢), whose Laplace transform is 5 s, the
steady-state error will be five times as large as that given by Eq. (7.12), or

() = egep(*) = THmGe) = 0 (7.27)
5—0
which 1mplies a response similar to output 1 of Figure 7.2(a). Notice that the mnte-
gration in the forward path yields zero error for a step input, rather than the finite
error found in Example 7.2
For the input 5t(t), whose Laplace transform is 552, the steady-state error
will be five times as large as that given by Eq. (7.16). or

) = eample) = o = o L am)

which mmplies a response similar to cutpur 2 of Figure 7.2(b). Notice that the m-
tegration in the forward path yields a finite error for a ramp input, rather than the
infinite error found in Example 7.2.
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For the input, 5¢2(f), whose Laplace transform is 10 s, the steady-state error

will be 10 times as large as that given by Eq- (7.20), or
10 _lo
0

—_— = (7.29)
lim 5%G(s)
ot

(™) = Eparavolal®) =

Notice that the integration in the forward path does not yield any improvement in
steady-state error over that found in Example 7.2 for a parabolic input.

Skill-Assessment Exercise 7.1

i+ Foedback v £oll jon:
® :: A Problem A unity system has the forward transfer function:
_ 10(s + 20)(s + 30)
00 = 56+ 39
a. Find the steady-state error for the following inputs: 15u(1), 152u(z), and 15£1(1).
b. Repeat for
Gy = 104+ 20)s + 30)
sY(s + 25)(s + 35)(s + 50)
Answers

a. The closed-loop systemis stable. For 15x(1), eep(=) = 0; for 152u(8), eramp(=) =
2.1875; for 15(2)i(r), eparabola(™) = .
b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is on the accompanying CD-ROM.

7.3 Static Error Constants and System Type

‘We continue our focus on unity negative feedback systems and define parameters
that we can use as steady-state error performance specifications, just as we de-
fined damping ratio, natural frequency, settling time, percent overshoot, and so on
as performance specifications for the transient response. These steady-state error
performance specifications are called static error constants. Let us see how they
are defined, how to calculate them, and, in the next section, how to use them for
design.

Static Error Constants
In the previous section we derived the following i ips for ly-state error.
For a step input, u(f),

1
€(x) ~ egep(®) = T mem lm" o) (7.30)

For a ramp input, tu(z),

1

lim +G(s) a3n

ex) = ermpl*) =
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For a parabolic input, 3¢%(s),

.
im s*G(s)
=0

(132)

€(*) = €purabotal™) =

The three terms in the denominator that are taken to the limit determine the
steady-state error. We call these limits static error constants. Individually, their
names are

position constant. K, where

K, = ,IL"") G(s) (7.33)
velocity constant. K.. where

K, 5111(1, sGis) 734

acceleration constant, K,. where

K, = lin?’ $Gls) (7.35)

As we have seen, these quantities, depending upon the form of G(s), can as-
sume values of zero, finite constant, or infinity. Since the static error constant ap-
pears in the denominator of the steady-state error, Egs. (7.30) through (7.32), the
value of the steady-state error decreases as the static error constant increases.

In Section 7.2 we evaluated the steady-state error by using the final value the-
orem. An alternate method makes use of the static error constants. A few examples
follow.

Steady-state error via static error constants

Problem For each system of Figure 7.7, evaluate the static error constants and find
the expected error for the standard step. ramp, and parabolic inputs.

Solution First verify that all closed-loop systems shown are indeed stable. For this
example we leave out the details. Next. for Figure 7.7(a).

. 500X 2% 5
K, = imG(s) = g5 o5, = 5208 (7.36)
K, — limsGis) = 0 (730
Ko = lin}):zG(s) =0 (7.38)

Thus, for a step input,

1
(=) = T+K ~ 0.161 (7.39)
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500(s + 2)(s +5)
(s +8)(s + 10)(s + 12}

Cls)

@

500(s + 2)(s + 5)(s +6)
S(s +8)(s + 10)(s + 12)

Cls)

®

500(s + 2)(s + 4)(s + S)s +6)(s +T)
s2s+8)(s+ 10)(s + 12)

Cls)

)

For a ramp input,

For a parabolic input,

=
Now, for Figure 7.7(b).
K, = limG(s) =
=0
" 500X 2X5%X6
o= g0l = =gsrow . 21
and
K, = limG(s) = 0
s—0
Thus, for a step mput,
1
- i5x 0
For a ramp input,

381

(7.40)

(7.4D

(7.42)

(743

(744

(7.45)

(7.46)
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For a parabolic input.

(747
Finally, for Figure 7.7(c),
K, = hm G(s) = (7.48)
K, = limsG(s) = (749
and
S00X2X4X5X6XT
= Tims? - ! =
K 1111‘1)5 G EX10x12 875 30
Thus, for a step input,
1
e(@) = TTK 0 (7.51)
For aramp input,
1 _
e(e) = X 0 (1.52)
For a parabolic input,
o =4 =L axi0? (753
K, 85 "

Students who are using MATLAB should now run ch7pl in Appendix B. You wilt learn how
to test the system for stability, evaluate static error constants, and calculate steady-state
error using MATLAB. This exercise applies MATLAB to solve Example 7.4 with system {b).

System Type

Let us continue to focus on a unity negative feedback system. The values of the
static error constants, again, depend upon the form of G(s), especially the number
of pure integrations in the forward path. Since steady-state errors are dependent
upon the number of integrations in the forward path, we give a name to this system
attribute. Given the system in Figure 7.8, we define system type to be the value of n
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Table 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
npur error formula constant Error constant Error constant Error
Step, 1 K, = 1 _
ur) 1+ K, Constant 1+K, 0 K= 0
Ramp, 1 _ K = _
(s ra K =0 * Constant K=o 0
Parabola.
1 K, = 1
1, — =0 E3 K,=0 o 2 =
) ra Ka Constant z

in the denominator or, equivalently, the number of pure integrations in the forward
path. Therefore, a system with n = 0 is a Type O system. If = 1 orn = 2, the
corresponding system is a Type 1 or Type 2 system, respectively.

‘Table 7.2 ties together the concepts of steady-state error, static error constants,
and system type. The table shows the static error constants and the steady-state
errors as functions of input waveform and system type.

Skill-Assessment Exercise 7.2

Problem A unity feedback system has the following forward transfer function:

_ 1000(s +8)
6O = GrnE+9
a. Evaluate system type, Kp, Ky, and K.

b. Use your answers to (a) 1o find the steady-state errors for the standard step,
ramp, and parabolic inputs.

Answers

a. The closed-loop system is stable. System type = Type 0. K, = 127.K, = 0.
and K, = 0.

b. enep(®?) = 7.8 X 107, gramp(®) = , and €pargpoin(e) = .

‘The complete solution is on the accompanying CD-ROM.

In this section we defined steady-state errors, static error constants, and sys-
tem type. Now the specifications for a control system’s steady-state errors will be
formulated, followed by some examples.
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Figure 7.9
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7.4 Steady-State Error Specifications

Static error constants can be used to specify the steady-state error characteristics of
control systems, such as that shown in Figure 7.9, Just as damping ratio, {, setthng
time, 7, peak time, 7p, and percent overshoot, <¢OS, are used as specifications fora
control syster’s transient response, so the position constant, Kj, velocity constant,
K, and acceleration constant, K,, can be used as specifications for a control sys-
tem’s steady-state errors. We will soon see that a wealth of information is contained
within the specification of a static error constant.

For example. if a control system has the specification K, = 1000, we can draw
several conclusions:

1. The system is stable.

2. The system is of Type 1, since only Type 1 systems have K,’s that are finite
constants. Recall that K, = 0 for Type 0 systems, whereas K, = o for Type 2
systems.

3. Aramp input is the test signal. Since K, is specified as a tinite constant, and the
steady-state error for a ramp input is inversely proportional to X, we know the
test input is a ramp.

4. The steady-state error between the input ramp and the output ramp is 1,/ K, per
unit of input slope.

Let us look at two examples that demonstrate analysis and design using static
€ITOr constants.
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Interpreting the steady-state error specification
Problem What mformation is contained in the specification K, = 10007

Solution The system is stable. The system is Type 0, since only a Type 0 system
has a finite K,.. Type 1 and Type 2 systems have K, = w. The input test signal is a
step, since Kp, is specified. Finally, the error per unit step is

o) = e = = (7.54)
4

Gain design to meet a steady-state error specification

Problem Given the control system in Figure 7.10, find the value of K so that there
is 10% error in the steady state.

Solution Since the system is Type 1, the error stated in the problem must apply to
aramp input; only a ramp yields a finite error in a Type 1 system. Thus,

1
e() = ra 0.1 (7.55)
Therefore,
- K X5
K, =10 = }%sG(s) = Ex7x8 (7.56)
which yields
K =672 @7

Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it may
not yield a desirable transient response. In Cbapter 9 we will design feedback con-
trol systems to meet all three specifications.

Students who are using MATLAB should now run ch7p2 in Appendix B. You will leam how to
find the gain to meet a steady-state error specification using MATLAB. This exercise solves
Example 7.6 using MATLAB.
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Figure 7.11
Feedback control
system showing
disturbance

Problem A unity feedback system has the following forward transfer function:

K(s+12)

6= a6+ 18

Find the value of X to yield 2 10% error in the steady state.
Answer K =189

The complete solution is on the accompanying CD-ROM.

This example and exercise iplete our di ion of unity fc k systems.
In the remaining sections we will deal with the steady-state errors for disturbances
and the steady-state errors for feedback control systems in which the feedback is
not unity.

7.5 Steady-State Error for Disturbances

Feedback control systems are used to compensate for disturbances or unwanted in-
Pputs that enter a system. The ad ge of using feedback is that dless of these
disturbances, the system can be designed to follow the input with small or zero er-
ror, as we now demonstrate. Figure 7.11 shows a feedback control system with a
disturbance, D(s), injected between the controller and the plant. We now re-derive
the expression for steady-state error with the disturbance included

The transform of the output is given by

C(s) = E()G(9)G2(s) + D(s)G(s) (7.58)

C(s) = Ris) — E(s) (7.59)
Substituting Eq- (7.59) into Eq. (7.58) and solving for E(s), we obtain

Ga(s)
1+ Gi(5)Gals)

where we can think of 1 [1 + G (s)Gx(s)] as a transfer function relating E(s) to
R(s) and —Gy(s)/ [} + G1(s)G2(s)] as a transfer function relating E(s) to D(s).

Es) =

1
RO D(s) (7.60)

sy

Controlter
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To find the steady-state value of the error, we apply the final value theorem?® to
Egq. (7.60) and cbtain

. §Ga(s)
“) = limaEty) = lim | c.mG.m ROVl 2 GrmGaa P®
— ent) + ep(=) @61)
‘where
ep(>) = lnn —————— -R(¥)

—0l+ G|(‘)Gv(\\
and

lim Ga(s)
AT G.(\)Gv(\l

ep(*) = Dis)

The first term, eg(=), is the steady-state error due to R(s), which we have already
obtained. The second term, ep(e), is the steady-state error due to the disturbance.
Let us explore the conditions on ep(=) that must exist to reduce the error due to the
disturbance.

At this point we must make some ions about D{s}), the ller, and
the plant. First we assume a step disturbance, D(s) = 1. 5. Substituting this value
into the second term of Eq. (7.61). ep(<), the steady-state error component due to
a step disturbance is found to be

ep(®) = -

—~067) + llm G5}

{7.62)

This equation shows that the steady-state error produced by a step disturbance
can be reduced by increasing the dc gain of G(s) or decreasing the dc gain of
Ga(s).

This concept is shown in Figure 7.12, where the system of Figure 7.11 hasbeen
rearranged so that the disturbance, D(s), is depicted as the input and the error, E(s),

Plant

that the final value th be applicd only if th is stable, with the roots
of [1 + Gi{(s)Gx(s)] m the left balf-plane.
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as the output, with R(s) set equal to zero. If we want to minimize the steady-state
value of E(s), shown as the output in Figure 7.12, we must either increase the dc
gain of G (s) so that a lower value of E(s) will be fed back to match the steady-state
value of D(s), or decrease the dc value of Ga(s). which then yields a smaller value
of e(=) as predicted by the feedback formula.

Letus look at an example and calculate the numerical value of the steady-state
error that results from a distorbance.

Example 7.7
Steady-state error due to step disturbance
Problem Find the steady-state error component due to a step disturbance for the
system of Figure 7.13.

Figure 7.13 Gy(s) D(s) Gas)

Feedback control Controller Plant

system for Example *

77

Solution The system is stable. Using Figure 7.12 and Eq. (7.62), we find

1 R R
el?) = T imGy O+ 1000 ~ 1000 63
S0Gas) | so0

The result shows that the steady-state error produced by the step disturbance is
inversely proportional to the dc gain of Gi(s). The dc gain of Gy(s) is infinite in
this example.

Skill-Assessment Exercise 7.4

Problem Evaluate the steady-state error p due 1o a step
for the system of Figure 7.14.

Figure 7.14
System for
SkillAssessment
Exercise 7.4

Answer  ep(e) = —9.98 X 1074

The complete solution is on the accompanying CD-ROM.
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7.6 Steady-State Error for Nonunity Feedback
Systems

Control systems often do not have unity feedback because of the compensation used
to impreve performance or because of the physical model for the system. The feed-
buck path can be a pure gain other than unity or have some dynamic representation.

A general feedback system. showing the input transducer, Gy(s), controller
and plant, Gy(s), and feedback, Hy(s), is shown in Figure 7.15(a). Pushing the
input transducer to the right past the summing junction yields the general nonunity
feedback system shown in Figure 7.15(b), where G(s) = G(s)Ga(s) and H(s) =
H\(s) G(s). Notice thar unlike a unity feedback system, where H(s) = 1, the error
is mot the difference between the inpur and the output. For this case we call the
signal ar the output of the summing junction the actuating signal, Ex(s). If r{(t) and
c(f) have the same units, we can find the steady-state error, e(x) = r{x) — ().
The first step is to shov- explicitly E(s) = R(s) — C(s) on the block diagram.

Rys
=
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Take the nonunity feedback control system shown in Figure 7.15(b) and form
aunity feedback system by adding and subtracting unity feedback paths, as shown
in Figure 7.15(c). This step requires that input and output units be the same. Next
combine H(s) with the negative unity feedback, as shown in Figure 7.15(d). K-
nally, combine the feedback system consisting of G(s) and [H(s) — 11, leaving an
equivalent forward path and a unity feedback, as shown in Figure 7.15(e). Notice
that the final figure shows E(s) — R(s) — C(s) explicitly.

The following example summarizes the concepts of steady-state error, system
type, and static error constants for nonunity feedback systems.

Steady-state error for nonunity feedback systems

Problem  For the system shown in Figure 7.16, find the system type, the appropri-
ate error constant associated with the system type, and the steady-state error for a
unit step input. Assume input and output units are the same.

100
S+10)

Solution  After determining that the system is indeed stable, one may impulsively
declare the system to he Type 1. This may not be the case, since there is a nonunity
feedback element, and the plant’s actuating signal is not the difference between the
input and the output. The first step in solving the problem is to convert the system of
Figure 7.16 into an equivalent unity feedback system. Using the equivalent forward
transfer function of Figure 7.15(e) along with

100
Gs) = G+ 10) .64
and
1
H(s) = e (.65
we find
Guls) = G(s) 100(s + 5) (7.66)

T+ GOHE) — Gs)  5* + 155 — 505 — 400
Thus, the system is Type 0, since there are no pure integrations in Eq. (7.66). The
appropriate static error constant is then K, whose value is

100x 5 5
a0 =4 @.n

K, = lin(1) Gels) =
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The steady-state error, e(>), is

e(®) = (7.68)

1
K, T-G/&

The negative value for steady-state error implies that the output step is larger than
the input step.

T i discussion of steady-state error for systems with nonunity feed-
back, let us look at the general system of Figure 7.17, which has both a disturbance
and nonunity feedback. We will derive a general equation for the steady-state error
and then determine the parameters of the system in order to drive the error to zero
for step inputs and step disturbances.*

The steady-state error for this system, e{«) = r{e) — c{=), 15

Gi(3)Gas) ] RGs)
1+ Gi(S)G2(s)H(s)

Gxs)
[1 + G.(c)G;(s)H(r)]D (s’] 0.6

e(®) = EE%SE(S) = }ijl(]]s{[l

Now limiting the discussion to step inputs and step disturbances, where R(s) =
D(s) = 1 s, Eq. (7.69) becomes

_ TG (G0N
) = limse = 311 - Tl + GOGERE]

} (1.70)

-0 @

liﬂ] Gas)
7| EmlT+ GOGIHE]

For zero error,

1[G ()Ga2(s)] 1im G(s)
e — Y'Y [ — —
Em{l + Gi)GAHHGN Timl1 + GOG2(HH()]

“*Details of the derivation are included as a problem at the end of this chapter.
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Example 7.9

Equations (7.71) can always be satisfied if (1) the system 1s stable, (2) Gi(s)1sa
Type 1 system, (3) Ga(s) is a Type O system, and (4) H(s) is a Type O system with
a dc gain of unity.

To conclude this section, we discuss finding the steady-state value of the ac-
tuating signal, E,(s), in Figure 7.15(a). For this task there is no restriction that
the input and output units be the same, since we are finding the steady-state dif-
ference between signals at the summing junction, which do have the same units.5
The steady-state actuating signal for Figure 7.15(a) is

SR($)Gi(3)

() = I T e

.72

The derivation is left to the student in the problem set at the end of this chapter.

Steady-state actuating signal for nonunity feedback systems

Problem Find the steady-state actuating signal for the system of Figure 7.16 fora
unit step input. Repeat for a unit ramp input.

Solutmn Use Eq. (7.72) with R(s) = I, 5, a umt step mput, Gi(s) = 1, Gafs) =
100; [s(s + 10)], and Hy(s) = 1 (s + 5). Also, realize that e, (%) = €4(x), since
Gi(s) = 1. Thus,

ea(=) — li_n(g T
* (s(s +10) ((s +5)

Now use Eq. (7.72) with R(s) = 1 s?, a unit ramp input, and obtain

-
e = lim =
1

+( 100 )( 1 )
S(s +10) /\(s +5)

) =0 .73)

1
7 (7.74)

Skill-Assessment Exercise 7.5

@ Problem

a. Find the steady-state error, e (=) = r(%) — ¢ (=), for a unit step input given the
nonunity feedback system of Figure 7.18. Repeat for 4 unit ramp input. Assume
input and output units are the same.

b. Find the steady-state actuating signal, e4(¢), for a unit step input given the
nonunity feedback system of Figure 7.18. Repeat for a unit ramp input.

SFor clarity, steady-state error 15 the steady-state difference between the input and the outpul.
Steady-state actuating signal is the stead: dift it the output of \g junction.
In questions asking for steady-state error in problems, examples, and skill-assessment exercises,
it will be assumed that input and output units are the same.
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Figure 7.18
Nonunity feedback
system for
SkibAssessment
Exercise 7.5

(6]

Answers
. eqep() = 3.846 X 1072; eamp(ed) = e
b. For a unit step input, e,() = 3.846 X 1072; for a unit ramp input, £4(<)

The complete solution is on the accompanying CD-ROM.

In this section we have applied steady-state error analysis to nonunity feedback
systems. When nonunity feedback is present, the plant’s actuating signal is not the
actual error or difference between the input and the output. With nonunity feedback
we may choose to (1) find the steady-state error for systems where the input and
output units are the same or (2) find the steady-state actuating signal.

We also derived a general expression for the steady-state error of a nonunity
feedback system with a disturbance. We used this equation to determine the at-
tributes of the subsystems so that there was zero error for step inputs and step

disturbances.

Before concluding this chapter, we will discuss a topic that is not only sig-
nificant for steady-state errors but useful 2] the control systems
design process.

7.7 Sensitivity

During the design process the engineer may want to consider the extent to which
changes in system parameters affect the behavior of a system. Ideally, parameter
changes due to heat or other causes should not appreciably affect a system’s perfor-
mance. The degree to which changes in system parameters affect system transfer
functions, and hence performance, is called sensitivity. A system with zero sen-
sitivity (that is, changes in the system parameters have no effect on the transfer
function) is ideal. The greater the sensitivity, the less desirable the effect of a pa-
rameter change.

For example, assume the function F = K/(K + a). T K = 10 and a = 100,
then F = 0.091. If parameter a triples to 300, then F = (.032. We see that a frac-
tional change in parameter a of 300 — 100),100 = 2 (a 200% change), yields
a change in the function F of (0.J32 — 0.091)/0.091 = —0.65 (—65% change).
Thus, the function F has reduced itivity to changes in p a. As we pro-
ceed, we will see that another advantage of feedback is that in general it affords
reduced sensitivity to parameter changes.
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Example 7.10

Figure 7.19
Feedback control
system for Examples
7.10and 7.11

Based upon the previous discussion, let us formalize a definition of sensitiv-
ity: Sensitivity is the ratio of the fractional change in the function to the fractional
change in the parameter as the fractional change of the parameter approaches zero.
That is,

Fractional change in the function, F

Ser = {im, Fractional change in the parameter. P
— lim ArF L
AP—~0AP P
- um DAF
" AP0 FAP
which reduces to
PoF
Ser = £5p .75

Let us now apply the defnition, first to a closed-loop transfer function and then
to the steady-state error.

Sensitivity of a closed-loop transfer function

Problem Given the system of Figure 7.19, calculate the sensitivity of the closed-
loop transfer function to changes in the parameter a. How would you reduce the
sensitivity?

Solution The closed-loop transfer function is

K
Ll ey ¢ a6
Using Eq. (7.75), the sensitivity is given by
a T a Ks
Sra = Tda K ((s2 +as+ KX Stas+K @
s+as+K

which is, in part, a function of the value of s. For any value of s, however, an
increase in K reduces the sensitivity of the closed-loop transfer function to changes
in the parameter a.
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Example 7.12

Figure 7.20
feedback

control system
for Example 7.12
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Sensitivity of steady-state error with ramp input

Problem For the systemof Figure 7.19, find the sensitivity of the steady-state error
to changes in parameter K and parameter ¢ with ramp inputs.

Solution The steady-state error for the system is

1 a
) = %F (7.78)
The sensitivity of e{cs) to changes in parameter a is
ade a {1
Sea = % /K [E] =1 .79

The sensitivity of e(x) to changes in parameter K is

S. —EE—‘#K _¢
K~ ¢e8K a K|K?

=-1 (7.80)

Thus, changes in either parameter a or parameter K are directly reflected in e(e),
and there is no reduction or increase in sensitivity. The negative sign in Eq. (7.80)
indicates a decrease in e(c) for an increase in K. Both of these results could have
been obtained directly from Eq. (7.78) since e(c) is directly proportional to param-
eter a and inversely proportional to parameter K.

Sensitivity of steady-state error with step input

Problem Find the sensitivity of the steady-state error to changes 1n parameter K
and parameter a for the system shown in Figure 7.20 with a step input.

Solution The steady-state error for this Type O system is

1 1 ab
OV=T3K, = K~ @+k 78
14—
ab
The sensitivity of e(0) to changes in parameter a is
Sea=? Be a (b+Kp—at _ K a8

ab+K

Tea " T @ (ab+ KR
ab+ K
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The sensitivity of e(=) to changes in parameter K is

K 8e K —ab —K
K= —e = ——— = — .83}
Sex = ok ab_\(@b+K? ab+K 83
ab+ K
Equations (7.82) and (7.83) show that the itivity to changes in K

and parameter a is less than unity for positive a and b. Thus, feedback in this case
yields reduced sensitivity to variations in both parameters.

Skill-Assessment Exercise 7.6

Problem Find the sensitivity of the steady-state error to changes in K for the
system of Figure 7.21.

Figure 7.21
System for Rs) + E@) | Ks+7) C(s)

SkikAssessment
Exercise 7.6

2425410

7K
10+ 7K
The complete solution 15 on the accompanying CD-ROM.

Answer S, =

In this section we defined sensitivity and showed that in some cases feedback
reduces the itivity of a system’s steady-state error to changes in system param-
eters. The concept of sensitivity can be applied to other measures of control system
performance, as well; it is not limited to the sensitivity of the steady-state error
performance.

7.8 Steady-State Error for Systems in State Space

Up 1o this point we have evaluated the steady-state error for systems modeled
as transfer functions. In this section we will discuss how to evaluate the steady-
state error for systems represented in state space. Two methods for calculating the
steady-state error will be covered: (1) analysis via final value theorem and (2) anal-
ysis via input substitution. We will consider these methods individually.

Analysis via Final Value Theorem

A single-input, single-output system rep in state space can be analyzed
for steady-state error using the final value theorem and the closed-loop transfer
function, Eq. (3.73), derived in terms of the state-space representation. Consider
the closed-loop system represented in state space:

X =Ax +Br (7.842)
y=Cx (7.84b)
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The Laplace transform of the error is
E(s) = R(s) — Y(5) (7.85)
But
Y(s) = R(OT(s) (7.86)

where 7(s) is the closed-loop transfer function. Substituting Eq. (7.86) into (7.85),
we obtain

E() = R()1 —T(s)] (7.87)
Using Eq. (3.73) for T(s), we find
E@) = R&)[1 - C(s1 - A)'B] 7.88)
Applying the final value theorem, we have

lijr}) sE(s) = lll;l;l‘ SR —CG61 A) "B (7.89)

Ler us apply the result to an example.

Steady-state error using the final value theorem

Problem Evaluate the steady-state error for the system described by Eqgs. (7.90)
for unit step and vnit ramp inputs. Use the final value theorem.

-5 1 0
0 -2 1| B=|0f; C=[-11 0 (790
20 —-10 1 ]

Solution Substituting Eqs. (7.90) into (7.89), we obtain

A=

. s+4
€ = limsRs) (' Fre+ 3+ 20)

3 2
P46 + 125+ 16) aon

i sRGs) (s3 F6C+ 3s+20
For a unit step, R(s) = 1 &, and e(«) = 4. 5. For a unit ramp, R(s) = 1°s?, and
e() = = Notice that the system behaves like a Type 0 system.

Analysis via Input Substitution

Another method for steady-state analysls avoids 1aking the nverse of (sI — A)
and can be d to multiple-input, multiple-output systems; it i the
input along with an assumed colmlon into the state equations (Hostetter, 1989). We
will derive the results for unit step and unit ramp inputs.
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Step inputs  Given the state Eqs. (7.84), if the input is a unit step where r = 1.
a steady-state solution, Xss, for X, is

Vi
V2
X =| =V 7.92)
Va
where V, is constant. Also,
Xoo = 0 (7.93)
Substituting r = 1, a unit step, along with Egs. (7.92) and (7.93), into Egs. (7.84)
yields
0=AV+B (7.942)
yss = CV (7.94b)

where y; is the steady-state output. Solving for V yields
V=-A'B 1.9

But the steady-state error is the difference between the steady-state input and the
steady-state output. The final result for the steady-state error for a unit step input
into a system represented in state space is

e =1—v,=1-CV 1+CA'B (7.96)
Ramp inputs  For unit ramp inputs, r = 1, a steady-state solution for x is

Vit+ W,
Vot + W,

. =Vi+W .97
Vit + Wa

where V; and W; are constants. Hence,
W

V2
ke =|. =V (7.98)

Vo
Substituting » = r along with Egs. (7.97) and (7.98) into Eqgs. (7.84) yields
V= A(Vi+ W) +Bt (7.99a)
Yss = C(V1 + W) (7.99b)
Inorderto balance Eq. (7.99a), we equate the matrix coetticients of £, AV = —B, or

V=-A'B (7.100)
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Equating constant terms m Eq. (7.99a), we have AW = V, or
wW=Alv (7.10D
Substituting Egs. (7.100) and (7.101) into (7.99b) yields
Y = C[-A™'Br + A"Y(~A7'B)] = —C[A'Bt + (A"')’B] (7.102)
‘The steady-state error is therefore
e(x) = lim(t — ys) = limlc1 + CA™'BY + CA™'Y'B]  (7.103)
Notice that in order to use this method, A~! must exist. That is, det A # 0.

We now demonstrate the use of Egs. (7.96) and (7.103) to find the steady-
state error for step and ramp inputs.

Steady-state error using input substitution

Problem Evaluate the steady-state error for the system described by Eqgs. (7.90)
for unit step and unit ramp inputs. Use input substitution.

Solution For a unit step input, the steady-state error given by Eq. (7.96) is
ex)=1+CA'B=1-02=08 (7.10%
where C, A, and B are as follows:
-5 10 0
A= 0 -2 1|; B =|0[; C=[-1 1 0 (7105)
20 —-10 1 1
For a ramp mput, using Eq. (7.103), we have
ele) = [’lim[(l + CA™'Blr + CA™!YB] = lim(0.8t + 0.08) = ©  (7.106)
=y =

Skill-Assessment Exercise 7.7

.:

Problem Find the steady-state error for a step input given the system repre-
sented in state space below. Calculate the steady-state error using both the final
value theorem and input substitution methods.

a=[S ) e[ c-uom

Answer  eqep(®) = %

The complete solution is on the accompanying CD-ROM.

In this chapter we covered the evaluation of steady-state error for systems rep-
resented by transfer functions as well as systems represented in state space. For
systems represented in state space, two methods were presented: (1) final value
theorem and (2) input substitution.



400 Chapter 7 Steady-State Errors

Case Studies

Antenna Control: Steady-State Error Design via Gain

‘This chaprer showed bow 1o find sieady-state errors for step, ramp, and parabolic
inputs to a closed-loop feedback control system. We also learned how to evaluate
the gain to meet a steady-state error requirement. This ongoing case study uses
our antenna azimuth position control system to summarize the concepts.

Problem For the antenna azimuth position control system shown on the front
endpapers, Configuration 1,

a. Find the steady-state error in terms of gain, K, for step, ramp, and parabolic
inputs.

b. Find the value of gain, K, to yield a 10% error in the steady state.

Solution

a. The simplified block diagram for the system is shown on the front endpapers.
The steady-state error is given by

_ o sR(s)
e(®) = }_Lﬂé SE(s) = !El;l) T+66) (7.107)
From the block diagram, after pushing the potentiometer to the right past the
summing junction. the equivalent forward transfer function is

6.63K
O = G100 7.108)

To find the steady-state error for a step input, use R(s) = 1 s along with
Eq. (7.108), and substitute these in Eq. (7.107). The result is e(=) = 0.

To find the steady-state error for a ramp input, use R(s) = 1 s* along
with Eq. (7.108), and substitute these in Eq. (7.107). The result is e(e) =
2579 K.

To find the steady-state error for a parabolic nput, use R(s) = 1°s* along
with Eq. (7.108), and substitute these in Eq. (7.107). The result is e(ed) = .
Since the system is Type 1, a 10% error in the steady-state must refer to a
ramp input. This is the only input that yields a finite. nonzero error. Hence, for
a unit ramp input,

-

dI=01=¢ = "Cek - K (7109
from which K = 257.9. You should verify that the value of K is within
the range of gains that ensures system stability. In the antenna control
case study in the last chapter, the range of gain for stability was found to be
0 < K < 2623.29. Hence, the system is stable for a gain of 257.9.

Challenge You are now given a problem to test your knowledge of this chapter’s
objectives: Referring to the antenna azimuth position control system shown on
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the front endpapers. Configuration 2, do the fullowimng:

a. Find the steady-state errors in terms of gain, K, for step, ramp, and parabolic
inputs.

b. Find the value of gain, K. 10 yield a 20% error 1n the steady state.

Video Laser Disc Recorder: Steady-State
Ervor Design via Gain

As a second case study, let us look at a video laser disc focusing system for
recording.

Problem In order to record on a video laser disc, a 0.5-gm laser spot must

be focused on the recording medium to burn pits that represent the program
material. The small laser spot requires that the focusing lens be positioned to an
accuracy of +0.1m. A model of the feedback control system for the focusing
lens is shown in Figure 7.22.

The detector detects the distance between the focusing lens and the video
disc by measuring the degree of focus as shown in Figure 7.23(«). Laser light
reflected from the disc, D, is split by beam splitters B, and B; and focused be-
hind aperture A. The remainder is reflected by the mirror and focuses in front of
aperture A. The amount of light of each beam that passes through the aperture
depends on how far the beam’s focal point is from the aperture. Each side of the
split photodiode, P, measures the intensity of each beam. Thus, as the disc’s dis-
tance from the recording objective lens changes, so does the focal point of each
beamn. As a result, the relative voltage detected by each part of the split photodi-
ode changes. When the beam is out of focus, one side of the photodiode outputs a
larger voltage. When the beam is in focus, the voltage outputs from both sides of
the photodiode are equal.

A simplified model for the detector 15 a straight line relating the differential
voltage output from the two elements to the distance of the laser disc from nom-
inal focus. A linearized plot of the detector input-output relationship is shown in
Figure 7.23(b) (Isailovic, 1985). Assume that a warp on the disc yields a worst-
case disturbance in the focus of 102 m. Find the value of K;K2K3 in order 10
meet the focusing accuracy required by the system.

Solution  Since the system is Type 2, it can respond to parabolic inputs with fi-
nite error. We can assume that the disturbance has the same effect as an input of

Power Motor &
Detector Filter amphfier lens Actual

otz Kyus + 800) p K non
) (s +40,000) 2 )
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Figure 7.23 Murror
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102 um. The Laplace transform of 102 is 20 3, or 20 units greater than the unit
acceleration used to derive the general equauon of the error for a parabolic input.
Thus, e} = 20" K,,. ButkK, = Ilm s2G(s).

From Figure 7.22, K, = Q. 0024]( 1 K2K3. Also, from the problem statement.
the error must be no greater than 0.1zm. Hence, e(=) = 8333.33 'K KoK3 =
0.1. Thus, K, K>K3 = 83333.3, and the system is stable.

Challenge You are now given a problem to test your knowledge of this chapter’s
objectives: Given the video laser disc recording system whose block diagram is
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shown in Figure 7.24. do the following:

a. ff the focusing lens needs to be positioned to an accuracy of £0.005 gm, find
the value of K KKj if the warp on the disc yields a worst-case disturbance in
the focus of 157 m.

-

Use the Routh-Hurwitz criterion to show that the system is stable when the
conditions of (a) are met.

€. Use MATLAB to show that the systemn is stable when the conditions of {a) are met.

Summary

This chapter covered the analysis and design of feedback control systems for
steady-state errors. The steady-state errors studied resulted strictly from the sys-
tem configuration. On the basis of a system configuration and a group of selected
test signals, namely steps, ramps, and parabolas, we can analyze or design for
the system’s steady-state error performance. The greater the number of pure in-
tegrations a system has in the forward path, the higher the degree of accuracy,
assuming the system is stable.

‘The steady-state errors depend upon the type of test input. Applying the final
value theorem to stable systems, the steady-state error for unit step inputs is

1
o) = 1 + Lim G(s) (7.110)
50
The steady-state error for ramp inputs of unit velocity is
o) = — b .111)
1lim sG(s) :
5=0
and for p ic inputs of unit ion, it is
1
e() (7.112)

1im s2G(s)
s=0
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The terms taken to the limit in Egs. (7.110) through (7.112) are called static
error constants. Beginning with Eq. (7.110), the terms in the denominator taken
to the limit are called the position constant, velocity constant, and acceleration
constant, respectively. The static error constants are the steady-state error speci-
fications for control systems. By specifying a static error constant. one is stating
the number of pure integrations in the forward path, the test signal used, and the
expected steady-state error.

Another definition covered in this chapter was that of system type. The sys-
tem type is the number of pure integrations in the forward path, assuming a unity
feedback system. Increasing the system type decreases the steady-state error as
long as the system remains stable.

Since the steady-state error is, for the most part, inversely proportional to the
static error constant, the larger the static error constant, the smaller the steady-
state error. Increasing system gain increases the static error constant. Thus. in
general, i ing system gain the steady-state error as long as the
system remains stable.

Nonunity feedback systems were handied by deriving an equivalent unity
feedback system whose steady-state error characteristics followed all previous
development. The method was restricted to sytems where input and output units
are the same.

‘We also saw how fe a system’s steady-state error caused
by disturbances With feedback, the effect of a disturbance can be reduced by
system gain adjustments.

Finally, for systems represented in state space, we calculated the stcady-state
error using the final value theorem and input substitution methods.

In the next chapter we will examine the root locus, a powerful tool for the
analysis and design of control systems.

ah

Review Questions

. Name two sources of steady-state errors.

[SI

. A position control, tracking with a constant difference in velocity, would
yield how much position error in the steady state?

Name the test inputs used to evaluate steady-state error.

AW

How many integrations n the forward path are required in order for there to
be zero steady-state error for each of the test inputs listed in Question 3?

Increasing system gain has what effect upon the steady-state error?

For a step input the steady-state error is approxi ly the reciprocal of the
static error constant if what condition holds true?

What is the exact relationship between the static error constants and the
steady-state errors for ramp and parabolic inputs?

8. What information is contained in the specification K, = 10,0007
Define system type.

Ll

bl

©

10. The forward transfer function of a control system has three poles at —1, -2,
and —3. What is the system type?
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11. What effect does feedback have upon disturbances?

12, For a step input disturbance at the input to the plant, describe the effect of
controfler and plant gain upon minimizing the effect of the di

13. Is the forward-path actuating signal the system error if the system has
nonunity feedback?

14. How are nonunity systems
errors?

and d for steady-stat
15. Define, in words, sensitivity and describe the goal of feedback-control-

system engineering as it applies to sensitivity.

16. Name two methods for calculating the steady-state error for systems repre-
sented in state space.

Problems
1. For the unity feedback system shown in Figure P7.1. where

450(s + 8)(s + 12)(s + 15)
s(s + 38)(s? + 25 + 28)

find the steady-state errors for the following test inputs: 25u(f), 37tu(t),
472ut1).

G(s) =

Figure P7.1

2. For the unity feedback system shown in Figure P7.1, where

20(s + 3)s +4)(s + 8)
(s + 2)(s + 15)

find the steady-state error if the input is 307>,

G(s) =

3. For the system shown in Figure P7.2, what steady-state error can be ex-
pected for the following test inputs: 15u(1). 158u(£). 156u(r).

Figure P7.2
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4. For the unity feedback system shown in Figure P7.1, where
500
(s +20)(s? + 4s + 10)
find the steady-state error for inputs of 40u(f), 70tu(z), and 80Fu(r).

An input of 1283(s) is applied to the input of a Type 3 unity feedback sys-
tem, as shown in Figure P7.1, where

Gs) =

L4

200(s + 2)(s + 5)(s + T)s + 9)
s3(s + 3)(s + 10)(s + 15)

Find the steady-state error in position.

G(s) =

Ll

The steady-state error in velocity of a system 1s defined to be

dr _ dc
dr dr
where r is the system input, and ¢ is the system output. Find the steady-state

error in velocity for an input of £u(f) to a unity feedback system with a
forward transfer function of

F—

100(s + 1Ms + 2)
52(s + 3)(s + 10)
‘What is the steady-state error for a step input of 15 units applied to the unity
feedback system of Figure P7.1, where
1000(s + 12)(s + 25)s + 32)
(s + 61)s + 73)(s + 87)

Gis) =

hl

G(s) =

L

A system has K, = 3. What steady-state error can be expected for inputs of
8u(t) and 8tu(r)?
For the unity feedback system shown in Figure P7.1, where
5000
s(s + 75)

hd

G(s) =

a. What is the expected percent overshoot for a unit step input?
b. What is the settling time for a unit step input?
€. What 1s the steady-state error for an input of Su(f)?
d, What is the steady-state error for an input of 5nyr)?
€. What s the steady-state error for an input of Selu(e)?
10. Given the unity feedback system shown in Figure P7.1, where

10°(s + 3)(s + 10)(s + 20)

G = T e+ D6 130

find the value of @ to yield a K, = 10%.
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H. For the unity feedback system of Figure P7.1, where

Ks+2)(s+4)s +6)
O T ene+n
find the value of K to yield a static error constant of 10,000
12. For the system shown in Figure P7.3,
a. Find K, K,, and K,,.
b. Find the steady-state error for an input of 50u(t), 50n4g), and 50:%u).
«c. State the system type.

Figure P7.3
Cls)
S(s+ 15 +2) =
13. A Type 3 unity feedback system has r{¢) = £ applied to its input. Find the
steady-state position error for this input if the forward transfer fonction is
Gis) = 1000(s2 + 4s + 20)(s® + 20s + 15)
(s + 2)(s +10)

14. Find the system type for the system of Figure P7.4.

Figure P7.4

Cls)
—

15. The steady-state error is defined to be the difference in position between
input and output as time approaches infinity. Let us define a steady-state
velocity error, which is the difference in velocity between input and output
Derive an expression for the error in velocity, e() — H{=) — (), and
complete Table P7.1 for the error in velocity.
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® g 16.
S
Figure P75
17.
18.

Figure P7.6

Table P7.1
Type
o 1 2
Step
r:; Ramp
Parabola

For the system shown in Figure P7.5,

a. What value ot K will yield a steady-state error i position of 0.01 for an
input of (1/10)?

b. What is the K, for the value of X found in (a)?

«©. What is the minimum possible steady-state position error for the input
givenin (a)?

Given the unity feedback system of Figure P7.1, where

K(s +a)

6 = G+ D6+ 10

find the value of Ka so that a ramp input of slope 1S will yield an error of
0.003 in the steady state when compared to the output.

Given the system of Figure P7.6, design the value of X so that for an input of
10014(), there will be a 0.01 error in the steady state.
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19. Find the value of X for the unity feedback system shown in Figure P7.1, where

2

2

22.

2

S

-

N

Y

K(s+2)

Gl = Uqs+ 4

if the input is 10r2u(f), and the desired steady-state error is 0.01 for this -
put.

. The unity feedback system of Figure P7.1, where

K(s? + 35 + 30)

G) = si(s + 5)

is to have 1 6000 error between an input of 101(#) and the output in the
steady state.

a. Find K and n to meet the specification.
b. What are K, K,, and K,;?
For the unity feedback system of Figure P7.1, where

K(s? +25+5)

6O = 6T 276+3)

a. Find the system type.

b. What error can be expected for an input of 10:(1)?
€. What error can be expected for an imput of 10zu(£)?
For the unity feedback system of Figure P7.1, where

K(s + 10)s + 1I5)

GO = G e+ 6+ 20

find the value of X 1o yield a steady-state error of 0.1 for a ramp wput of
258u(r).
Given the unity feedback system of Figure P7.1, where
_ Ks+4)

GO = 5T D2+ 1057 26)
find the value of X to yield a steady-state error of 5%.
For the unity feedback system of Figure P7.1, where

K

GO~ T B+ B+ 10)

find the minimum possible steady-state position error if a unit ramp is ap-
plied. What places the constraint upon the error?
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._(— 25,

2

s

27

=

28,

2!

b

3

=3

The unity feedback system of Figure P7.1, where
_Ks+a)
G(s) = G B2
is 10 be desi; to meet the following specifications. steady-state error for a

unit step input = 0.1; damping ratio = 0.5; natural frequency = \/E Find
K,a,and 8.

. A second-order, unity feedback system is to follow a ramp input with the
followi sficati

13 the steady-state output position shall differ from
the input position by 0.01 of the input velocity; the natural frequency of the
closed-loop system shall be 10 rad/s. Find the following:

a. The system type

b. The exact expression for the forward-path transfer function
<. The closed-loop system’s damping ratio

The unity feedback system of Figure P7.1, where

_Ks+a)
G(:)-s(:+B)
1s to be desi to meet the following i The steady-state po-

sition error for a unit ramp input equals 1 K 10; the closed-loop pgles will be
located at —1 * j1. Find X, a, and B in order to meet the specifications.
Given the unity fecdback control system of Figure P7.1, where
K
G = (s +a)
find the values of #, X, and a in order to meet specifications of 10% over-
shoot and X, = 100.
Given the unity feedback control system of Figure P7.1. where
6 = K
sis+a)
find the following:
a. K and a 1 yield K, = 1000 and a 20% overshoot
b. K and a w0 yield a 1% error in the steady state and a 10% overshoot
Given the system in Figure P7.7, find the following:
a. The closed-loop transfer function
b. The system type
¢. The steady-state error for an input of Suz)
d. The steady-state error for an mput of Seu(s)
€. Discuss the validity of your answers to (c) and (d).
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Figure P7.7 ®
— -
54(s+3)
31. Repeat Problem 30 for the system shown in Figure P7.8.
Figure P7.8
aure (o0
s(s+ 1D(s+3)s +4)
MATLAB 32. For the system shown m Figure P7.9, use MATLAB to find the following:
a. The system type
b. K, K,, and K,
c. The steady-state error for inputs of 30u{t), 30kuit), and 30E2u(t)
Figure P7.9
R + G+7 + S(+9)s+13) C(s)
Ss+4)s+8)(s+12) {5+ 10)(s +32)(s + 64) |
10
1
543
@ 33. The system of Figure P7.10 is to have the following specifications: X, = 10;
B

¢ = 05. Find the values of K, and K required for the specifications of the
system to be met.
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Figure P7.10 06 +

6y(s)

34. Find the total steady-state error due 10 a unit step input and a unit step
disturbance in the system of Figure P7.11.

Figure P7.11
35. Design the values of K; and K3 1n the system of Figure P7.12 to meet the
following specifications: Steady-state error component due 10 2 unit step
disturb; is ~0.000012; steady-state error comp due 10 a umt ramp
input is 0.003.
Figure P7.12

36. Derive Eq. (7.72) in the text, the final value of the actuating signal for
nonunity feedback systems.

37. For each of the systems shown in Figure P7.13, find the following:

B

a. The system type

b. The appropriate static error constant

¢. The input waveform to yield a constant error

d. The steady-state error for a unit input of the waveform found in (c)
€. The steady-state value of the actuating signal



Problems 413

Figure P7.13 o
Gosedioop systems B2 o,
with nonuntty h
feedback
(s+4
Systemn 1
e & B
T
System 2
38. For each of the systems shown in Figure P7.14, find the appropriate static
error constant as well as the steady-state error, r () — ¢ (=), for unit step,
ramp, and parabolic inputs.
Figure P7.14

System 2

39. Given the system shown in Figure P7.15, find the following:

a. The system type
b. The value of X 10 yield 0.1% error in the steady state
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Figurs P7.15

Figure P7.16

MATLAB

Figure P7.17

40. For the system shown in Figure P7.16,
a. What is the system type?
b. What s the appropriate static error constant?
€. What is the value of the appropriate static error constant?
d. What 1s the steady-state error for a unit step input?

41

=

For the systern shown in Figure P7.17, use MATLAB to find the following for K = 10,
and K = 10%:

a. The system type
b. K, K, and K,
. The steady-state error for nputs of 30u(t), 30tult), and 30Pult)

(s+7)s+8)

42. Derive Eq. (7.69) in the text.
43. Given the system shown in Figure P7.18, do the following:

a. Derive the expression for the error, E(s) = R(s) — C(s), in terms of R(s)
and D(s).
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b. Derive the steady-state error, e(0), if R(s) and D(s) are unit step
functions.

¢ Determine the attributes of G(s), G2(s), and H(s) necessary for the
steady-state error t0 become zero.

Figure P7.18
System with input and
disturbance
44. Given the system shown in Figure P7.19, find the sensitivity of the
steady-state error (o parameter a. Assume a step input. Plot the sensitivity
as a function of parameter a.
Figure P7.19

sis+1)(s+4)

45. For the system shown in Figure P7.20, find the sensitivity of the steady-state
error for changes in K; and in K3, when K| = 100 and K> = 0.1. Assume
step inputs for both the input and the disturbance.

Figure P7.20
Systern with mput and

[40)]
—
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46. For each of the following closed-loop systems, find the steady-state error for

unit step and unit ramp inputs. Use both the final value theorem and input
substitution methods.

-5 -4 -2 1
ax=|-3 -10 O|x+|l|r; y=[-1 2 1]x
-1 1 -5 0

0 1 0 0
b.x—|-5 -9 7|x+|0|r; y=[1 0 0Ox
-1 0

-9 -5 -1 2
cx=|1 0 -2|x+|3]|r; y=[1 -2 4x
-3 -2 -5 5
47. An automobile guidance system yields an actual output distance, X(s), for a
desired input distance, X.(s), as shown in Figure P7.21(a). Any difference,
X,(s), between the commanded distance and the actual distance is converted
into a velocity command, V(s), by the controller and appfied to the vehicle
accelerator. The vehicle responds to the velocity command with a velocity,
V(s). and a displacement. X(s). is realized. The velocity control, Go(s), is
Commanded  Distance Velocity Actual
distance ermor  Controller command Automobile distance
X, ' v,
) gonXas [ © 7o) G |2 } X(s)
@)
Accelerator
Veloaty ~ Velocity Motorand ~ Accelerator and Automobile
Figure P7.21 command error  amphfier  displacement  automobile velocity
Putomobde guidance 10) Y.As) Ga) Vis)
system: 4()
a. dsplacement —|—,
control system;
b. veloctty cortrol
toop @

itself a closed-loop system, as shown in Figure P7.21(b). Here the difference,
Ve(s), between the commanded velocity, Ve(s), and the actual vehicle veloc-
ity, V(s), drives a motor that di the 'S by Ye(®




Figure P7.22
Block diagram of a
paramagnelic oxygen
analyzer

Figure P7.23
A space stahon:
. configuration
(©1992 AAY
{figure continves)

48.
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(Stefani, 1978). Find the steady-state error for the velocity control loop if the
motor and amplifier transfer function Gs(s) = X [s(s + 1)]. Assume Ga(s)
to be a first-order system, where a maximum possible 1-foot displacement of
the accelerator linkage yields a steady-state velocity of 100 milesfhour, with
the ile reaching 60 mil in 10 seconds.

A simplified block diagram of a meter used 10 measure oxygen concentration
is shown in Figure P7.22. The meter uses the paramagnetic properties of a
stream of oxygen. A small body is placed in a stream of oxygen whose con-
centration is R(s), and it is subjected to a magnetic field. The torque on the
body, K1 R(s), due to the magnetic field is a function of the concentration of
the oxygen. The displacement of the body, 6(s). is detected, and a voltage,
C(s), is developed proportional to the displacement. This voltage is used to
develop an electrostatic field that places a torque, K3C(s), on the body oppo-
site to that developed by the maguetic field. When the body comes to rest,
the output voltage represents the strength of the magnetic torque, which in
turn is related to the ion of the oxygen (CI 1982). Find the
steady-state error between the output voltage, representing oxygen concen-
tration, and the input oxygen concentration. How would you reduce the error
10 zero?

Oxygen Body Body Voliage

concenira « . torque wptacenial out

R(s (!

Cts}
— -

Solar alpha Modules
Totary joint

v
X (Flight direction) Solar arrays
Z (Nadir)
@
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Figure P7.23
{continued)

b. smplified block
diagram

. alpha joint dnve
trai and control
system (©1992 AIRA}

Commanded Position Velocity Gain and dynamics Actual
Joint angle

controller controller

Jomi angle

645) B4y
-

()
Bearing race and
rundle bearings
Inner shear Outer shear
plate l / plate
Motor

Bearing sct

P — Motor Pini L
Inboard resolver inion Outboard
structure H structure
i
'
A
i
1
1
1
i
Desired position, !
velocity i
/ * / \ ° \
Inboard Outboard
p Motor and Bull gear and atructare
tructure pinion trundle bearings
©

49. A space station, shown in Figure P7.23(a), will keep its solar arrays facing
the sun. If we assume that the simplified block diagram of Figure P7.23(b)



Figure P7.24
Pasition control
system
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represents the solar tracking control system that will be used to rotate the
array via rotary joints called solar alpha rotary joints (Figure P7.23(c)). Find
(Kumar, 1992)

a. The steady-state error for step commands

b. The steady-state error for ramp commands

¢. The steady-stare error for parabolic commands
d. The range of K. J to make the system stable

Design Problems

50.

51.

The following specification applies to a position control: K, = 10. On hand
is an amplifier with a variable gain, K2, with which to drive a motor. Two
one-turn pots to convert shaft position into voltage are also available, where
+377 volts are placed across the pots. A motor is available whose transfer
function is

6n(s) _ K
Eis) sis +a)

where 6,,(s) is the motor armature position and E.(s) is the armature voltage.
The components are interconnected as shown in Figure P7.24.

The transfer function of the motor is found experimentally as follows.
The motor and load are driven separately by applying a large, short square
wave (a unit impulse) to the armature. An oscillograph of the response shows
that the motor reached 63% of its final output value 0.5 second after applica-
tion of the impulse. Furthermore, with 10 volts dc applied to the armature,
the constant output speed was 100 rad/s. Draw the completed block dia-
gram of the system. specifying the transfer function of each component of
the block diagram.

Pot Amplifier Motor

Aboat is circling a ship that is using a tracking radar. The speed of the boat
is 20 knots, and it is circling the ship at a distance of 1 nautical mile, as
shown in Figure P7.25(a). A simplified model of the tracking system is
shown in Figure P7.25(b). Find the value of K so that the boat is kept in the
center of the radar beam with no more than 0.1 degree error.
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Figure P7.25
Boat tracked
by ship's rader:
a. physical
arrangement;

b block diagram ot
tracking system

Figura P7.26
Smplffied block

diagram of a pilot in
aloop (©1992 AIAA)

Commanded
Toll angle
G0y

24!

Boat’s trajectory

52. Figure P7.26 shows a simplified block diagram of a pilot n a loop to control
the roll attitude of an Army UH-60A Black Hawk twin-engine helicopter
with a single main rotor (Hess. 1993).

a. Find the system type.

b. The pilot’s response determines K. Find the value of K, if an appropriate
static error constant value of 700 is required.

Actual
| angle

2 *
(+05)(s2+955+78)

Central nervous system Neuromuscular system

Vestibular syster




Figure P7.27

a. Force control
mechanical loop
under contact motron
©1996 IEEE);

b. block diagram
{©1996 IEEE)
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‘Would a pilot whose K| is the value found in (b) be hired to fly the heli-
copter?

Note: Tn the block diagram Gp(s) is a delay of about 0.154 second and can
be represented by a Pade approximation of Gp(s) = —(s — 13), (s + 13).

i

. Motion control, which includes position or force control, is used in robotics

and machining. Force control requires the designer to consider two phases:
contact and noncontact motions. Figure P7.27(a) is a diagram of a me-
chanical system for force control under contact motion. A force command,
F4(s), is the input to the system, while the output, F{s), is the controlled
contact force.

In the figure a motor is used as the force actuator. The force output from
the actuator is applied to the object through a force sensor. A block diagram
representation of the system is shown in Figure P7.27(b). X; is velocity feed-
back used to improve the transient response. The loop is actually imple-
mented by an electrical loop (not shown) that controls the armature current
of the motor to yield the desired torque at the output. Recall that 7, = Kyia
(Ohnishi, 1996). Find an expression for the range of K; to keep the steady-
state force error below 10% for ramp inputs of commanded force.

Electric  Rotational Fis)

motor direction

@

B(s1
AL

54. Problem 50 in Chapter 4 describes an open-loop swivel controller and plant

for an industrial robot. The transfer function for the controller and plant is
w(s) _ K
Vi(s)  (s+10)(s? + 45+ 10)

where e,(s) is the Laplace transform of the robot’s angular swivel velocity
and Vi(s) is the input voltage to the controller. Assume G(s) is the forward

Gels) —
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transfer function of a velocity control Ioop with an input transducer and sen-

sor, each represented by a constant gain of 3 (Schneider, 1992).

a. Find the value of gain, K, to minimize the steady-state error between the
input commanded angular swivel velocity and the output actual angular
swivel velocity.

b, What is the steady-state error for the value of K found in (a)?

¢. For what kind of input does the design in (a) apply?

Progressive Analysis and Design Problem

S§5. High-speed rail pantograph. Problem 17 in Chapter 1 discusses the active
control of a pantograph mechanism for high-speed rail systems. In Problem 62(a),
Chapter 5, you found the block diagram for the active pantograph control system.
Use your solution for Problem 62(a) in Chapter 5 to perform steady-state error
analysis and design as follows (O*Connor, 1997):

a. Find the system type.

b. Find the value of gain, K, that minimizes the steady-state force error
¢. What is the minimum steady-state force error?

Cyber Exploration Laboratory

Figure P7.28

Experiment 7.1

Objective To verify the effect of input waveform, loop gain, and system type
upon steady-state errors.

Minimum required MATLAB, Simulink, and the Control
System Toolbox

Prelab

What system types will yield zero steady-state error for step inputs?

What system types will yield zero steady-state error for ramp inpurs?

What system types will yield infirtite steady-state error for ramp inputs?
What system types will yield zero steady-state error for parabolic inputs?
What system types will yield infinite steady-state error for parabolic inpurs?
For the negative feedback system of Figure P7.28, where

_ K(s+6) _ . .
G(s) = CrAGINE+ e T 1D and H(s) = 1. the dy

error in terms of K for the following inputs: 5u(r), Stu(e), and 5£%u(z).

AN ol o




Bibliography 423

K(s + 6)(s + 8)
Ss+A)(s+ THs+9)(s + 12)
K(s + 1)(s + 6)(s + 8)
25+ (s + Dis + N+ 12)

7. Repeat Prelab 6 tor G(s) = and H(s) = 1.

8. Repeat Prelab 6 for G(s) =
Lab

and H(s) = 1.

1. Using Simulink, set up the negative feedback system of Prelab 6. Plot on one
graph the error signal of the system for aninput of Su(r) and K = 50. 500. 1000.
and 5000. Repeat for inputs of Sru(f) and 5¢2u(z).

2. Using Simulink, set up the negative feedback system of Prelab 7. Plot on one
graph the error signal of the system for an input of Su(f) and K = 50, 500, 1000,
and 5000. Repeat for inputs of Sr(r) and 5£2u(r).

3. Using Simulink, set up the negative feedback system of Prelab 8. Plot on one
graph the error signal of the system for an input of Su(f) and K = 200, 400, 800,
and 1000. Repeat for inputs of Stu(t) and 5e2ulr).

Postlab

-

. Use your plots from Lab 1 and compare the expected steady-state errors to those
calculated in the Prelab. Explain the reasons for any discrepancies.

N

. Use your plots from Lab 2 and compare the expected steady-state errors to those
calculated in the Prelab. Explain the reasons for any discrepancies.

w

. Use your plots from Lab 3 and compare the expected steady-state errors to those
calculated in the Prelab. Explain the reasons for any discrepancies.
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Chapter Objectives

Root Locus Techniques

In this chapter you will learn the following:

The definition of a root locus

How to sketch a root locus

How to refine your sketch of a root locus

How to use the root locus to find the poles of a closed-loop system

How to use the root locus to describe qualitatively the changes in transient
response and stability of a system as a system parameter is varied

How to use the root locus to design a parameter vatue to meet a transient
response specification for systems of order 2 and higher

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with
case studies as follows:

Gven the antenna azimuth position control system shown on the front
endpapers, you will be able to find the preamplifier gain to meet a transient
response specification.

Given the pitch or heading control system for the Unmanned Free-Swimming
Submersible vehicle shown on the back endpapers, you will be able to plot
the root locus and design the gain to meet a transient response specification.
You will then be able to evaluate other performance characteristics.
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8.1 Introduction

Root locus, a graphical presentation of the closed-loop poles as a system parameter
is varied, is a powerful method of analysis and design for stability and transient re-
sponse (Evans, 1948; 1950). Feedback control systems are difficult to comprehend
from a qualitative point of view, and hence they rely heavily upon mathematics.
The root locus covered in this chapter is a graphic technique that gives us the qual-
itative description of a control system’s performance that we are looking for and
also serves as a powerful quantitative tool that yields more information than the
methods already discussed.

Up to this point, gains and other system parameters were designed to yield a
desired transient response for only first- and second-order systems. Even though
the root locus can be used to solve the same Kind of problem, its real power lies in
its ability to provide solutions for systems of order higher than two. For example,
under the right conditions, a fourth-order system’s parameters can be designed to
yield a given percent overshoot and settling time using the concepts leamed in
Chapter 4.

The root locus can be used to describe qualitatively the performance of a sys-
tem as various parameters are changed. For example, the effect of varying gain
upon percent overshoot, settling time, and peak time can be vividly displayed. The
qualitative description can then be verified with quantitative analysis.

Besides transient response, the root Jocus also gives a graphic representation
of a systern’s stability. We can clearly see ranges of stability, ranges of instability,
and the conditions that cause a system to break into oscillation.

Before presenting root locus, let us review two concepts that we need tor the
ensuing discussion: (1) the control system problem and (2) complex numbers and
their representation as vectors.

The Control System Problem

‘We have previously encountered the control system problem in Chapter 6: Whereas
the poles of the open-loop transfer function are easily found (typically, they are
known by inspection and do not change with changes in system gain), the poles of
the closed-loop transfer function are more difficult to find (typically, they cannot
be found without factoring the closed-loop system’s characteristic polynomial, the
denominator of the closed-loop transfer function). and further. the closed-loop poles
change with changes in system gain.

A typical closed-loop feedback control system is shown in Figure 8.1(a). The
open-loop transfer function was defined in Chapter 5 as KG(s)H(s). Ordinarily, we
can determine the poles of KG(s)H(s), since these poles arise from simple cascaded
first- or second-order subsystems. Further, variations in X do not affect the location
of any pole of this function. On the other hand, we cannot determine the poles of
T(s) = KG(s)![1 + KG(s)H(s)] unless we factor the denominator. Also, the poles
of 7(s) change with K.

Let us demonstrate. Letting

Nots)
Dg(s)

G(s) = (CA)]
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Figure 8.1
a. Closed-loop
system;

b. equivalert transfer
function

Forward
transfer
Acuating ol
Input signal Output
R(s) E(s [e83)
-

Ris)

Feedback
transfer
function
@ ()
and
Nu(9)
(5) = 8.2
4= D)
then
KNg(s)Dy(s)
)= ————————————— 8.3
) = Do) + KNGO @3
where N and D are factored ials and signify and denomi-

nator terms, respectively. We observe the following: Typically, we know the factors
of the numerators and denominators of G(s) and H(s). Also, the zeros of T(s)
consist of the zeros of G(s) and the poles of H(s). The poles of T(s) are not
immediately known and in fact can change with K. For example, if G(s) =
(s + 1) Is(s + 2)] and H(s) = (s +3) (s +4), the poles of KG(s)H(s) are 0,
—2, and —4. The zeros of KG(s)H(s) are —1 and —3. Now T(s) = K(s + 1)(s +
4)- [s* 4+ (6 + K)s* + (8 + 4K)s + 3K]. Thus, the zeros of 7(s) consist of the ze-
ros of G(s) and the poles of H(s). The poles of 7(s) are not immediately known
without factoring the denominator, and they are a function of K. Since the system’s
transient response and stability are dependent upon the poles of T(s), we have
no knowledge of the system’s performance unless we factor the denominator for
specific values of K. The root locus will be used to give us a vivid picture of the
poles of T(s} as K varies.

Vector Representation of Complex Numbers

Any complex number. o + jw, described in Cartesian coordinates can be graph-
ically represented by a vector, as shown in Figure 8.2(a). The complex number
also can be described in polar form with magnitude M and angle 6, as M2 6. If
the complex number is substituted into a complex function, F{(s), another complex
number will result. For example, if F(s) = (s + ), then substituting the complex
number s = ¢ + jw yields F(s) = (o + 6} + jw, another complex number.
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This number is shown in Figure 8.2(b). Notice that F(s) has a zero at —a. If we
translate the vector 4 units to the left, as in Figure 8.2(c), we have an alternate rep-
resentation of the complex number that originates at the zero of F(s) and terminates
on the point s = o + jw.

‘We conclude that (s + a) is a complex number and can be represented by a
vector drawn from the zero of the function to the point s. For example, (s + T)ly—5. 2
is a complex number drawn from the zero of the function, —7, to the point s, which
is 5 + j2, as shown in Figure 8.2(d).

Now let us apply the concepts to a complicated function. Assume a function

1 numerator's complex factors
l_[ denominator’s complex factors

(8.4)

ﬁ +2z)
Fgy = 2t
o

Gs+p)

where the symbol [ ] means “product,” m = numberof zeros, andn = number of
poles. Each factor in the numerator and each factor in the denominator is a complex
number that can be represented as a vector. The function defines the complex arith-
metic to be performed in order to evaluate F(s) at any point, 5. Since each complex
factor can be thought of as a vector, the magnitude, M, of F(s) at any point, s, is

i s+ 2l

=5l ®5
I1 s +pl
-1

_ I zero lengths
~ 1 pole tengths



428  Chapter 8 Root Locus Techniques

Example 8.1

Figure 8.3
Vector representation
of Eq.8.7)

where a zero length, |(s + z;)], is the magnitude of the vector drawn from the zero
of F(s) at —z, 1o the point s, and a pole length, |(s + Py, is the magnitude of the
vector drawn from the pole of F(s) at ~pj to the point 5. The angle. 6. of F(s) at
any point, $, is

& =73 zeroangles — » pole angles
m "
=X Ls+z)- X Ls+p) (8.6)
=1 s 1

where a zero angle is the angle, measured from the positive extension of the real
axis, of a vector drawn from the zero of F(s) at —z, to the point 5, and a pole angle
is the angle, measured from the positive extension of the real axis, of the vector
drawn from the pole of F(s) at —p, to the point 5.

As a demonstration of the above concept, consider the following example.

Evaluation of a complex function via vectors
Problem Given

_ G+
9= @7
find F(s) at the point s = —3 + j4.

Solution The problem is graphically depicted in Figurc 8.3, where each vector,
(s + @), of the function is shown terminating on the selected point s = —3 + J4.
The vector originating ut the zero at —I is

J20L1166° (8.8)
‘The vector originaning at the pole at the orgin 1s

5/1269° @9

Jo

\ 473 splane

© 142
X
[T
s+ 14
v
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The vector originating at the pole at —2 is

J17£1040° (8.10)
Substituting Egs. (8.8) throngh (8.10) into Egs. (8.5) and (8.6) yields

J20

M6 = “—=£1166° — 126.9° — 104.0° = 0.2172 — 1143°  8.1D)
517
as the result for evaluating F(s) at the pomnt —3 + ja.

Skill-Assessment Exercise 8.1
Problem Given
_G+s+4
sls + 3)s +6)
find F(s) at the point s = —7 + j 9 the following ways:
a. Directly substituting the point into F(s)

)

®)

b. Calculating the result using vectors
Answer  —0.0339 — j0.0899 = 0.0962—110.7°

The complete solution is on the accompanying CD-ROM.
‘We are now ready to begin our discussion of the root locus.

8.2 Defining the Root Locus

A video camera system similar to that shown in Figure 8.4(a) can automatically
follow a subject. The tracking system consists of a dual sensor and a transmitter,
where one component is mounted on the camera, and the other worn by the subject.
An imbalance between the outputs of the two sensors receiving energy from the
transmitter causes the system to rotate the camera to balance out the difference and
seck the source of energy.

The root locus technique can be used to analyze and design the effect of loop
gain upon the system’s transient response and stability. Assume the block diagram
representation of a tracking system as shown in Figure 8.4(), where the closed-
Toop poles of the system change location as the gain, K, is varied. Table 8.1, which
was formed by applying the ic formula to the i of the transfer
function in Figure 8.4(c), shows the variation of pole location for different values
of gain, K. The data of Table 8.1 is graphically displayed in Figure 8.5(@), which
shows each pole and its gain.

As the gain, K, increases in Table 8.1 and Figure 8.5(«), the closed-loop pole,
whichisat —10for K = 0, moves toward the right, and the closed-loop pole, which
isatQfor K = 0, moves toward the left. They meet at —5, break away from the real
axis, and move into the complex plane. One closed-loop pole moves upward while
the other moves downward. We cannot tell which pole moves up or which moves
down. In Figure 8.5() the individual closed-loop pole locations are removed and
their paths are represented with solid lines. It is this representation of the paths of
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Figure 8.4
a. The CameraMan®
Presenter Camera
System automatcally
follows a subject

who wears infrared
sensors on the front
and back {the front
sensoris alsoa
microphane); tracking
commands and

2udro are relayed to
CameraMan via a
radio frequency hnk
from a unit worn by
the subject;

b. block diagram;
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where K = KiK,
©

Table 8.1 Pole locaton as a function of gain for the system of Figure 8.4

K Pole 1 Pole 2

0 =10 4]

5 —9.47 -0.53
10 —8.87 -113
15 —8.16 —1.84
20 —7.24 ~2.76
25 -5 5
30 -5+j2.24 —5—j224
35 -5+/3.16 —5-7316
40 54387 -5-7387
45 —5 +j447 -5 7447
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the closed-loop poles as the gain is varied that we call a root locus. For most ot
our work, the discussion will be limited to positive gain, or K = 0.

The root locus shows the changes in the transient response as the gam, K,
varies. First of all, the poles are real for gains less than 25. Thus, the system
is overdamped. At a gain of 25, the poles are real and multiple and hence criti-
cally damped. For gains above 25, the system is underdamped. Even though these
p i ions were avai through the analytical techniques covered
in Chapter 4, the ing ions are i by the root
locus.

Directing our attention to the underdamped portion of the root locus, we see
that regardless of the value of gain, the real parts of the complex poles are always
the same. Since the settling time is inversely proportional to the real part of the
complex poles for this d-order system, the lusion is that of the
value of gain, the settling time for the system remains the same under all conditions
of underdamped responses.

Also, as we increase the gain, the damping ratio diminishes, and the percent

hoot i The damped freqy of oscillation, which is equal to the
imaginary part of the pole, also increases with an increase in gain, resulting in a
reduction of the peak time. Finally, since the root locus never crosses over into the
right half-plane, the system is always stable, regardless of the value of gain, and
can never break into a sinusoidal oscillation.

These conclusions for such a simple system may appear to be trivial, What we
are about to see is that the analysis is applicable to systems of order higher than
two. For these systems, it is difficult to tie transient respunse characteristics to the
pole location. The root Jocus will allow us to make that association and will become
an important technique in the analysis and design of higher-order systems.

8.3 Properties of the Root Locus

In Section 8.2 we arrived at the root locus by factoring the second-order polyno-
mial in the denominator of the transfer function. Consider what would happen if
that polynomial were of fifth or tenth order. Without a computer, factoring the poly-
nomial would be quite a problem for numerous values of gain.

We are about to examine the properties of the root locus. From these properties
we will be able to make a rapid skezch of the root locus for higher-order systems
without having to factor the denominator of the closed-loop transfer function.

The properties of the root locus can be derived from the general control system
of Figure 8.1(a). The closed-loop transfer function for the system is

KG(s)
= —_— 8.12;
T = | L kG ®.12)
From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denom-
inator becomes zero, or

KGH(Gs) = 1 = 1(2k + 1)180° k=0,x1,%2 23 8.13)
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where —1 is represented in polar form as 1 2(2k + 1) 180°. Alternately, a value of
s is a closed-loop pole if

|KGs)H(s) 1 (8.14)
and
_KGGIHG 2K+ 1) 180° ®.15)

Equation (8.13) implies that if a value of s is substituted into the function
KG(s)H(s), a complex numbser results. If the angle of the complex number is an
odd multiple of 180°, that value of s is a system pole for some particular value of
K. What value of K? Since the angle criterion of Eq. (8.15) is satisfied, all that
remains is to satisfy the magnitude criterion, Eq. (8.14). Thus,

1
= 8.16
IGOlH) @16
‘We have just found that a pole of the closed-loop system vauses the angle of
KG(s)H(s), or simply G(s)H(s) since K is a scalar, to be an odd multiple of 180°.
Furthermore, the magnitude of KG(s)H(s) must be unity. implying that the value of
K is the reciprocal of the magnitude of G(s)H(s) when the pole value is substituted
for s.
Letus this i ip for the d-order system of Figure 8.4.
The fact that closed-loop poles exist at —9.47 and —0.53 when the gain is 5 has
already been established in Table 8.1. For this system,

KG($)H(s) — 817

K
s(s + 10)
Substituting the pole at —9.47 for s and 5 for K yields KG(s)H(s) = —1. The reader
can repeat the exercise for other points in Table 8.1 and show that each case yields
KG@H(s) = —1.

Itis helpful to visualize graphically the meaning of Eq. (8.15). Let us apply the
complex number concepts reviewed in Section 8.1 to the root locus of the system
shown in Figure 8.6. For this system the open-loop transfer function is

K(s+3)s+4)

KG($)H(s) = DG+ (8.18)
The closed-loup transfer tunction, 7(s), is
16 = K(s +3)(s +4) 19

(1+Ks2+@B+7K)s+ 2+ 12K)

If point s is a closed-loop system pole for some value of gain, K, then s must satisfy
Eqs. (8.14) and (8.15).

Consider the point —2 + j3. If this point is a closed-loop pole for some value
of gain, then the angles of the zeros minus the angles of the poles must equal an
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Figure 8.6

a. Example system; Ko+ R +4)
b. pole-zero plot C+DE+2)
of Gls)
j@
s-plane
odd multiple of 180°. From Figure 8.7,
61+ 6, — 6 — A; = 56.31° + 71.57° — 90° — 108.43°
= —70.55° (8.20)
Therefore, —2 + j3 is not a point on the root locus, or alternatively, —2 + j3 1s not
a closed-loop pole for any gain.
1f these calculations are repeated for the point —2 + j( V2 2), the angles do
add up to 180°. That is, —2 + ji v/2,2) is a point on the root locus for some value
of gain. We now proceed to evaluate that value of gain.
Figure 8.7 ™
Vector representation
of Gfs) from Figure
86laat —2 +j3
s-plane 3
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From Egs. (8.5) and (8.16),

1 1 I pole lengths
K= = = 3
|G)Hs) M 1T zero lengths ®.21)

Looking at Figure 8.7 with the point —2 + j3 replaced by —2 +i(ﬁ 2), the gain,
K, 1s calculated as

V2
TP B R (822
LL 12022 22)
Thus, the point —2 +j(ﬁ 2) is a point on the root locus for a gain of 0.33.

‘We summarize what we have found as follows: Given the poles and zeros of
the open-loop transfer function, KG(s)H(s), a point in the s-plane is on the root
locus for a particular value of gain, X, if the angles of the zeros minus the angles
of the poles, all drawn to the selected point on the s-plane, add up to (2k + 1)180°
Furthermore, gain K at that point for which the angles add up to (2k + 1)180° is
found by dividing the product of the pole lengths by the product of the zero lengths.

Skill-Assessment Exercise 8.2
e Problem Given a unity feedback system that has the forward transfer function

Kis + 2)

- G

do the following:

a. Calculate the angle of G(s) at the point (—3 + j0) by tinding the algebraic sum of
angles of the vectors drawn from the zeros and poles of G(s) to the given point

b. Determine if the point specified in (a) is on the root locus.

. If the point specified in (a) is on the root locus, find the gain, K, using the lengths
of the vectors

Answers

a. Sum of angles — 180°

b. Point 15 on the root locus.

e K=10

The complete solution is on the accompanying CD-ROM.

8.4 Sketching the Root Locus

It appears from our previous discussion that the root locus can be obtained by
sweeping through every point in the s-plane to locate those points for which the
angles, as previously described, add up to an odd multiple of 180°. Although this
task is tedious without the aid of a computer, the concept can be used to develop
rules that can be used to sketch the root locus without the effort required to plot the
locus. Once a sketch is obtained, it is possible to accurately plot just those points
that are of interest to us for a particular problem.
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Figure 8.8
Poles and zeros of a
general open-oop
system with test
points, P, on the
real axs

The following five rules allow us to sketch the root locus using minimal cal
culations. The rules yield a sketch that gives intuitive insight into the behavior of
a control system. In the next section we refine the sketch by finding actual points
or angles on the root locus. These refinements, however, require some calculations
or the use of computer programs such as MATLAB.

1. Number of branches. Euch closed-loop pole moves as the gain is varied. If we
define a branch as the path that one pole traverses, then there will be one branch
for each closed-loop pole. Our first rule, then, defines the number of branches
of the root locus:

The number of branches of the root locus equals the number of closed-loop
poles.

As an example, look at Figure 8.5(b), where the two branches are shown. One
originates at the origin, the other at —10.

N

. Symmetry. If complex closed-loop poles do not exist in conjugate pairs, the
resulting polynomial, formed by multiplying the factors ining the closed-
loop poles, would have complex coefficients. Physically realizable systems can-
not have complex coefficients in their transfer functions. Thus, we conclude:

The root locus is symmetrical about the real axis.
An example of symmetry about the real axis is shown in Figure 8.5(b).

. Real-axis segments. Let us make use of the angle property, Eq. (8.15), of the
points on the root locus to determine where the real-axis segments of the root
Jocus exist. Figure 8.8 shows the poles and zeros of a general open-loop system.
1f an attempt is made to calculate the angular contribution of the poles and zeros
at each point, Py, P2, Pa. and Py, along the real axis, we observe the following:
(1) At each point the angular contribution of a pair of open-loop complex poles
or zeros is zero, and (2) the contribution of the open-loop poles and open-loop
zeros to the left of the respective point is zero. The conclusion is that the only
contribution to the angle at any of the points comes from the open-loop, real-
axis poles and zeros that exist to the right of the respective point. If we calculate
the angle at each point using only the open-loop, real-axis poles and zeros to
the right of each point, we note the following: (1) The angles on the real axis
alternate between 0° and 180°, and (2) the angle is 180° for regions of the real
axis that exist to the left of an odd number of poles and/or zeros. The followmng
rule summarizes the findings:

On the real axis, for K > 0 the root locus exists to the left of an odd number of
real-axis, finite open-loop poles and/or finite open-loop zeros.

w
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s-plane

Examine Figure 8.6(b). According to the rule just developed, the real-axis seg-
ments of the root locus are between —1 and —2 and between —3 and —4 as
shown in Figure 8.9

. Starting and ending points. Where does the root locus begin (zero gain) and

end (infinite gain)? The answer to this question will enable us to expand the
sketch of the root locus beyond the real-axis segments. Consider the closed-
loop transfer function, 7{(s), described by Eq. (8.3). 7(s) can now be evaluated
for both large and small gains, K. As K approaches zero (small gain),
KNo(s)Dy(s)
T(s) = — 77 .2
O Dets)Duts) + € ©2)
From Eq. (8.23) we see that the closed-loop system poles at small gains approach
the combined poles of G(s) and H(s). We conclude that the root locus begins at
the poles of G(s)H(s). the open-loop transfer function.
Athigh gains, where K is approaching infinity,
~ _ KN6($)Dr(s)
T = & RN Wals) ®249
From Eq. (8.24) we see that the closed-loop system poles at large gains upproach
the combined zeros of G(s) and H(s). Now we conclude that the root locus ends
at the zeros of G(s)H(s), the open-loop transfer function.
Summarizing what we have fuund:

The root locus begins at the finite and infinite poles of G(s)H(s) and ends a1 the
finite and infinite zeros of G(s)H(s).

Remember that these poles and zeros are the open-loop poles and zeros.

In order to demenstrate this rule, look at the system in Figure 8.6(a), whose
real-axis segments have been sketched in Figure 8.9. Using the rule just de-
tived, we find that the root locus begius at the poles at —1 and —2 and ends at
the zeros at —3 and —4 (see Figure 8.10). Thus, the poles start outat —1 and —2
and move through the real-axis space between the two poles. They meet some-
where between the two poles and break out into the complex plane, moving as
complex conjugates. The poles return to the real axis somewhere between the
zeros at —3 and —4, where their path is completed as they move away from each
other, and end up, respectively, at the two zeros of the open-loop system at —3
and —4.
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Figure 8.10
Complete root locus
for the system of
Figure 8.6

jo

-4

5. Behavior at infinity. Consider applying Rule 4 to the following open-loop
transfer function:

KG(s)H(s} = (825

K
s(s+1)(s+2)
There are three fintte poles, at s = 0, —1, and —2, and no finite zeros.

A function can also have infinite poles and zeros. If the function approaches
nfinity as s approaches infinity, then the function has a pole at infinity. If the
function approaches zero as s approaches infinity, then the function has a zero
at infinity. For example, the function G(s) = s has a pole at infinity, since G(s)
approaches infinity as s approaches infinity. On the other hand, G(s) = 1 shas
azero at infinity, since G(s) approaches zero as s approaches infinity.

Every function of s has an equal number of poles and zeros if we include
the infinite poles and zeros as well as the finite poles and zeros. In this example,
Eg. (8.25) contains three finite poles and three infinite zeros. To jllustrate, let s
approach infinity. The open-loop transfer function becomes

K K
KGOH® ~ 5 = —— (8.26)
Each s in the denominator causes the open-loop function, KG(s)H(s), to become
zero as that s approaches infinity. Hence, Eq. (8.26) has three zeros at infinity.

Thus, for Eq. (8.25), the root locus begins at the finite poles of KG(s)H(s)
and ends at the infinite zeros. The question remains: Where are the infinite ze-
r0s? We must know where these zeros are in order to show the locus moving
from the three finite poles to the three infinite zeros. Rule 5 helps us locate these
zeros at infinity. Rule 5 also helps us locate poles at infinity for functions con-
taining more finite zeros than finite poles.'

‘We now state Rule 5, which will tell us what the root locus looks like as it
approaches zeros at infinity or as it moves from the poles at infinity. The deriva-
tion can be fuund in Appendix L.1 on the panying CD-ROM.

!Physical systems, however, have more finite poles than finite zeros, sunce the implied differen-
tiation yields infinite output for discontinuous input functions, such as step mputs.
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Figure 8.11
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The root locus approaches straight lines as asymptotes as the locus approaches
infinity. Further, the equation of the asymptotes is given by the real-axis inter-
cept, o, and angle, 6,, as follows.
N hnte poles fimite zeros
: finite poles 8.27
T whimte poles  #hnite zeros ®.27)
QL D
_— - 8.28;
#linite poles  #finite zeros ¢ )
where k = 0, *1, +2, +3, and the angle is given in radians with respect o the
positive extension of the real axis.
Notice that the running index, k, in Eq. (8.28) yields a multiplicity of lines that
account for the many branches of a root Jocus that approach infinity. Let us
demonstrate the concepts with an example.

Sketching a root locus with asymptotes
Problem Sketch the root locus for the system shown in Figure 8.11.

Solution Let us begin by calculating the asymptotes. Using Eq. (8.27), the real-
axis intercept is evalvated as

_(E1-2-4-(=3) _ 4

%a -1 3 (829
The angles of the lines that intersect at —4 3, given by Eq. (8.28), are
b = ?m% (8.302)
-3 fork=0 (8.30b)
== fork=1 ®300)
=5m3 fork—2 (8.30d)

If the value for k continued to increase, the angles would begin to repeat. The
number of lines obtained equals the difference between the number of finite poles
and the number of finite zeros.

Rule 4 states that the locus begins at the open-loop poles and ends at the open-
loop zeros. For the example there are more open-loop poles than open-loop zeros.
Thus, there must be zeros at infinity. The asymptotes tell us how we get to these
zeros at infinity.
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Figure 8.12 jo
Root locus and
asymptotes for the 15
system of Figure 811
s-plane
Asympiote /| 15
4
Asymptote
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Asymptote\] 72

Figure 8.12 shows the complete root locus as well as the asymptotes that were
just calculated. Notice that we have made use of all the rules learned so far. The
real-axis segments lie to the left of an odd number of poles and/or zeros. The locus
starts at the open-loop poles and ends at the open-loop zeros. For the example there
is only one open-loop finite zero and three infinite zeros. Rule 5, then, telis us that
the three zeros at infinity are at the ends of the asymptotes.

Skill-Assessment Exercise 8.3

Problem Sketch the root locus and its asymptotes for a unity feedback system
that has the forward transfer function

K
G = T De+ a6+ 6

Answer  The complete solution is on the accompanying CD-ROM.

8.5 Refining the Sketch

The rules covered in the previous section permit us to sketch a root locus rapidly. If
we want more detail, we must be able to accurately find important pomts on the root
Tocus along with their associated gain. Points on the real axis where the root locus
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enters or leaves the complex plane—real-axis breakaway and break-in points—and
the jew axis crossings are candidates. We can also derive a better picture of the root
locus by finding the angles of departure and arrival from complex poles and zeros,
respectively.

In this section we discuss the calculations required to obtain specific points on
the root Jocus. Some of these calculations can be made using the basic root locus
relationship that the sum of the zero angles minus the sum of the pole angles equals
an odd multiple of 180°, and the gain at a point on the root locus is found as the
ratio of (1) the product of pole lengths drawn to that point to (2) the product of zero
lengths drawn to that point. We have yet to address how to implement this task. In
the past an inexpensive tool called a Spirule™ added the angles together rapidly
and then quickly mulliplied and divided the lengths to obtain the gain. Today we
canrely on as well as personal computers.

Students pursuing MATLAB will learn how to apply it to the root locus at the
end of Section 8.6. Other alternatives are discussed in Appendix G.2 on the ac-
companying CD-ROM. The discussion can be adapted to pmg[dmmdble handheld
calculators. All readers are d to select a aid at this point.
Root locus calculations can be labor intensive if hand calculations are used.

We now discuss how to refine our root locus sketch by calculating real-axis
breakaway and break-in points, jew-axis crossings, angles of departure from com-
plex poles, and angles of arrival to complex zeros. We conclude by showing you
how to find accurately any point on the root locus and calculate the gain.

Real-Axis Breakaway and Break-in Points

Numerous root loci appear to break away from the real axis as the system poles
move from the real axis to the complex plane. At other times the loci appear to re-
turn to the real axis as a pair of complex poles becomes real. We illustrate this in Fig-
ure 8.13. This locus is sketched using the first four rules: (1) number of branches,
(2) symmetry, (3) real-axis segments, and (4) starting and ending points. The figure
shows a root locus leaving the real axis between —1 and —2 and returning to the
real axis between +3 and +5. The point where the locus leaves the real axis, —o;,
is called the breakaway point, and the point where the locus returns to the real axis,
02, is called the break-in point.

Atthe breakaway or break-in point, the branches of the root locus form an angle
of 180° n with the real axis, where » is the number of closed-loop poles arriving
at or departing from the single breakaway or break-in point on the real axis {(Kuo,
1991). Thus, for the two poles shown in Figure 8.13, the branches at the breakaway
point form 90° angles with the real axis.

We now show how to find the breakaway and break-in points. As the two
closed-loop poles, which are at —1 and —2 when K = 0, move toward each other,
the gain increases from a value of zero. We conclude that the gain must be max-
imum along the real axis at the point where the breakaway occurs. somewhere
between —1 and —2. Naturally, the gain increases above this value as the poles
move into the complex plane. We conclude that the breakaway point occurs at a
point of maximum gain on the real axis between the open-loop poles.

Now let us turn our attention to the break-in point somewhere between +3 and
+5 on the real axis. When the closed-loop complex pair returns to the real axis,
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Figure 8.13 o

Root locus example N

showng real-axis jar

breakaway (— ;) and

breakin points {rr;) BE s-plane
the gain will continue to increase to infinity as the closed-loop poles move toward
the open-loop zeros. It must be true, then, that the gain at the break-in point is the
minimum gain found along the real axis between the two zeros.

The sketch in Figure 8.14 shows the variation of real-axis gain. The breakaway
point is found at the maximum gain between —1 and —2, and the break-in point is
found at the minimum gain between +3 and +5

There are three metheds for finding the points at which the root locus breaks
away from and breaks into the real axis. The first methed is to maximize and
minimize the gain, K, using differential calculus. For all points on the root locus,

Flgure 8.14 K
Vaniation of gain

along the real axis for
the root locus of
Figure 8.13

3 2.1 0 1 2 3 40, 5
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Eq. (8.13) yields

K= - Gon

8.31)
For ponts along the real-axis segment of the root locus where breakaway and break-
in points could exist, s = @. Hence, along the real axis Eq. (8.31) becomes

1

K=~ G

(8.32)

This equation then represents a curve of K versus o similar to that shown in Figure
8.14. Hence, if we differentiate Eq. (8.32) with respect to o and set the derivative
equal to zero, we can find the points of maximum and minimum gain and hence
the breakaway and break-in points. Let us demonstrate.

Breakaway and break-in points via differentiation

Problem Find the breakaway and break-in points for the root locus of Figure 8.13,
using differential calculus.

Solution Using the open-loop poles and zeros, we represent the open-loop system
whose oot locus is shown in Figure 8.13 as follows:

Ks—3s—5)  Kis®>—85+15)

KOS ~ 15+~ (F+3:s+D ®33)
But for all points along the root locus, KG(s)H(s) = —1, and along the real axis,
s = o. Hence,
Ko* ~80 +15) _ _
@' +30+2) 1 ®34)
Solving for K, we find
_ —(*+30+2)
K Tt 1® (8.35)

Differentiating K with respect to o and setting the dervative equal to zero yields

dK _ (116> — 260 - 61) _

do (o2 — 80 + 152 0 (8.36)
Solving for o. wefind ¢ = —1.45 and 3.82, which are the breakaway and break-in
points.

The second method 1s a vanaton on the differential calculus methed. Called
the ition method, it elimi the step of di iation (Franklin, 1991).
This methed, derived in Appendix L2 on the ing CD-ROM, is now
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stared:

Breakaway and break-in points satisfy the relationship

mo n 1
N7 = L
— o+z Z T +p, ®3n

where z, and p, are the negative of the zero and pole values, respectively, of
G(8)H(s).

Solving Eq. (8.37) for o, the real-axis values that mimmize or maxumize K, yields
the breakaway and break-in points without differentiating. Let us look at an exam-
ple.

Breakaway and break-in points without differentiation
Problem Repeat Example 8.3 without di i
Solution Using Eq. (8.37),

1 1 1 1
U—3+ﬂ’*5_0+1+0'+2 ®38)

Simplifying,
11?2 - 260 - 61 = 0 (8.39)
Hence, 0 = —1.45 and 3.82, which agrees with Example 8.3.

For the third methed the root locus program discussed in Appendix G.2 on the
accompanying CD-ROM can be used to find the breakaway and break-in points.
Simply use the program to search for the point of maximum gain between —1 and
—2 and to search for the point of minimum gain between +3 and +5. Table 8.2
shows the results of the search. The locus leaves the axis at —1.45, the point of
maximum gain between — 1 and —2, and reenters the real axis at +3.8, the point
of minimum gain between +3 and +5. These results are the same as those obtained
using the first two methods. MATLAB also has the capability of finding breakaway
and break-in points.

The jw-Axis Crossings

We now further refine the root locus by finding the imagmnary-axis crossmngs.
The importance of the jew-axis crossings should be readily apparent. Looking at
Figure 8.12, we see that the system’s poles are in the left half-plane up to a par-
ticular value of gain. Above this value of gain, two of the closed-loop system’s
poles move into the right half-plane, signifying that the system is unstable. The je-
axis crossing is a point on the root locus that separates the stable operation of the
system from the unstable operation. The value of @ at the axis crossing yields
the frequency of oscillation, while the gain at the jw-axis crossing yields, for this
example, the maximum positive gain for system stability. We should note here
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Table 8.2 Data for breakaway and break-n points for the root focus of Figure 8.13

Real axis
value Gain Comment
-141 0.008557
-142 0.008585
—143 0.008605
—1.44 0.008617
—145 0.008623 <« Max. gain: breakaway
—146 0.008622
33 44.686
34 37.125
35 33.000
3.6 30.667
37 29440
38 29.000 < Min. gain: break-in
39 29.202

that other examples illustrate instability at small values of gain and stability at
large values of gain. These systems have a root locus starting in the right half-
plane (unstable at small values of gain) and ending in the left half-plane (stable for
high values of gain).

To find the jw-axis crossing, we can use the Routh-Hurwitz criterion, covered
in Chapter 6, as follows: Forcing a row of zeros in the Routh table will yield the
gain; going back one row to the even polynomial equation and solving for the roots
yields the frequency at the imaginary axis crossing.

Frequency and gain atimaginary-axis crossing

Problem For the system of Figure 8.11, find the frequency and gain, K., for which

the root locus crosses the imaginary axis. For what range of K is the system stable?

Solution The closed-loop transfer function for the system of Figure 8.11 is
K(s+3)

9= T TP T T T B Kl + 3K

(840)

Using the denominator and simplifying some of the entries by multiplying any row
by a constant, we obtain the Routh array shown in Table 8.3.

A complete Tow of zeros yields the possibility for imaginary axis roots. For
positive values of gain, those for which the root locus is plotted, only the s' row
can yield a row of zeros. Thus,

—K2—65K+720 = 0 (841)
From this equation K is evaluated as
K =965 (842)
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Table 8.3 Routh table for Eq. (8.40)

I 1 14 3K
5 7 8+K
) 90~ K 21K
. —K? — 65K +720
* %0-K
“ 21K

Forming the even polynomial by using the s% row with K = 9.65, we obtain
(90 — K)s? + 21K = 80.355% + 2027 = 0 (843)

and s is found to be equal to +;1.59. Thus the root locus crosses the je-axis at
+j1.59 at a gain of 9.65. We conclude that the system is stable for 0 < K < 9.65.

Another method for finding the je-axis crossing (or any point on the root lo-
cus, for that matter) uses the fact that at the jw-axis crossing, the sum of angles
from the finite open-loop poles and zeros must add to (2k + 1)180°. Thus, we can
search the je-axis until we find the point that meets this angle condition. A com-
puter program, such as the root locus program discussed in Appendix G.2 on the
accompanying CD-ROM or MATLAB, can be used for this purpose. Subsequent
examples in this chapter use this methed to determine the jes-axis crossing.

. Angles of Departure and Arrival
In this subsection we further refine our sketch of the root locus by finding angles of
departure and arrival from complex poles and zeros. Consider Figure 8.15, which
shows the open-loop poles and zeros, some of which are complex. The root locus
starts at the open-loop poles and ends at the open-loop zeros. In order to sketch the
root locus more accurately, we want to calculate the root locus departure angle from
the complex poles and the arrival angle to the complex zeros.

If we assume a point on the root locus ¢ close to a complex pole, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple of 180°.
Except for the pole that is € close to the point, we assume all angles drawn from
all other poles and zeros are drawn directiy to the pole that is near the point, Thus,
the only unknown angle in the sum is the angle drawn from the pole that is € close.
We can solve for this unknown angle, which is also the angle of departure from this
complex pole. Hence, from Figure 8.15(a),

—6;+ 03+ 65— 6, — 65 + 6 = (2k + 1)180° (8.442)
or
6, =0+ 63 — 6, — 65+ 05 — (2k + 1)180° (8.44b)
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Figure 8.16
Unity feedback system
with complex poles.

If we assume a point on the root locus € close to a complex zero, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple of 180°.
Except for the zero that is € close to the point, we can assume all angles drawn
from all other poles and zeros are drawn directiy to the zero that is near the point.
Thus, the only unknown angle in the sum is the angle drawn from the zero that is
€ close. We can solve for this unknown angle, which is also the angle of arrival 1o
this complex zero. Hence, from Figure 8.15(b),

—6) + 0>+ 65— 63 — 0s + O = (2k + DIRY {8452
or
65 = 6 — 6+ 6+ 65 — O + (2k + 1)180° (8.45b)

Let us look at an example.

Angle of departure from a complex pole

Problem Gaven the unity feedback system of Figure 8.16, find the angle of depar-
ture from the complex poles and sketch the root locus.

Kis+2)

Cis)
-
(s+3)s2+25+2)

Solution Using the poles and zeros of G(s) = (s + 2) [(s + 3)(s? + 25 + 2)] as
plotted in Figure 8.17, we calculate the sum of angles drawn to a point € close to
the complex pole. — I + j1. in the second quadrant. Thus.

—6— 0,4+ 6, — 6, = —6 — 90° +ran™! G)— tan? (%) - 180°  (8.46)
from which 6 = —251.6° = 108.4°. A sketch of the root locus is shown in Figure
8.17. Notice how the departure angle from the complex poles helps us to refine the
shape.

Plotting and Calibrating the Root Locus

Once we sketch the root locus using the rules from Section 8.4, we may want to
accurately locate points on the root locus as well as find their associared gain. For
example, we might want to know the exact coordinates of the root locus as it crosses
the radial line representing 20% overshoot. Further, we also may want the value of
gain at that point.

Consider the root locus shown in Figure 8.12. Let us assume we want to find
the exact point at which the locus crosses the 0.45 damping ratio line and the gain
at that point. Figure 8.18 shows the system’s open-loop poles and zeros along with
the £ — 0.45 line. If a few test points along the { = 0.45 line are selected, we can



Figure B.17

Root locus for system
ofFigure 8.16
showing angle of
departure

Figure 8.18

Finding and calibrating
exact ponts on

the root locus of
Figure 8.12

8.5 Refining the Sketch

o

it

i3

s-plane

449



450

Chapter 8 Root Locus Techniques

evaluate their angular sum und locate that pomnt where the angles add vp to an odd
multiple of 180°. It is at this point that the root ocus exists. Equation (8.21) can
then be used to evaluate the guin, K, at that point.

Selecting the point at radius 2 (r = 2)onthe ¢ = 0.45 line, we add the angles
of the zeros and subtract the angles of the poles. obtaining

6 — 6~ 60— 86— 6; = —251.5° 847

Since the sum is not equal to an odd multiple of 180°, the point at radus = 2 is
not on the root locus. Proceeding similarly for the points at radius = 1.5,1,0.747,
and 0.5. we obtain the table shown in Figure 8.18. This table lists the points, giving
their radius, 7, and the sum of angles indicated by the symbol 2. From the table
we see that the point at radis 0.747 is on the root locus, since the ungles add up to
~180°. Using Eg. (8.21), the gain, K. at this point is

K= mﬁl’ifm - 171 (8.48)

In summary, we search a given line for the point yielding a summation of angles
(zero angles — pole angles) equal 10 an odd multiple of 180°. We conclude that
the point is on the root locus. The gain at that point is then found by multiplying
the pole lengths drawn 1o that point and dividing by the product of the zero lengths
drawn to that point. A computer program, such as that discussed in Appendix G.2
on the accompanying CD-ROM or MATLAB, can be used,

Skill-Assessment Exercise 8.4

Problem Given a unity feedback system that has the forward transfer function

K(s +2)
Gs) = (SZJIJT)B)
do the following:

a. Sketch the root locus.

b. Find the imaginary axis crossing.

<. Find the gain, X, at the je axis crossing.

d. Find the break-in point.

€. Find the angle of departure from the complex poles.
Answers

a. See solution on accompanying CD-ROM.

by = +j 21

e K=4

d. Break-in point = —7.

e. Angle of departure = —233.1°.

‘The complete solution is on the accompanying CD-ROM,
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8.6 AnExample

We now review the rules for sketching and finding points on the root locus, as
well as present an example. The root locus is the path of the closed-loop poles
of a system as a parameter of the system is varied. Each point on the root locus
satisfies the angle condition, 2 G(s)H(s) = (2k + 1)180°. Using this relationship,
rules for sketching and finding poinis on the root locus were developed and are now
summarized:

Basic Rules for Sketching the Root Locus

Number of branches The number of branches of the root locus equals the
number of closed-loop poles.

Symmetry The root locus is symmetrica.l about the real axis

Real-axis segments  On the real axis, for K > 0 the root Iocus exists to the
lefi of an odd number of real-axis, finite open-loop poles and pen-loop
Zeros.

Starting and ending points The root locus begins at the finite and infinite
poles of G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s).
Behavior at infinity  The root locus approaches straight lines as asymptotes
as the locus approaches infinity. Further, the equations of the asymptotes are
given by the real-axis intercept and angle in radians as follows:

_ X finite poles — > finite Zeros
% = fnite poles — 7 finite zeros (8.49)

- 2k + 1)
= Tiite poles — # e 208 ®.50)

where k = 0, *1, 2, 3, ...

Additional Rules for Refining the Sketch

Real-axis breakaway and break-in points The root locus breaks away from
the real axis at 4 point where the gain is maximum and breaks into the real axis
at a point where the gain is minimum.

Calculation of jes-axis crossings  The root locus crosses the jw-axis at the
point where ZG(s)H(s) = (2k + 1)180°. Routh-Hurwitz or a search of the jw-
axis for (2k + 1)180° can be used to find the jw-axis crossing.

Angles of departure and arrival - The root locus departs from complex, open-
loop poles and arrives at complex, open-loop zeros at angles that can be calcu-
lated as follows. Assume a point e close to the complex pole or zero. Add all
angles drawn from all open-loop poles and zeros to this point. The sum equals
(2k + 1)180°. The only unknown angle is that drawn from the € close pole or
zero, since the vectors drawn from all other poles and zeros can be considered
drawn to the complex pole or zero that is € close to the point. Solving for the
unknown angle yields the angle of departure or arrival.

Plotiing and calibrating the root locus  All points on the root locus satisfy
the relationship ZG(s)H(s) = (2k + 1)180°. The gain. X, at any point on the
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MATLAB

root locus 1s given by

_ U []finite pole lengths (®.51)
TCwH T M T [ finite zero tengths g

Let us now look at a summary example.

Sketching a root locus and finding critical points

Problem Sketch the root locus for the system shown 1n Figure 8.19(a) and find
the following:

a. The exact point and gain where the locus crosses the 0.45 damping ratio line
b. The exact point and gain where the locus crosses the jw-axis

. The breakaway point on the real axis

d. The range of K within which the system 1s stable

Solution The Pproblem solution 